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ABSTRACT 

Artificial Neural Network (ANN) is a very useful data modeling tool that is able to 

capture and represent complex input and output relationships. The advantage of ANN 
• 

lies in its ability to represent both linear and non-linear relationships and in its ability 
1111 

to learn these relationships directly from the data being modeled. Modeling of rainfall 

runoff relationship is important in view of the many uses of water resources such as 

41 hydropower generation, irrigation, water supply and flood control. 

This study is to purposefully develop a rainfall runoff model for rainfall-runoff 

modeling in .Sutlej river basin, India using soft computing techniques such as 

Artificial Neural Network (ANN), Radial Basis Function (RBF) and Fuzzy Logic. 

Training and simulation was done using Matlab 6.5.1 software with varying 
• 

parameters to obtain the optimum result. 
• 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

The demand for water has increased due to population growth, urbanization and 

industrialization as a result of which watersheds and river systems have been altered. 

This will cause greater damage to property and result in loss of life if flooding 

occurs. Therefore, it's critically important to successfully plan, design and manage 

these water resources systems. To determine the relationship of transformation of 

precipitation to runoff is an important issue in surface hydrology. Forecasted runoff 

can be used in stream flow measurement and planning for water supply, flood control, 

irrigation, drainage, power generation, water quality, recreation, etc. A rainfall runoff 

model is required to obtain the relationship between rainfall and runoff. This model is 

capable of forecasting river runoff values that can be used in hydrology and hydraulic 

engineering design and water management purposes. Hence, it is important to 

hydrologist in determining these two relationships. 

However, this relationship is known to be highly non-linear and complex due to large 

spatial and temporal variability of watershed characteristics and precipitation patterns, 

and the number of variables involved in the modeling of the physical process (Tokar 

& Johnson 1999). Generally three types of models, including deterministic (physical) 

models, conceptual models and empirical/systems theoretic/black-box models, are 

being used by hydrologists in order to model this relationship. The deterministic 

(physical) models describe the relationship using physical laws of mass and energy 

transfer (Dawson & Wilby 2001). In contrast, in conceptual models instead of using 

physical laws of mass and energy transfer, a simplified, but a plausible or reliable 

conceptual representation of the underlying physics is adopted (Jain & Srinivasulu 

2006). 

An alternative modelling approach for hydrological processes such as rainfall-runoff 

process is the empirical/systems theoretic/black-box models, which try to find a 

relationship between historical inputs and outputs (ASCE Task Committee 2000a) 
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without detailed understanding of the physics involved in the process under 

investigation, such as artificial neural networks (ANNs). 

1.2 ARTIFICIAL NEURAL NETWORKS 

In the recent past, Artificial Neural Networks (ANN) modeling has gained significant 

attention due its ability to provide better solutions when applied to complex systems 

that have been poorly described or understood and where input is incomplete or 

uncertain by nature. ANN models shows better performance over the than traditional 

modelling techniques such as empirical models, statistical models (autoregressive, 

autoregressive moving average models) and physical based models. The advantages 

of ANN models over physically based models have been described in detail by French 

et al. (1992). 

The applications of ANNs in hydrology can be found in many papers, such as 

(Shamseldin 1997; Abrahart & Kneale 1997; Dawson & Wilby 1998; Abrahart & See 

2000; Coulibaly et al. 2000; Imrie et al. (2000); Govindaraju & Rao 2000; Lekkas et 

al. 2001; Persson & Bemdtsson 2001; Shamseldin & O'Connor 2001; Tayfur 2002). 

An ANN is an information-processing system that consists of a number of 

interconnected processing elements called nodes, analogous to neurons in the brain. 

Their growth is founded on the following principles: 

Information processing takes place at many individual elements called nodes, 

too known as units, cells, or neurons. 

Signals are passed between nodes over interconnection links. 

A synaptic weight is assigned to each connection link to represent the 

connection strength between two nodes. 

A nonlinear function called an activation function is applied to the net input by 

each node to determine its output signal. 
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Bias 

Synapse 
(Weight) 

Inputs 

Figure 1.1: A typical artificial neuron 

A neural network is characterized by its architecture that represents the pattern of 

connection between nodes, its method of determining the connection weights, and the 

activation function (Fausett 1994). Caudill presented a detailed description of neural 

networks in a series of papers (Caudill 1987, 1988, 1989). 

One way of classifying neural networks is by the number of layers: single (Hopfield 

nets); bilayer (Carpenter/Grossberg adaptive resonance networks); and multilayer 

(most backpropagation networks). ANNs can also be categorized based on the 

direction of information flow and processing. A feedforward network consists of 

nodes that are arranged in layers that begins from a first input layer and ends at the 

final output layer. The information is passed from the input to the output side. The 

neurons in one layer are connected to those in the adjacent layers, but not to those in 

the same layer. Thus, the output of a node in a layer is only dependent on the inputs it 

receives from previous layers and the corresponding weights. 

However, in a recurrent Ann information is passed through the neurons in both 

directions from the input to the output side and vice versa. This is generally achieved 

by recycling previous network outputs as current inputs, thus allowing for feedback. 

In many previous studies ANN type such as Multilayer Feed foreword back 

propagation neural network (MLFBPN) commonly adopted and it proved to be most 

powerful tool to 80 per cent of practical application in all filed of hydrologic 

engineering and sciences (Hsu et al., 1995; Smith and Sli, 1995). In the present study, 

a multilayered feed forward backpropagation neural network model is developed with 

rainfall, evaporation and lagged runoff as input to predict runoff. The number of 
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hidden layers and the number of nodes in each hidden layer are usually determined by 

a trial-and-error procedure. The nodes within neighboring layers of the network are 

fully connected by links. One of the most groundbreaking rediscoveries was that of 

backpropagation techniques (which were conceived by Rosenblatt) by Rumelhart et 

al. (1986). 

Neurons 

Sad 

Ere

•

r 

IV 111 hidden  layer 
Second 

Output layer 
(one node) 

Input layer 
First 

hidden layer 

Figure 1.2: An example of a three-layer ANN, showing neurons arranged in 

layers. 

1.3 RADIAL BASIS FUNCTION NETWORK 

In this study, Radial Basis Function (RBF) Neural Networks is used to construct a 

rainfall-runoff model. The RBF network is a variant of the standard feedforward 

network. It can be considered as a two-layer feedforward artificial neural network in 

which the hidden layer performs a fixed non-linear transformation with no adjustable 

internal parameters. The output layer, which contains the only adjustable weights in 

the network, then linearly combines the outputs of the hidden neurons (Chen et al. 

1991). 

41Page 



RBF Network 

Input Layer Hidden Layer Output Layer 

Figure 1.3: Radial basis function network. 

Here, h(x) is the Gaussian activation function with the parameters r (the radius or 

standard deviation) and c (the center or average taken from the input space) defined 

separately at each RBF unit. 

h(x) = exp C)2  
r2  

and the output layer function is represented by the following equation: 

f (x) = hi  (x) 
.1=1 (1.2) 

The learning process is based on adjusting the parameters of the network to reproduce 

a set of input-output patterns. There are three types of parameters; the weight w 

between the hidden nodes and the output nodes, the center c of each neuron of the 

hidden layer and the unit width r. 

The RBF network is trained by determining the connection weights between the 

hidden and output layer through a performance training algorithm. The hidden layer 

consists of a number of neurons and internal parameter vectors called 'centres', which 

can be considered the weight vectors of the hidden neurons. A neuron is added to the 

network for each training sample presented to the network. 
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The input for each neuron in this layer is equal to the Euclidean distance between an 

input vector and its weight vector (centre), multiplied by the neuron bias. The transfer 

function of the radial basis neurons typically has a Gaussian shape. For example, in 

one dimension, the Gaussian function is the probability density function of the normal 

distribution, 

f (x) = 
1 e  -(x-02/(20-2) 
27-c 

(1.3) 

Figure 1.4: Gaussian function curve. 

This means that if the vector distance between input and centre decreases, the 

neuron's output increases (with a maximum of 1). In contrast, radial basis neurons 

with weight vectors that are quite different from the input vector have outputs near 

zero. These small outputs only have a negligible effect on the linear output neurons. 

If a neuron has an output of 1 the weight values between the hidden and output layer 

are passed to the linear output neurons. In fact, if only one radial basis neuron had an 

output of 1, and all others had outputs of O's (or very close to 0), the output of the 

linear output layer would be the weights between the active neuron and the output 

layer. This would, however, be an extreme case. Typically, several neurons are 

always firing, to varying degrees. 

Summarizing, a RBF network determines the likeness between an input vector and the 

network's centres. It consequently produces an output based on a combination of 
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activated neurons (i.e. centres that show a likeness) and the weights between these 

hidden neurons and the output layer. 

RBF networks are generally capable of reaching the same performance as 

feedforward networks while learning faster. On the downside, more data is required to 

reach the same accuracy as feedforward networks. According to Chen et at. (1991), 

RBF network performance critically depends on the centres that result from the 

inputted training data. In practice, these training data are often chosen to be a subset 

of the total data, which suitably samples the input domain. 

The primary difference between the RBF network and backpropagation lies in the 

nature of the nonlinearities associated with hidden neurons. The nonlinearity in 

backpropagation is implemented by a fixed function such as a sigmoid. The RBF 

method, on the other hand, bases its nonlinearities on the data in the training set 

(Govindaraju 2000). The original RBF method requires that there be as many RBF 

centres (neurons) as training data points, which is rarely practical, since the number of 

data points is usually very large (Chen et at. 1991). A solution to this problem is to 

monitor the total network error while presenting training data (adding neurons), and to 

stop this procedure when the error does no longer significantly decrease. 

1.4 FUZZY LOGIC 

In this thesis, the Fuzzy theory has also been used for rainfall-runoff modeling. Fuzzy 

logic is a superset of conventional (Boolean) logic that has been extended to handle 

the concept of partial truth- truth values between "completely true" and "completely 

false" which provides a convenient framework to map an input domain to output 

domain. The central concept of Fuzzy set theory is the membership function, which 

represents numerically the degree to which an element belongs to a set. For example, 

if an element is a member of a fuzzy set to some degree, the value of its membership 

function can be between 0 and 1, as determined by eliminating the sharp boundary 

dividing members of the set from nonmembers (Klir & Foger 1988; Ojha et al. 2007). 

Fuzzy Logic has to be a useful and practical technique for modeling complex 

phenomenon that may not yet be fully understood owing to its ability to deal with 

imprecise, uncertain data, or ambiguous relationships among data sets (Mettemicht 

2001). Fuzzy Logic theory and Fuzzy set theory provide an excellent means for 

representing imprecision and uncertainty in the decision-making process and for 
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defining the reasoning in such processes (Zadeh 1983). The Fuzzy set theory has been 

used to represent uncertain information in mathematical form (Zadeh 1965) and has 

also been applied for different purposes in engineering, business, and many other 

areas. 

The fuzzy logic approach has been successfully applied to flood forecasting (Chang et 

al. 2005); precipitation (Maskey et al. 2004); sediment transport (Tayfur et al. 2003), 

reservoir operation (Tilmant et al. 2002), and storm water infiltration (Hong et al. 

2002). 

1.5 OBJECTIVES 

Main objective of the present work is to present the development of rainfall-runoff 

models using different soft computing techniques for predicting runoff at Bhakra 

located in the Sutlej basin in northern India. The specific objectives are given below: 

Rainfall-runoff modelling using ANN with backpropagation algorithm, RBF 

and Fuzzy Logic models. 

Comparison of results of rainfall-runoff models to determine which model 

performed better in predicting runoff at Bhakra. 

1.6 ORGANIZATION OF WORK 

The thesis has been organized in 7 chapters. 

Chapter 1 is introduction part of the research work. 

Chapter 2 describe literature reviews related to rainfall-runoff modeling, application 

of ANN's, RBF networks and fuzzy logic in many hydrological processes including 

rainfall-runoff processes and streamflow prediction. 

Chapter 3 describe the study area Sutlej River Basin, topographic information, Sutlej 

river and its tributaries, various input data collected to model the streamflow at 

Bhalcra using ANN, RBF and fuzzy logic models and presents the detailed procedures 

followed for the development of rainfall runoff models used for rainfall-runoff 

modeling and performance evaluation using error statistics for predicting runoff at 

Bhakra located in the Sutlej basin in northern India. 

Chapter 4 represents the result and discussion part, in which the results of rainfall-

runoff modeling are discussed in detail. Performance evaluation using error statistics 
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of results obtained during calibration and validation of the data is also done in this 

chapter. 

Chapter 5 provides the conclusion based on the analysis of rainfall-runoff modeling 

using ANN, RBF and fuzzy logic models. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

ANNs are a form of computing inspired by the functioning of the brain and nervous 

system and are discussed in detail in a number of hydrologic papers (Minns & Hall 

1996; Dibike & Solomatine 1999; Sajikumar & Thandaveswara 1999; Zealand et al. 

(1999); ASCE 2000 a,b; Maier & Dandy 2000; Elshorbagy 2000; Rajurkar et al. 

2002; Sudheer et al. (2002); Jain & Srinivasulu 2004; Parasuraman et al. (2006); Gill 

et at. (2007); Srinivasulu & Jain 2009). 

The development of artificial neural networks (ANNs) began approximately 50 years 

ago (McCulloch & Pitts 1943), inspired by a desire to understand the human brain and 

emulate its functioning. Within the last two decades, it has experienced a huge 

resurgence due to the development of more sophisticated algorithms and the 

emergence of powerful computation tools. Extensive research has been devoted to 

investigate the potential of artificial neural networks (ANNs) as computational tools 

that acquire, represent, and compute a mapping from one multivariate input space to 

another (Wasserman 1989). The ability to identify a relationship from given patterns 

make it possible for ANNs to solve large scale complex problems such as pattern 

recognition, nonlinear modeling, classification, association, and control. 

Since the early nineties, ANNs have been successfully used in hydrology and water 

resources engineering such as rainfall-runoff modeling, stream flow forecasting, 

ground-water modeling, water quality, water management policy, precipitation 

forecasting, hydrologic time series, and reservoir operations. More concepts and 

application of ANN models in hydrology has been discussed by Govindaraju and Rao 

(2000) and by the ASCE task committee on application of artificial neural networks in 

hydrology (2000 a, b). 

2.2 LITERATURE ON RAINFALL-RUNOFF MODELING 

The relationship of rainfall-runoff is known to be highly non-linear and complex and 

difficult problem involving many variables, which are interconnected in a very 

complicated way. 
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• 

• 
The problem of rainfall-runoff modeling has perhaps received the maximum attention 

4110 
by ANN modelers. This problem lends itself admirably to ANN applications (Hsu et 

al. 1995). The nonlinear nature of the relationship, availability of long historical 
• 

records, and the complexity of physically-based models in this regard, are some of the 

factors that have caused researchers to look at alternative models and ANNs have 

been a logical choice. 

Daniel (1991) introduced the application of ANNs in water resource and hydrologic 

111 modelling to the water resource community, he used ANNs to predict monthly water 

consumption and to estimate flood occurrence. 

A number of researchers (Zhu et al. (1994); Dawson & Wilby 1998; Tokar & Johnson 

1999; Coulibaly et al. 2000) have investigated the potential of using neural networks 

in modeling watershed runoff based on rainfall inputs. • 
4I 

In the last decade, ANNs have been successfully employed in modeling a wide range 

of hydrologic processes, including rainfall—runoff processes. (Smith & Eli 1995; Hsu 
4), 

et al. (1995); Minns & Hall 1996; Shamseldin 1997; Dawson & Wilby 1998; 

Cigizoglu & Alp 2004) studied on neural-network models of rainfall—runoff process. 

Govindaraju (2000) states that a broad classification into two categories of research 

activities after ANNs in Rainfall —Runoff modelling can be made: 

i. The first category of studies are those where ANNs were trained and tested 

using existing models (e.g., Smith & Eli 1995; Shamseldin 1997). These 

studies may be viewed as providing a "proof of concept" analysis for ANNs. 

They have laid the foundations for future ANN use by demonstrating that they 

are indeed capable of replicating model behavior, provided sufficient data is 
411 

available for training. This requirement is easily met, as the data necessary for 

41 training can be generated on a computer relatively easily. In such cases, ANN 

performance can at best equal the original model that provided the data for 

training. Such experiments are a first step in evaluating the applicability of 

ANNs for use in real catchments. 
• 

Most ANN-based studies fall into the second category, those that have used 

observed rainfall-runoff data. Frequently, supplementary inputs such as 

temperature, snowmelt equivalent, and historical stream flows have been 

included. In such instances, comparisons with other empirical or conceptual 

• 
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models have also been provided. These studies provide a more comprehensive 

evaluation of ANN performance and are capable of establishing ANNs as 

viable tools for modeling rainfall- runoff. While most studies report that 

ANNs have resulted in superior performance, they have not been useful for 

providing any useful insight or furthering our understanding of watershed 

processes. Using ANNs as a mere black-box to reproduce an input-output 

sequence well does not help in advancing the scientific understanding of 

hydrological processes. More creative use of ANNs is modeling the rainfall-

runoff process will be needed in the future. 

There are many different types of ANN models in practice. Multi-layer feedforward 

neural networks are perhaps the favorite and perform well in most ANN applications. 

Maier and Dandy (2000) reported that more than 95% of the ANN related papers they 

reviewed in the water resources area used feed-forward networks. In forecasting time 

series, the feed-forward network can be viewed as a general nonlinear auto-regressive 

model. The linear auto-regressive (AR) models are special cases of ANN without 

hidden nodes (Zhang et al. 2001). 

Rajurkar et al. (2002) studied the application of artificial neural network (ANN) 

methodology for modelling daily flows during monsoon flood events for a large size 

catchment of the Narmada River in Madhya Pradesh, India. They found that a linear 

multiple-input single-output (MISO) model coupled with the ANN provided a better 

representation of the rainfall-runoff relationship in such• large size catchments 

compared with linear and nonlinear MISO models. 

(Jain & Srinivasulu 2004; Rajurkar et al. 2004; De Vos & Rientjes 2005; Ahmad & 

Simonovic 2005; Tayfur & Singh 2006) found acceptable performance of Artificial 

Neural Networks (ANNs) in rainfall-runoff modelling. 

Solaimani (2009) developed Artificial Neural Network (ANN) to modelling the 

rainfall-runoff relationship in a catchment area located in a semiarid region of Iran. 

The applications of the feed forward back propagation for the rainfall forecasting with 

various algorithms with performance of multilayer perceptions has been illustrated in 

this study. 

2.2.1 Artificial Neural Networks 
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Determining the relationship between rainfall and runoff for a watershed is one of the 

most important problems faced by hydrologists and engineers. Information about 

rainfall and runoff is needed for hydrologic engineering design and management 

purposes. In addition to rainfall, runoff is dependent on numerous factors such as 

initial soil moisture, land use, watershed geomorphology, evaporation, infiltration, 

distribution, duration of the rainfall, and so on. Although many watersheds have been 

gauged to provide continuous records of stream flow, engineers are often faced with 

situations where little or no information is available. In such instances, simulation 

models are often used to generate synthetic flows. A number of researchers have 

investigated the potential of neural networks in modeling watershed runoff based on 

rainfall inputs. In a preliminary study, Halff et al. (1993) designed a three-layer 

feedforward ANN using the observed rainfall hyetographs as inputs and hydrographs 

recorded by the U.S. Geological Survey (USGS) at Bellvue, Washington, as outputs. 

The authors decided to use five nodes in the hidden layer. A total of five storm, events 

were considered. On a rotation basis, data from four storms were used for training, 

while data from the fifth storm were used for testing network performance. A 

sequence of 25 normalized 5 min rainfalls was applied as inputs to predict the runoff. 

This study opened up several possibilities for rainfall-runoff application using neural 

networks. 

Bonafe et al. (1994) assessed the performance of a neural network in forecasting daily 

mean flow from the upper Tiber River basin in central Italy. The previous discharge, 

daily precipitation, daily mean temperature, total rainfall of the previous five days, 

and mean temperature over the previous ten days were selected as ANN inputs. They 

concluded that the ANN was able to yield much better performances than ARMA 

models. 

Back propagation is the most popular algorithm used for the training of the feed 

forward ANNs (Hsu et al. 1995; Sajikumar & Thandaveswara 1999; Zealand et al. 

(1999); Thirumalaiah & Deo 2000; ASCE 2000a; Elshorbagy et al. 2000; Maier & 

Dandy, 2000; Burian et al., 2001; Nagy et al., 2002; Deka & Chandramouli, 2003; 

Jain & Srinivasulu, 2004; Keskin & Terzi, 2006; Kisi, 2007; Jain, 2008). 

Carriere (1996) developed a virtual runoff hydrograph system that employed a 

recurrent back-propagation artificial neural network to generate runoff hydrographs. 

A recurrent backpropagation network was utilized, in which input layer feeds back to 
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itself during training to capture time dependence in the series. The network consisted 

of 7 input nodes, 35 nodes in hidden layer, and a single node in the output layer. 

Bipolar linear normalization was used in the input layer, and the logistic function was 

used for activation in the nodes of the hidden and output layer. Data from 45 

laboratory experiments over a small watershed under different conditions of slope and 

cover were selected to develop the neural network. Out of these, 29 data sets were 

employed to train the neural network, and the rest were used for testing. The author 

concluded that the neural network could predict runoff hydrographs accurately, with 

good agreement between the observed and predicted values. 

Dawson and Wilby (1998) used a three-layer back-propagation network to determine 

runoff over the catchments of the Rivers Amber and Mole. The two catchments are 

about 140 km2 in size, and are prone to floods. ANN inputs were past flows and 

averages of past rainfall and flow values. The ANN output consisted of predicting 

future flows at 15 min intervals up to a lead time of six hours. Their results show that 

ANNs performed about as well as an existing forecasting system that required more 

information. When compared with actual flows, the ANNs appeared to overestimate 

low flows for the Mole River. 

Tokar and Johnson (1999) reported that ANN models provided higher training and 

testing accuracy when compared with regression and simple conceptual models. Their 

goal was to forecast daily runoff for the Little Patuxent River, Maryland, with daily 

precipitation, temperature, and snowmelt equivalent serving as inputs. It was found 

that the selection of training data has a large impact on accuracy of prediction. The 

authors trained and tested the ANN with wet, dry, and average-year data, respectively, 

as well as combinations of these, in order to illustrate the impact of the training series 

on network performance. The ANN that was trained on wet and dry data had the 

highest prediction accuracy. The length of training record had a much smaller impact 

on network performance than the types of training data. 

Campolo et al., (2003) forecasted flood in Arno River by using feed forward neural 

network approach with standard back propagation training algorithm. They used the 

information of rainfall, hydrometric data and dam operation at the basin, Italy, to 

predict the hourly water level variations. They used two years data with some special 

treatment with as inputs. 
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2.2.2 Radial Basis Function Networks 

Haykin (1994) showed that design of a supervised neural network might be pursued in 

a number of different ways. While the back-propagation algorithm for the design of a 

multilayer perceptron (under supervision) may be viewed as an application of 

stochastic approximation, radial-basis function (RBF) networks can be viewed as a 

curve-fitting problem in a high-dimensional space. Therefore, the learning for such 

networks is equivalent to finding a surface in a multidimensional space that provides a 

best fit to the training data, with the criterion for "best fit" being expressed in a 

statistical sense. 

Mason et al. (1996) used RBF networks for accelerating the training procedure as 

compared with regular back-propagation techniques. Data were generated using the 

Simulation Program for Interactive Drainage Analysis (SPIDA) model. The network 

output was runoff based on inputs consisting of time, rainfall intensity, cumulative 

rainfall, and derivative of rainfall intensity. The authors briefly discuss network 

architectures and compositions and tried five different forms of basis functions in 

their study. Sixty data sets were utilized for network training, and 39 were used for 

validation of the model. The authors concluded that, while RBF networks did provide 

for faster training, such networks require the solution of a linear system of equations 

that may become ill conditioned, especially if a large number of cluster centers are 

chosen. 

Fernando and Jayawardena (1998) studied on runoff forecasting using RBF networks 

with 01.S algorithm. In this study Radial Basis Function (RBF) neural network is 

used to construct a rainfall- runoff model. To do the training, Matlab 6.5.1 computer 

software was used. Further the result is compared to that obtained by rainfall- runoff 

model designed with multilayer percepteron model . 

Kumar et al. (2004) have studied the performance of MLP and RBF type neural 

network models developed for rainfall-runoff modelling of two Indian River basins. 

Kumar et al. (2005) developed MLP and RBF type neural network models for 

rainfall-runoff modelling of two Indian River basins. The performance of both the 

MLP and RBF network models were comprehensively evaluated in terms of their 

generalization properties, predicted hydrograph characteristics, and predictive 

uncertainty. Merits and limitations of networks of both models were discussed. 

• 
S 
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Senthil Kumar et al. (2005) studied modeling of Suspended Sediment Concentration 

at Kasol in India using ANN, Fuzzy Logic, and Decision Tree Algorithms. The focus 

of this paper was to present the development of models using Artificial Neural 
411 

Network (ANN) with back propagation and Levenberg-Maquardt algorithms, radial 

basis function (RBF), Fuzzy Logic, and decision tree algorithms such as M5 and 

REPTree for predicting the suspended sediment concentration at Kasol, upstream of 

the Bhakra reservoir, located in the Sutlej basin in northern India. It was found that 

the M5 model performed well compared to other soft computing techniques such as 

ANN, fuzzy logic, radial basis function, and REPTree investigated in this study, and 
• 

results of the M5 model indicate that all ranges of sediment concentration values were 

simulated fairly well. This study also suggests that M5 model trees, which are 

analogous to piecewise linear functions, have certain advantages over other soft 

computing techniques because they offer more insight into the generated model, are 

acceptable to decision makers, and always converge. Further, the M5 model tree 

offers explicit expressions for use by field engineers. 
411 

Fernando and Shamseldin (2009) applied radial basis function neural network for one 

day ahead flow forecasting. Two RBF networks were trained using daily flow data of 

two different rivers from different part of the world having different characteristics 

(i.e. Blue Nile River from Sudan and Brosna River from Ireland). Eight years data 

41 were divided into two parts in a ratio 50%, four year for training and testing each. 

Autocorrelation analysis was examined to select appropriate number of inputs. 

Present day discharge with two antecedent discharge values were selected to forecast 

one day ahead discharge in both RBF model architectures. The effect of radial basis 

functions or hidden neurons in both the models was also investigated. Conjugate 
41 gradient descent algorithm was employed to minimize the network error in order to 

choose the RBF centers, spreads and weights between hidden and output layers. From 

the inspection of the effect of hidden nodes on outputs, the authors examined that 

results with hidden node 1 is more dominant at low flow range, hidden node 2 showed 

dominancy at medium/high flow range and from hidden node 3, the very high zone 
411 

flow was covered. From this observation, they suggested that RBF model have ability 

to analytically crumble the flow hydrograph into a number of consequential flow 

elements in the catchment. Since the authors obtained successful forecasting results of 

river flow with different flow characteristics, in the mean while they also suggested 

• 
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that RBF network is not completely slanted, but it produce important information 

about the natural scenario. 

• Suhaimi et al. (2009) studied on Rainfall — runoff modelling using Radial Basis 

Function Neural Network for Sungai Tinjar Catchment, Miri, Sarawak. The RBF 
• 

network developed in this study has successfully modelled rainfall runoff relationship 
41 

in Tinjar Catchment, Miri, Sarawak with an accuracy of about 98.3%. 
• 

Kagoda et at. (2010) used radial basis function type of neural network for one day 
• ahead forecasting short-term stream flow. Application of RBF neural network for 

three locations at the Luvuvhu River in South Africa was demonstrated for forecasting 

stream flows. Daily data of rainfall and stream flow with antecedent conditions were 

used in the input layer to forecast one day ahead stream flow. Gaussian radial basis 

function was used during training RBF model. The network training consisted on two 
• 

stages (i) contain the calibration of Gaussian function parameters and (ii) include the 

calculation of connection weights. The authors used Self-Organizing Feature Map 

(SOFM) technique to determine the Gaussian function parameters. While, for 

calibration of connection weights, Shuffled Complex Algorithm Evolution (SCE-UA) 

was used. The Performance of the models was evaluated using Nash-Sutcliffe 

efficiency and root mean square error as statistical measures. Satisfactory results were 

41 
found at two locations where sufficient data was available, whereas at third location 

where data was not enough for network training, poor results were observed. Thus, 

the authors suggested that a good enough length of data is necessary to get 

satisfactory results from ANN modeling. However, the authors proposed on basis of 

obtained results that artificial neural networks is promising for forecasting stream 

flow in South Africa. 

41 Vivekanandan (2014) studied prediction of Rainfall using MLP and RBF networks. 

This paper illustrates the use of ANN for prediction of rainfall at Atner, Multai and 

Dhami stations. Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) 

networks are applied to train the network data. Model performance indicators such as 

correlation coefficient, model efficiency and root mean square error are used to 

41 evaluate the performance of the MLP and RBF networks. The paper presents the MLP 

network is better suited for prediction of rainfall for Atner and Multai whereas RBF 

network for Dharni. 
• 
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2.2.3 Fuzzy Logic 

Fuzzy logic is a mathematical system in which rigorous logical mathematics is used to 

deal with fuzzy information and data that are difficult to compute using conventional 

mathematics (Zadeh 1965). 

The fuzzy logic approach has also been applied to : rainfall—runoff processes (Abebe 

et al. 2000; Hundecha et al. 2001; Jacquin & Shamseldin 2006); river flow routing 

(See & Openshaw 2000; Chang & chen 2001); groundwater modelling (Hong et al. 

2002); water-level prediction in reservoirs (Chang & chen 2006); and time series 

modelling (Nayak et al. 2004). Deka and Chandramouli (2005) proposed a new 

approach combining FL and ANNs, which is referred to as fuzzy neural networks 

(FNN), for river flow prediction. 

Fuzzy logic based modeling methodologies can be classified into two types (Sugeno 

& Kang 1988; Pedrycz & Gomide 1994): 

The first type is used for developing purely linguistic models, based on 

conventional fuzzy implication and reasoning. The system behavior is 

described by means of fuzzy relational equations. A typical linguistic model is 

expressed as 'IF x is A THEN y is B', where A and B are fuzzy sets. In this 

type of model, the fuzzy sets are determined subjectively, on the basis of 

experience. Quantitative information is seldom directly used for the 

determination of the model structure and parameters. 

ii. Takagi and Sugeno (1985) pioneered the second type of modeling. Their 

model, referred to as the T-S model ' in this text, consists of a number of 

fuzzy implications (Fls). Each Fl is composed of a set of premises in the IF 

part and a set of consequences in the THEN part. The IF part provides a logic-

based guidance to the use of regression models in the THEN part. The T-S 

model structure has attracted much attention in recent years (Terano et al. 

1987; Tan et al. 1995). It has been found, however, that the model-

development process is computationally intensive. The model finally derived 

may be structurally more complicated than is necessary. 

Takagi and Sugeno first introduced their method of fuzzy inference in 1985. In recent 

years the Takagi— Sugeno fuzzy method (TS) has been used extensively in hydrology 

and has given many satisfactory results (Vernieuwea et al. 2005, Jacquin & 
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Shamseldin 2006, Lohani et al. 2006). The TS fuzzy system conception was 

introduced into a combination method by Fiordaliso (1998). 

Mamdani (1974) introduced the Mamdani approach as a type of FL modelling by 

showing its application for simple dynamic plant. 

Yu and Yang (2000) presented a fuzzy multi objective function (FMOF) to improve 

the performance of conventional objective functions of root-mean square error 

(RMSE) and mean percentage error (MPE) that are used in calibrating rainfall-runoff 

conceptual models. Using daily rainfall and flow discharge measurements as well as 

monthly evaporation estimates for calibrating and verifying the rainfall-runoff model, 

they showed that the FMOF led to improved simulation of a wide range of flow stages 

as it was capable of combining various objective functions with different acceptable 

levels. 

Ozelkan and Duckstein (2001) proposed a fuzzy conceptual rainfall-runoff framework 

to deal with parameter uncertainties of conceptual rainfall-runoff models. They 

concluded that the fuzzy logic framework enabled a decision-maker to gain insight 

into the model sensitivity and the uncertainty stemming from the elements of the 

conceptual rainfall-runoff model. 

Yeshewatesfa et al. (2001) applied FL model for rainfall streamflow modeling. The 

past decade has witnessed a applications of fuzzy logic approach in water resources 

(Nayak, et aL 2005). Nayak et al. (2005) used Mamdani approach (Mamdani and 

Assilian 1975), which has been used in some hydrological applications for rainfall 

streamflow modeling. 

Alvisi et al. (2006) stated that the FL models have a limited capacity for dealing with 

too detailed information compared to ANN models and this result is in line with other 

hydrological studies based on the fuzzy rules system that are generally characterized 

by a low number (from 2 to 5) of input variables. 

Recently, FL has been used in the field of hydrology and water resources. Bardossy 

(2006) proposed a fuzzy unit hydrograph to account for the number of uncertainties 

raised from both model assumptions and data acquisition in representing the rainfall—

runoff transformation. 

Tayfur and Singh (2006) used ANN and fuzzy logic models for simulating event- 

based rainfall—streamflow. 
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Firat and Ging& (2007a,b) used streamflow records of two stations in the Great 

Menderes basin for adaptive estimation by using the Takagi-Sugeno (TS) approach 

(Takagi & Sugeno 1985). They concluded that the TS-type fuzzy model has better 

skill in estimating the current value from two antecedent values, compared to ANNs. 

Mukarji et al. (2009) apply the ANN, adaptive neuroluzzy inference system ANFIS 

and ANFGI mode to forecast stramflow for Ajay River Basin in Jharkhand, India and 

results observed that ANFIS model predicts better than the ANN model in most of the 

cases. 

Gowda and Mayya (2014) apply fuzzy logic model for predicting streamflow for 

Nethravathi River basin is located in Dalcshina Kannad applying different 

membership functions and results found that, fuzzy inference system using triangular 

membership function show a good performance compared to other models developed. 

2.3 CONCLUSION 

The different types of approaches to the rainfall-runoff modeling have been reported. 

Taking the old approach in to consideration the development of new approaches 

conceptualized through these literatures. This study employs Fuzzy logic, ANN and 

RBF to model the streamflow at Bhakra. In all the models the input vector of the 

algorithm consists of mean daily rainfall, discharge and evaporation. 
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CHAPTER 3 

MATERIAL AND METHODS 

3.1 STUDY AREA 

3.1.1 The Sutlej river basin 

The Sutlej River is one of the main tributaries of the Indus River System and is 

located in the western Himalayan Region. The Sutlej River originates from 

Mansarowar Lake in Tibet at an elevation of about 4572 m and is a major tributary of 

the River Indus. Sutlej plays a key role in the economy of northern India where two 

out of three persons depend upon agriculture and allied activities for their livelihood. 

The entire Sutlej basin lies between latitudes 30°N and 33°N and longitudes 76°E and 

83°E. The Sutlej River enters India near Shipkila at an elevation of about 2530 m or 

6,608 meters and continues to flow in Himachal Pradesh through Wangtoo and Kian 

before reaching bhakra reservoir, where the India's highest gravity dam has been 

constructed. The total length of the river is 1,448 km. The total drainage area of the 

Sutlej River up to Bhalcra Reservoir is about 56,000 km2. The major part of the basin 

(35,725 km2) lies in the Tibetan plateau experiences little precipitation and has cold 

desert type of climate. The Indian part of Sutlej basin upstream of Bhakra dam is 

about 20,275 km2. The principal tributary of Sutlej River, known as Spiti, joins the 

Sutlej River just after entering India and contributes about two thirds of the total flow 

at Khab (the confluence of the Sutlej and Spiti). Figure 3.1 shows location of Sutlej 

basin in India. The present study has been carried out in a part of Sutlej River basin 

that is confined in the hilly State of Himachal Pradesh, India. The State shares its 

boundary with four Indian States namely, Jammu and Kashmir from North, Punjab 

from West, Haryana. from South, Uttarakhand from South-East and has international 

border with China (Tibet). Figure 3.2 shows Sutlej river basin location in the State of 

Himachal Pradesh, India. The Digital Elevation Model (DEM) of the Sutlej river 

basin provide clearer understanding of its topography (Figure 3.4). 
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Figure 3.1: Index map of Sutlej basin 

The State shares its boundary with four Indian States namely, Jammu and Kashmir 

from North, Punjab from West, Haryana. from South, Uttarakhand from South-East 

and has international border with China (Tibet). This basin lies between 30°51'23"N 

and 33°6'30"N latitudes and 76°26111"E and 78°59'32"E longitudes as shown in 

figure 3.3. The elevation of the upper basin varies from about 500 m at Bhakra dam to 

7000 m. However, only very small area exists above 6000 m. The mean elevation of 

the basin is about 3600 m. Although, the basin covers outer, middle and greater 

Himalayan ranges, the major part of basin lies in the greater Himalayan ranges. 

Owing to large differences in the relief, the basin is characterized by the diversified 

climatic patterns. Westerly weather disturbances produce most of the precipitation 

during winter in the middle and upper parts of the upper basin. Winter precipitation in 

the upper basin falls mostly as snow. The mean annual rainfall (excluding snow) in 

the outer, middle and outer Himalayan ranges of the basin is about 1300, 700 and 200 

mm, respectively (Singh & Kumar 1997b). The distribution of rainfall indicates that 

the rainfall is mostly concentrated in the lower part of the basin and has little 
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influence in the greater Himalayan range. The snowline is highly variable, descending 

to an elevation of about 2000 m during winter and retreats to above 4500 m after the 

ablation period. About 65% of the upper basin area is covered with snow during 

winters (Singh & Jain 2002). The Bhalcra Beas Management Board (BBMB) is 

responsible for collection of hydrometeorological data (snowfall, rainfall, 

temperature, discharge) for the Sutlej and Beas basins. 

Figure 3.2: Location map of Sutlej basin in Himachal Pradesh 

3.1.1.1 Sutlej river and its tributaries 

The Sutlej river is the longest and largest river among the five rivers of Himachal 

Pradesh. It enters Himachal at Shipki (altitude = 6,608 metres) and flows in the South-

Westerly direction through Kinnaur, Shimla, Kullu, Solan, Mandi and Bilaspur 

districts. Its corse in Himachal Pradesh is 320 km from Rakastal, with famous 

tributaries viz. the Spiti, the Ropa, the Taiti, the Kashang, the Mulgaon, the Yula, the 

Wanger, the Throng and the Rupi as right bank tributaries, whereas the Tirung, the 

Gayathing, the Baspa, the Duling and the Soldang are left bank tributaries. The Satluj 

finally drains into the Indus in Pakistan. 
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Figure 3.3: Map of Sutlej basin showing Sutlej river system and location of 

rainfall-discharge stations 

Figure 3.4: Digital elevation model for Sutlej river basin 
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3.1.1.2 Geology of Sutlej river 

The Satluj, together with all the rivers in Punjab, is considered to have sapped east 

into the Ganges before 5 Mya. There is considerable geographical proof to show that 

before 1700 BC at the most recent, Sutlej was a major tributary of the Ghaggar-Hakra 

River (probably through the Saraswati River) instead of the Indus with different 

writers mentioning the channelization from 2500-2000 BC or 5000-3000 BC. 

Geological scientists assume that tectonic movement resulted in altitude variations, 

which rerouted the discharge of Sutlej from the southeast to the southwest. 

Subsequently, the potent Saraswati started to desiccate, resulting in transformation of 

Cholistan and the eastern portion of the present state of Sindh into desert. The 

desertification led to desertion of many prehistoric human colonies beside the 

riverbanks of Saraswati. 

There is certain proof that the escalating rate of wearing down created by the present 

Sutlej River has regulated the cracks in restricted parts and speedily unearthed stones 

over Rampur. This will be comparable to, but on a much lower extent than the 

digging up of rocks by the Indus River in Nanga Parbat, Pakistan. In addition, the 

Sutlej River also exhibits a twofold reversed metamorphic slope. 

3.1.2 DATA COLLECTION AND ANALYSIS 

The basic data required for the rainfall-runoff modeling are rainfall information, time 

series of discharge data and evaporation data of the study area. The long-term rainfall, 

discharge and evaporation data used in the present study has been collected and 

supplied by Bhakra Beas Management Board (BBMB) for eight gauging sites; 

Berthin, Bhakra, Kahu, Kasol, Namgia, Raksham, Rampur, Suni. Daily rainfall data 

for sixteen years starting from 1, January, 1988 to 31, December, 2004 have been 

collected for eight raingauge stations whereas the discharge for the same period were 

collected from four discharge measuring stations and evaporation was collected for 

' one measuring station. These data sets were analyzed and transformed for proper use 

as input to the models. The locations of given stations have been shown in Figure 3.3 

earlier while the details of the data have been described in Table 3.1. Figure 3.5 

illustrates the evaporation data, figure 3.6 illustrates the rainfall data and Figure 3.7 

discharge data for the study period. 
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Table 3.1: Location details of the stations considered for the study in Sutlej 

basin. 

S.No. Station Height above 
M.S.L. (in feet) 

Latitude Longitude Data 
Availability 

 Bhakra 1700 31°24'32"N 76°2628"E 1988 — 2004 

 Berthin 2155 31°28'15"N 76°3720E 1988 — 2004 

 Kasol 2170 31°21'25"N 76°5242"E 1988 — 2004 

 Kahu 2130 31°12'13"N 76°47'15"E 1988 — 2004 

 Suni 2150 31°1415"N 77°06'30"E 1988 — 2004 

 Rampur 3200 31°2715"N 77°38'40E 1988 — 2004 

 Raksham 10269 31017'48"N 78°32110"E 1988 — 2004 

 Namgia 9547 31048'36N 78°39'23"E 1988 — 2004 

NOTE. M.S.L. = Mean Sea Level 
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Figure 3.5: Observed daily evaporation data at Bhakra station of Sutlej basin 
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411 

3.2 METHODOLOGIES 

3.2.1 Framework for ANNs 

411k ANNs are the best-known examples of information processing structures that have 

been conceived in the field of Neurocomputing. Neurocomputing is the technological 

discipline concerned with information processing systems that autonomously develop 

operational capabilities in adaptive response to an information environment (Hecht-

Nielsen 1990). Neurocomputing is also known as parallel distributed processing. • 
In other words, ANNs are models that use dense interconnection of simple 

computational elements in combination with specific algorithms to make their 

411 structure (and therefore their response) adapt to information that is presented to them. 

Hecht-Nielsen (1990) proposed the following formal definition of an ANN: 

"A neural network is a parallel, distributed information processing 

structure consisting of processing elements (which can possess a local 

memory and can carry out localized information processing 

operations) interconnected via unidirectional signal channels called 

branches (fans out) into as many collateral connections as desired; 

each carries the same signal — the processing element output signal. 

The processing element output signal can be of any mathematical type 

desired The information processing that goes on within each 

processing element can be defined arbitrarily with the restriction that 

it must be completely local; that is, it must depend only on the current 

values of the input signals arriving at the processing element via 

impinging connections and on values stored in• the processing 

element's local memory." 

From a mathematical point of view, ANNs can be called universal approximators, 

because they are often able to uncover and approximate relationships in different 

types of data. Even though an underlying process may be complex, an ANN can 

approximate it closely, provided that sufficient and appropriate data about the process 

is available to which the model can adapt. 

Let us assume a set of processing elements (neurons); at each point in time, each 

neuron u, has an activation value, denoted in the diagram as a(t); this activation value 

1110 
is passed trough a function f, to produce an output value o,(t) . This output value can 
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be seen as passing through a set of unidirectional connections to other neurons in the 

system. What is associated with each connection is a real number — usually called the 

weight of the connection, designated wo  - which determines the amount of effect that 

the first neuron has on the second. All of the inputs must then be combined by some 

operator (usually addition), after which the combined inputs to a neuron, along with 

its current activation value, determine its new activation value via a function F. 

Finally, the weights of these systems can undergo modification as a function of 

experience. This is the way the system can adapt its behavior, aiming for a better 

performance. 

Figure 3.8: Schematic representation of two artificial neurons and their internal 

processes (Rumelhart et al. 1986) 

Characteristics and examples of the above mentioned components of ANNs will be 

presented in the following subsections in more detail. The basic structure of these 

sections is also based on the work of Rumelhart et al. (1986). 

3.2.1.1 Neurons and layers 

Neurons are the relatively simple computational elements that are the basic building 

blocks for ANNs. Neurons can also be referred to as processing elements or nodes. 

They are typically arranged in layers (see Figure 1.2). By convention the inputs that 

receive the data are called the input units, and the layer that transmits data out of the 

ANN is called the output layer. Internal layers, where intermediate internal processing 
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takes place, are traditionally called hidden layers (Dhar & Stein 1997). There are as 

many input units and output neurons as there are input and output variables 

respectively. Hidden layers can contain any number of neurons. Not all networks have 

hidden layers. 

Neurons are usually indicated by circles in diagrams, and connections between 

neurons by lines or arrows. Input units will be depicted as squares or small circles to 

make a clear differentiation between these units and hidden or output neurons. 

3.2.1.2 State of activation 

The state of the system at a certain point in time is represented by the state of 

activation of the neurons of a network. If we let N be the number of neurons, the state 

of a system can be represented by a vector of N real numbers, a(t) , which specifies 

the state of activation of the neurons in a network. 

Depending on the ANN model, activation values may be of any mathematical type 

(integer, real number, complex number, Boolean, et cetera). Continuous activation 

types may be bounded within a certain interval. 

3.2.1.3 Output of the neurons 

Neurons interact by transmitting signals to their neighbors. The strength of their 

signals is determined by their degree of activation. Each neuron has an output 

function that maps the current state of activation to an output signal: 

o1(t) = f (a;(0) (3.1) 

This output function is often either the identity function f (x) = x (so that the current 

activation value is passed on to other neurons), or some sort of threshold function (so 

that a neuron has no effect on other neurons unless its activation exceeds a certain 

value). The set of current output values is represented by a vector 0(t). 

3.2.1.4 Pattern of connectivity 

Neurons are connected to one another. Basically, it is this pattern of connectivity that 

determines how a network will respond to an arbitrary input. 

The connections between neurons vary in strength. In many cases we assume that the 

inputs from all of the incoming neurons are simply multiplied by a weight and 

summed to get the overall input to that neuron. In this case the total pattern of 
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connectivity can be expressed by specifying each of the weights in the system. It is 

not necessary for a neuron to be connected to all neurons in the following layer. 

Therefore, zero values for these weights can occur. 

It is often convenient to use a matrix W for expressing all weights in the system, as 

the figure 3.9 shows. Weight W 21 is the weight by which the output of the first node in 

a layer is multiplied with when it is transmitted to the second node in the successive 

layer. 

Sometimes a more complex pattern of connectivity is required. A given neuron may 

receive inputs of different kinds whose effects are separately summated. In such cases 

it is convenient to have separate connectivity matrices for each kind of connection. 

Figure 3.9: Illustration of network weights and the accompanying weight 

matrix 

Connections between neurons are often classified by their direction in the network 

architecture: 

Feedforward connections are connections between neurons in consecutive 

layers. They are directed from input to output. 

Lateral connections are connections between neurons in the same layer. 

Recurrent connections are connections to a neuron in a previous layer. They 

are directed from output to input. 
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3.2.1.5 Propagation rule 

The propagation rule of a network describes the way the so-called net input of a 

neuron is calculated from several outputs of neighboring neurons. Typically, this net 

input is the weighted sum of the inputs to the neuron, i.e. the output of the previous 

nodes multiplied with the weights in the weight matrix: 

net(t) =W .o(t) (3.2) 

3.2.1.6 Activation rule 

The activation rule (often called transfer function) determines the new activation 

value of a neuron based on the net input (and sometimes the previous activation value, 

in case a memory is used). The function F , which takes a(t) and the vectors net for 

each different type of connection, produces a new state of activation. 

F can vary from a simple identity function, so that a(t +1) = net(t) =W.o(t) , to 

variations of linear and even non-linear functions like sigmoid functions. Transfer 

function calculate a layer's output from its net input. In the present study, log-sigmoid 

transfer function is used to perform calculations in the hidden layer and linear transfer 

function is used to generate the output. Graph and symbol of log-sigmoid transfer 

function and linear transfer function are shown in figure 3.10 and 3.11 respectively. 

a 
+1 

1.1 

0 

-1 

a = logsig(n) 

Figure 3.10: Log-sigmoid transfer function 

a 
+1 

11 

-1 
a = purclire(n) 

Figure 3.11: Linear transfer function 
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3.2.2 Model Development 

411, The most important steps in the ANN model development process is the selection of 

a significant input variables. Usually, not all of the potential input variables will be 

equally informative, because some may be correlated, noisy, or have no significant 
• 

relationship with the output variable being modeled (Maier & Dandy 2000). Input 

variables were selected based on cross-correlation, autocorrelation and partial 

autocorrelation technique. Many researchers such as (Nayak et al. 2006) have been 

successfully using correlation analysis for selection of input variables. 

The auto-correlation coefficient (Salas et al. 1980) is defined as: 

Eit‘11(Xt —  it)(Xt +  k +  k) 
lb rk r k(v 

Et 
vN- _ y)2 N 

(Xt k t + k)9 1  1Lit=1 kat t,t t=1 + - (3.3) 
• 

Where rk  is called the lag-k correlation coefficient, the serial correlation coefficient 

or the auto correlation function (ACF), x, is the time series for t = 1,..,N, x,,,c  is the 

_  
• lagged time series fort = 1..... N-k, x, is the sample mean for t = 1,...,N, x,+k  is the 

0 sample mean for t = 1,...,N-k, N is the sample size. 

The partial auto-correlation coefficient (Salas et al. 1980) may be obtained recursively 

by the Durbins relations as given below: 

• 
0,(1) = pi, 01(2) = p1(1-P2),  0

42) _ 1)2-p!  
(1—P12) (1—p12) (3.4) 

ø1(k) = 
Pk VIL-1 0j(k  1)pk  _ 

  
(3.5) 

ø(k)= 0J(k - 1) - Ok (k)Ok  (k - 1) 
(3.6) 

I 
To determine the partial auto-correlation function from a sample series x1 ,  xN  , 

the sample autocorrelation the p's are replaced by r's. p's are auto-regression 

coefficients. 

The cross-correlation coefficient (Salas et aL, 1980) is defined as: 
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co i 
Where r  is the lag-k cross-correlation coefficient, xi  s the time series values of 

series i, y
)(i))  is the time series values of series j, 

(0  is the mean of the first N-k 

(i) values of series i, and xi+k  is the mean of the last N-k values of series j. 

3.2.3 Normalization of Input Data 

The input values should be normalized to the range between 0 and I before passing 

into a neural network since the output of sigmoidal function is bound between 0 and 

I. Dawson and Wilby (1998) and many others have emphasized the importance of the 

normalization of data and have given the procedure to normalize. The output from the 

ANN should be denormalised to provide meaningful results. In this study, equation 

3.8 is used to normalize the data set: 

Ni= (R1— Mini) / (Maxi — Mini) (3.8) 

Where 12, is the real value applied to neuron i; N, is the subsequent normalized value 

calculated for neuron i; Min, is the minimum value of all values applied to neuron i; 

Max, is the maximum value of all values applied to neuron i. 

3.2.4 ANN models 

ANNs consist of a large number of simple processing elements called neurons or 

nodes. Each neuron is then connected to other neurons by means of direct links, each 

being associated with a weight that represents information being used by the network 

in its effort to solve the problem. The neural network can be in general characterized 

by architecture (the patterns of connection between the neurons), training or learning 

algorithm (the methods of determining the weights on the connections) and activation 

function. 
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Figure 3.12: Schematic diagram of an artificial neuron 

The architecture of a typical neural network with a single neuron is shown in Figure 

3.12. It consists of five basic elements: 

Input nodes for receiving input signals xi, xio; 

A set of connecting links (often called synapses), each of which is 

characterized by a weight w,j; 

Aggregating function to sum the input signals; 

Activation function that calculates the activation level of the neuron; and 

Output nodes yi, • • Yi• • 
The processing of each neuron is carried out in two steps: 

11 
Summing of the weighted input signals. 

CP Applying activation function to the sum for limiting the amplitude of the 

output of a neuron. 

Mathematically it can be described by the following two equations: 

• 

It • = -.X • 1.1 I 

i = 1 (3.9) 

410 = f (uj  + b) 
(3.10) 

• 
where wy is the weight connecting the input i to the neuron j. The effective incoming 

• 
signal uj  and bias bj  is passed through activation function A.) to produce the output 

signal y1. The main difference between the neurons in common use lies in the type of 

the activation function. Their functional form determines the response of a node to the 
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total input signal, however there is one thing common among these activation 

functions — they all restrict the input signals to certain limits. Some commonly used 

activation functions are linear, binary, sigmoid and tangent hyperbolic. 

In the present work, both the Multilayer Perceptron (MLP) network and the Radial 
• 

Basis Function (RBF) network have been considered for rainfall-runoff modeling. 

The RBF and MLP networks are usually used in the same kind of applications 

(nonlinear mapping approximation and pattern recognition), however their internal 

calculation structures are different. 

3.2.4.1 Artificial Neural Network (ANN) 

Feedforward artificial neural network is one of the most popular and successful neural 

network architectures. The ANN consists of an input layer, an output layers and at 

least one intermediate layer between input and output layer. The first layer is the input 

layer, which receives the input signal. The intermediate layers are known as hidden 

layers, which do not have direct connection to the outer world. The last layer is the 

output layer at which the overall mapping of the network input is made available and 

thus represents the model output. The nodes in one layer are connected to those in the 

next, but not to those in the same layer. Thus, the information or signal flow in the 

network is restricted to a flow, layer by layer, from the input to output through hidden 

layers. Figure 3.13 shows the example of a three layer feedforward ANN with one 

hidden layer. Training (i.e. computing the weights) of the ANN networks is done with 
• 

the backpropagation algorithm which is the most popular algorithm capable of 

capturing a variety of non-linear error surfaces. It is essentially a gradient descent 

technique that minimizes the network error function. The back propagation algorithm 

involves two steps: the first step is feed forward pass, in which the input vectors of all 

the training examples are fed to the network and the output vectors are calculated. The 

6 
performance of the network is evaluated using an error function that is based on the 

target and network outputs. After the error is computed, the back propagation step 

starts, in which the error is propagated back to adjust the network weights and bias. 

The iteration continues until the outputs of the network will match with the targets 

with the desired degree of accuracy. In a typical application, the weight update loop in 

back propagation may be iterated thousands of times. A variety of termination 

condition can be used to halt the iteration. One may choose to halt after a fixed 

number of iterations or once the error on the training examples falls below some 
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threshold or once the error on separate validation set of examples meets some 

criterion. The choice of termination or stopping criterion is important and discussed 

by many authors (see, e.g., Mitchell 1997). Although the back propagation method 

does not guarantee convergence to an optimal solution since local minima may exist, 

it appears in practice that it leads to solutions in almost every case. In fact, standard 

multi-layer, feed-forward networks with only one hidden layer have been found 

capable of approximating any measurable function to any desired degree of accuracy. 

Detailed description of the back propagation algorithm can be found in (Haykin 1999; 

Principe et al. 1999) among others. 

Figure 3.13: A three layer feedforward artificial neural network architecture 

3.2.4.2 Radial Basis Function (RBF) network 

Based on Demuth and Beale (2001), Radial basis networks consist of two layers: a 

hidden radial basis layer of S neurons and an output linear layer of S2  neurons as 

presented in figure 3.14. 
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Figure 3.14: Radial Basis Function (Demuth & Beale 2001) 

In order to design the network, a design function newrb will be the net code and their 

outputs can be obtained with `sim'. This network will behave by following an input 

vector 13' through the network to the output a2. When an input vector is present to the 

network, each neuron in the radial basis layer will output a value according to how 

close the input vector is to each neurons's weight vector. Typically several neurons 

are always firing, to varying degrees. The bias b allows the sensitivity of the radbas 

neuron to be adapted. 

The function newrb creates a two layer network. The first layer has a radbas neurons 

and calculates its weighted inputs with dist, and its net input with netprod. Number of 

neurons in the hidden layer must be sufficient enough to withhold the mass of inputs. 
• 

Number of hidden neurons in the hidden layer was investigated by trial and error 
4 

method. The values investigated are 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. While 

the second layer has purelin neuron that calculates its weighted input with dotprod 

and its net input with netsum. Both of the layers have biases. The training process will 

keep generating until the neurons networks mean squared error goal is met or the 

maximum number of neuron is achieved. 

A smoothing parameter known as spread, need to be set. Basically, the larger the 

41) 
value of spread, the smoother the function approximation will be. However, if the 

value of the spread is too large, many neurons will be required to fit a fast changing 
• function. Meanwhile, if it is too small, many neurons will be required in order to fit a 

/40 smooth function and the networks will not be generalized well. Therefore, in this 

39IPage 



project a set of trial and error of spread value will be tested to find the optimum value 

for determining the best network for radial basis function network. The spread values 

tested are 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. 

3.2.5 Training algorithms 

The way a network is trained is a basic property of an ANN; the values of several 

neuron properties and the manner in which the neurons of an ANN are structured are 

closely related to the chosen algorithm. The algorithm that is used to optimize these 

weights and biases is called training algorithm or learning algorithm. Training 

algorithms can be classified broadly into those comprising supervised learning and 

unsupervised learning. 

Supervised learning works by presenting the ANN with input data and the 

desired correct output results. This is done by an external 'teacher', hence the 

name of this method. The network generates an estimate, based on the given 

input, and then compares its output with the desired results. This information 

is used to help guide the ANN to a good solution. Some learning methods do 

not present the actual desired value of the output to the network, but rather 

give an indication of the correctness of the estimate (Dhar & Stein 1997). 

ANNs being trained using an unsupervised learning paradigm are only 

presented with the input data but not the desired results. The network clusters 

the training records based on similarities that it abstracts from the input data. 

In the present study, backpropogation algorithm is used which is a supervised learning 

technique. An ANN that is trained using a supervised learning method attempts to 

find optimal internal parameters (weights and biases) by comparing its own 

approximations of a process with the real values of that process and subsequently 

adjusting its weights (and biases) to make its approximation closer to the real value. 

The aforementioned comparison is based upon an evaluation using a performance 

function (hence the name performance learning). The author will refer to this function 

as error function. 

Suppose a network is trying to approximate a certain process, which can be 

characterized by a number of n variables (see Figure 3.15). The network input is a 

vector x and the weights of the network form a matrix W). The approximation of the 

network is a vector of n variables called y=(yi,y2,• • .y.) (which is a function of x and 
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W) and the real values of the variables are included in a vector called t=-(ti,t2,• • ••10. 

The difference between the two is used to calculate an approximation error E . In 

order for an ANN to generate an output vector y that is as close as possible to the 

target vector t , an algorithm is employed to find optimal internal parameters that 

minimize an error function. This function usually has the form: 

E= 1(th-  Yh)2  

h=1 (3.11) 

where n is the number of output neurons (Govindaraju 2000). 

Figure 3.15: Example of a two-layer feedforward network 

Equation 3.11 is based on the error expression called Mean Square Error (MSE). The 

MSE error measurement scheme is often used, because it has certain advantages. 

Firstly, it ensures that large errors receive much greater attention than small errors, 

which is usually what is desired. Secondly, the MSE takes into account the frequency 

of occurrence of particular inputs. The MSE is best used if errors are near normally 

distributed. Because y is a function of the weights in W the error function (E) also 

becomes a function of W of the network being evaluated. 
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3.2.5.1 Backpropagation algorithm 

The best-known algorithm for training ANNs is the backpropagation algorithm. It 

essentially searches for minima on the error surface by applying a steepest-descent 

gradient technique. The algorithm is linearly convergent. The backpropagation 

architecture described here and in the accompanying appendices is the basic, classical 

version, but many variants of this basic form exist. Basically, each input pattern of the 

training data set is passed through a feedforward network from the input units to the 

output layer. The network output is compared with the desired target output, and an 

error is computed based on an error function. This error is propagated backward 

through the network to each neuron, and correspondingly the connection weights are 

adjusted. 

Backpropagation is a first-order method based on the steepest gradient descent, with 

the direction vector being set equal to the negative of the gradient vector. 

Consequently, the solution often follows a zigzag path while trying to reach a 

minimum error position, which may slow down the training process. It is also possible 

for the training process to be trapped in a local minimum. (Govindaraju 2000). 

A possible way of preventing overtraining is called regularization. This method 

involves modifying the error function of performance learning algorithms. For 

example, if the MSE is used as error function, generalization can be improved by 

adding a term that consists of the mean of the sum of squares of the network weights 

and biases: 

MSE REG = y. MSE + (1— y). MSW 
(3.12) 

Where 

1 
MSW = 

1=1 (3.13) 

Using this performance function will cause the network to have smaller weights and 

biases, and this will force the network response to be smoother and less likely to 

overtrain. Bayesian regularization algorithm is used in this study in order train the 

given network more efficiently. 
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3.2.5.2 Bayesian Regularization Algorithm (BR) 

The Bayesian regularization is an algorithm that automatically sets optimum values 

for the parameters of the objective function. In the approach used, the weights and 

biases of the network are assumed to be random variables with specified distributions. 
• 

In order to estimate regularization parameters, which are related to the unknown 

variances, statistical techniques are being used. The advantage of this algorithm is that 

whatever the size of the network, the function won't be over-fitted. Bayesian 

regularization has been effectively used in literature (Anctil et al. 2004; Coulibaly et 

al. 2001a; Porter et al. 2000). 

3.2.6 Fuzzy logic 

A Takagi-Sugeno Fuzzy Inference System (FIS) has been developed by using the 

subtractive clustering (Chiu 1994) algorithm integrated with a linear least squares 

estimate algorithm for rainfall- runoff modeling. 

The TS model was proposed by Takagi and Sugeno (1985). Figure 3.16 explains the 

concept of a first-order TS model with one input variable X and one output variable Y. 

The input variable is partitioned into n fuzzy sets 211,.,A,„ the antecedent fuzzy sets. 

This results in n fuzzy rules of the form: 

Re : IF X is Ai  THEN Y = aiX+bi  , 

with a, and b, the parameters of the consequent part of rule R,. Given a value x of the 
ft 

input variable X, the resulting value y of the output variable Y is computed as: 
• 

y 
 Eric Ai(x)(aix + 

• 
Ai(x) 

(3.14) 
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Figure 3.16: Schematic representation of a Takagi—Sugeno model 

In order to apply a TS model to a p-dimensional input space, in particular if A, is a 

Cartesian product A, = AL,1*...*Ap,,p, with ii€{1,...,n1},..., ip€{1,...,n1,), and 

n1 ,n2,...,np, the number of fuzzy sets each input variable is partitioned into, the rule 

reads: 

• 

• 
Ri : IF (Xi, ....,Xp) is A, THEN 

Y= a LiXi+aziX2+ +apAp+bi, 

For a p-dimensional input vector x = A,(x) is then usually realized as: 

• Ai(x) = A1, ii (x1) A2, i2  (x2) Ap, (Xp) 

when the above type of rules are used, A,(x) is also the degree of fulfillment (DOF), 

w,(x), of rule i. 

The resulting output value y is then computed as: 
• 

Z7=1 
= 

wi  (x)( -I- • • • ... ap.  ixp  bi) y  
EP= Wi (X) (3.16) 

• 

• 
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In this way, a weighted average of the individual rule outputs is computed and a 

nonlinear function can be approximated. 

3.2.6.1 Subtractive clustering 

SC was introduced by Chiu (1994). Subtractive clustering is a fast and robust method 

for estimating the number and location of clusters present in a collection of data 

points. From figure 3.17, di denotes the projected cluster center and c, denotes the 

data point. Clustering is processing which deals with the task of partitioning a set of 

patterns into a number of homogeneous classes (clusters) with respect to a suitable 

similarity measure. 

Figure 3.17: Projection of the fuzzy clusters onto the antecedent space in 

the case of a three-dimensional Input -Output space 

Clustering is processing which deals with the task of partitioning a set of patterns into 

a number of homogeneous classes (clusters) with respect to a suitable similarity 

measure. Patterns belonging to any one of the clusters are similar, and the patterns of 

different clusters are as dissimilar as possible. In classical cluster analysis, the 

boundary of different clusters is crisp such that one pattern is assigned to exactly one 

cluster. In that case, where data distribution is not good, cluster boundary may not be 

precisely defined. Hence, a data point could belong to tow or more clusters with 

different degree of membership. Clustering technique is used for structure 
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identification based on input-output data. In this study, fuzzy substractive clustering-

based system identification and a sugeno-type fuzzy inference system was the basis of 

our approach to predict soil moisture from SAR, vegetation and soil type data. The 

procedure used to define the modeling process are as following: 

Select factors to be involved in the process and choose the levels of these 

factors. 

Conduct the experiments randomly at all possible factor-level combinations. 

Construct the fuzzy model using a subtractive clustering-based system 

identification algorithm and a Sugeno-type fuzzy inference system. 

Search through clustering parameters to obtain a model with minimum error. 

• 

The genfis2 algorithm provided by MATLAB software uses a subtractive clustering 

al method to generate Fuzzy Inference System (FIS). The genfis2 function uses the 

subclust function to estimate an antecedent membership function and set of rules. 

Further, the subclust function uses the linear least-square method to determine each 
41 

rule's consequent equation, and returns FIS structure that contains a set of fuzzy rules. 

The subclust function assumes each data point is a potential cluster center and 

calculates a measure of the likelihood that each data point will define the cluster 

center, based on the density of the surrounding data points. 

on acceptance and rejection ratios. Acceptance ratio can be determined by fractions of 

410 the potential first cluster center over another potential cluster center data that has been 

accepted. The rejection ratio is the condition required to reject a data point. A data 

point will be rejected as a cluster center if it is below the rejection ratio obtained from 

• 
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The Least Square Estimation algorithm used for the overall optimization of the 

regression parameters for a given set of clusters. The optimization of the fuzzy model 

depends mainly on finding the optimum range of the clustering parameters such as 

squash factor (Si), cluster radius (ra), acceptance ratio, and rejection ratio (r)). The 

models which result in an acceptable error are selected for further validation with the 

testing set. 

The subtractive clustering approach is used to identify cluster centers using ra  

110 parameter. This value is the maximum distance between any two points within the 

same cluster, yet less than the distance between distance between any two points from 
• 

different clusters where each point belongs. Cluster center selection criteria are based 



fractions of the potential first cluster center. The acceptance ratio is selected as 0.5 for 

the first cluster center and rejection ratio (1) between 0.15-0.5 to derive other cluster 

centers. Detailed descriptions of steps followed during the subtractive clustering are 
• 

giver below: 

• 

pt  = e —a Ilx1 —x111 2  

1.1 (3.17) 

• 
Where, ot = 4/42. 

• 
x, II is the Euclidean distance and ra  is a positive constant representing a 

normalized neighborhood data radius. Any point falling outside this circle 

region will have little influence on the potential point. The point with the 

highest potential value is selected as the first cluster center. This tentatively 

defines the first cluster center. 

ii. A point is qualified as the first cluster center if its potential value (P(I)) is equal 

to the maximum of initial potential value (1)(1).). 

po). = max(01
k0) (3.18) 

iii. Define a specific threshold 8 to make decision to either continue or stop the 

cluster center search. This process continues until current maximum potential 

remains greater than 8. 

= (rejection ratio) * (potential value of the first cluster center) 

Where the rejection ratio (i) used in this work is 0.15-0.5, and P(').  is the potential 

value of the first cluster center. 
• 

Remove the previous cluster center for further consideration. 

Revise the potential value of the remaining points according to the following 

equation. 

Pi = Pi  — Pk * * Pl1XgXk 112 

411 
( 3 . 19 ) 

410 
Xk*  is the point of the km  cluster center, P; is its potential value, and rb is a 

positive constant. Thus, the potential value of each data point is revised by 

subtracting an amount of potential from each data point as a function of its 
• 
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Compute the initial potential value for each data point (x,) 
• 



0 

distance from the first cluster center. Therefore, data point near the first cluster 

center will have greatly reduced potential, and will unlikely be selected as the 

future cluster center. The constant rb typically selected as rb= sf. rE, is the radius 
• 

defining the neighborhood which will have measurable reductions in potential. 

The squash factor (Sc) is a positive constant greater than 1. 

• 
vi. For the point having the maximum potential value, calculate the acceptance 

ratio. If this value is greater than the predefined constant (0.5), the point is 

accepted as the next cluster center. Otherwise compute the rejection ratio. If 

the rejection ratio is greater than the predefined threshold (1 = 0.15-0.5), this 

point is accepted. 

3.2.7 Performance evaluation 

The results obtained from calibration and validation are evaluated to determine the 

difference between observed and predicted values. In most of studies in this thesis, 

root mean square error (RMSE), model efficiency (EFF) (Nash & Sutcliffe 1970), and 

coefficient of correlation (CORR) were used as performance criteria to evaluate the 

various ANN models. They are defined as follows: 

• 

ikC- (t-31)2  
Root Mean Squared Error (RMSE) = \IE 

(3.20) 

E(t — Y)2  Efficiency = 1  • E(t - )2  (3.21) 

TY 
Coefficient of Correlation (CORR) =  

1ET2 E (3.22) 

111 

• 

• 

• 
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CHAPTER 4 

RESULTS AND DISCUSSION 

The results of the study with the defined objectives to develop Artificial neural 

network (ANN), RBF and Fuzzy logic models for Rainfall — Runoff Modeling of the 

study area and the analysis of the results is presented in this chapter. 

4.1 SELECTION OF INPUT VECTOR 

The input vector is selected generally by trial and error procedure. The simple 

correlation between the dependent and independent variables helps in selecting the 

significant input vector to the model. The correlation analysis helps to find out the 

possible input variable for the modeling, but it does not give the exact lag values. 

Sudheer et al. (2002) have suggested a statistical procedure that avoids the trial and 

error procedure. They have reported that the statistical parameters such as auto-

correlation function (ACF), partial auto-correlation function (PACF) and cross-

correlation function (CCF) could be used to find out the significant lag values of input 

variables. 

The ACF and PACF of discharge at Bhakra are presented in Figure 4.1 and 4.2 

respectively. The CCF between discharge at Bhakra and rainfall at Bhakra, Berthin, 

Kahu, Kasol, Namgia, Raksham, Rampur and Suni are presented in Figure 4.3. The 

CCF between discharge and evaporation at Bhakra is presented in Figure 4.4. The 

CCF between discharge at Bhakra and discharge at Kasol, Rampur and Suni are 

presented in Figure. 
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Figure 4.1: Autocorrelation of discharge at Bhakra 

Figure 4.2: Partial autocorrelation of discharge at Bhakra 
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Figure 4.3: Cross-correlation of discharge at Bhakra with rainfall at Bhakra 
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Figure 4.5: Cross-correlation of discharge at Bhakra with rainfall at Kahu 

Figure 4.6: Cross-correlation of discharge at Bhakra with rainfall at Kasol 
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Figure 4.8: Cross-correlation of discharge at Bhakra with rainfall at Raksham 
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Figure 4.9: Cross-correlation of discharge at Bhakra with rainfall at Rampur 
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Figure 4.10: Cross-correlation of discharge at Bhakra with rainfall at Suni 
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Figure 4.11: Cross-correlation between evaporation and discharge at Bhakra 
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Figure 4.12: Cross-correlation of discharge at Bhakra with discharge at Kasol 
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Figure 4.13: Cross-correlation of discharge at Bhakra with discharge at Rampur 

Figure 4.14: Cross-correlation of discharge at Bhakra with discharge at Suni 
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• 
On the basis of the values of PACF and CCF of the data series as per values 

mentioned, the following input vector was selected for neural network training: 

bhadis(t) = f(berrain(t), bharain(t), kahrain(t), kasrain(t), namrain(t), rakrain(t), 

ramrain(t), sunrain(t), bhaevap(t), kasdis(t), ramdis(t), sundis(t), bhadis (t 1)) (4.1) 

In equation , bhadis, kasdis, ramdis, sundis are discharge at Bhakra, Kasol, Rampur 

and Suni respectively. Similarly, bharain, berrain, kahrain, kasrain, namrain, rakrain, 

ramrain, sunrain are rainfall at Berthin, Bhakra, Kahu, Kasol, Namgia, Raksham, 

Rampur, Suni and bhaevap is evaporation at Bhakra. 

4.2 TRAINING AND VALIDATION OF THE DATA 
lb 

This is similar to the idea of calibration that is an integral part of most hydrologic • 
modeling studies. The purpose of training is to determine the set of connection 

weights and nodal thresholds that cause the ANN to estimate outputs that are 

sufficiently close to target values. The dataset reserved for training is used to achieve 

this goal. This fraction of the complete data to be employed for training should 

contain sufficient patterns so that the network can mimic the underlying relationship 

between input and output variables adequately. The weights and threshold values are 
• 

assigned small random values initially . During training, these are adjusted based on 

the error, or the difference between ANN output and the target responses. This 

adjustment can be continued recursively until a weight space is found, which results 

in the smallest overall prediction error. 

Similar to other modeling approaches in hydrology, the performance of a trained 

ANN can be fairly evaluated by subjecting it to new patterns that it has not seen 

during training. The performance of the network can be determined by computing the 

percentage error between predicted and desired values. In addition, plotting the model 
• 

output versus desired response can also be used to assess ANN performance. Since 

finding optimal network parameters is essentially a minimization process, it is 

advisable to repeat the training and validation processes several times to ensure that 

satisfactory results have been obtained. The ANN models were trained by using the 

functions of MATLAB (The Mathworks, Inc., 2001). 

• 

40 

• 
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• 

The whole data has been divided into two data sets for the training and validation of 

the models. 

The daily data from 1, January 1988 to 25, November, 1999 (i.e. 70 % of the 

total available data) were considered for the calibration of the model. 

4111 
ii. The data from 26, November, 1999 to 31, December, 2004 (i.e. 30 % of the 

• 
total available data) were considered for the validation of the model. 

4.3 MODEL PERFORMANCE 

The performance of the MLP, RBF and FUZZY models during calibration and 

lb 
validation with the input combination derived from statistical procedure given by 

Sudheer et al. (2002) is shown in Tables 4.1, 4.2 and 4.3 respectively. The statistical 

procedure uses the ACF, PACF and CCF of the time series to find out significant lag 

values of input variable. The selection of input variables from ACF, PACF and CCF 

coefficients also requires the modeler's ability to assess the significant lagged 

variables. 

4.3.1 Artificial Neural Network 

The number of the neurons in the hidden layer is found by trial and error procedure 

starting with one hidden neuron initially and then increasing it up to 10 hidden 

neuron, based on the performance criteria of the model. 

• The transfer function for the hidden and output layer are log sigmoid and pure linear 

• respectively in the training of the models. 

58IPage 
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• 

IP The model AN118 performed better than other models during calibration (CORR = 

0.99, RMSE = 54.24, EFF = 98.56%) and validation (CORR = 0:98, RMSE = 56.18, 

EFF = 97.69%) because the coefficients of correlation and Efficiency (%) of ANN8 is 
• 

higher among all other ANN models and RMSE of ANN8 is lower among all other 

ANN models as shown in table 4.1 The optimum structure of the ANN model was 

found to be 8 neurons in the hidden layer. 

111 4.3.2 Radial Basis Function Network 

The function `newrb' iteratively creates a radial basis network with one neuron at a 

time. Neurons are added to the network until the sum-squared error falls beneath an 

error goal or a maximum number of neurons has been reached. The call for this 

41 function is : 

net = newrb(P,T,GOAL,SPREAD) 

The function `newrb' takes matrices of input and target vectors P and T, and design 

parameters GOAL and SPREAD, and returns the desired network. At each iteration 

the input vector that results in lowering the network error the most is used to create 

a radbas neuron. The error of the new network is checked, and if low enough newrb is 

finished. Otherwise the next neuron is added. This procedure is repeated until the 

error goal is met or the maximum number of neurons is reached. It is important that 

the spread parameter be large enough that the radbas neurons respond to overlapping 

regions of the input space, but not so large that all the neurons respond in essentially 

the same manner. 

• 

40 

• 

• 
• 
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• 
• 
• 

The model RBF9 performed better than other models during calibration (CORR = 

0.97, RMSE = 111.87, EFF = 93.61%) and validation (CORR = 0:97, RMSE = 87.99, 

• 
EFF = 97.24 %) because the coefficients of correlation and Efficiency (%) of RBF9 is 

higher among all other RBF models and RMSE of RBF9 is lower among all other 

• RBF models as shown in table 4.2. The optimum structure of the RBF model was 

found to be 90 neurons in the hidden layer. 

4.3.3 Fuzzy Logic 

The Radius is found by trial and error procedure starting with 0.1 and then increasing 

it up to 1, based on the performance criteria of the model. 

Table 4.3: Results of Fuzzy logic model during Calibration and Validation 

Model 
No. 

Input 
Combinations 

Radius 

Calibration Validation 

CORR RMSE 
EFF 

(%) 
CORR RMSE 

EFF 
(%) 

FUZZY1 

bhaR(t), berR(t), 

kahRm, hew, 

namR rakR(t), 0), 

ramR(t), sunR(t), 

bhaE(t), kasD(0, 

ramD(0, sunD(t), 

bhaD(t-1) 

0.1 0.27 638.69 75.57 0.21 493.96 81.54 

FUZZY2 0.2 0.98 88.53 96.63 0.99 62.47 97.10 

FUZZY3 0.3 0.98 90.77 96.45 0.99 61.46 97.19 

FUZZY4 0.4 0.98 90.77 96.45 0.99 61.46 97.19 

FUZZY5 0.5 0.98 97.90 96.67 0.99 58.44 97.46 

FUZZY6 0.6 0.98 87.65 96.69 0.99 57.59 97.52 

FUZZY7 0.7 0.98 87.78 96.68 0.99 57.64 97.53 

FUZZY8 0.8 0.98 87.42 96.71 0.99 57.03 97.58 

FUZZY9 0.9 0.98 87.58 96.70 0.99 57.18 97.57 

FUZZY 
10 

1.0 0.98 90.77 96.45 0.99 61.46 97.19 

Note: bhaR 
= rainfall 
rainfall at 
discharge 
discharge 

= rainfall at Bhakra; 
at Kasol; namR 
rampur; sunR = 

at Kasol; ramD 

berR = rainfall at Berthin; kah:rainfall at Kahu; kasR 
= rainfall at Namgia; rakR = rainfall at raksham; ramR = 
rainfall at Suni; bhaE = evaporation at Bhakra; kasD = 

= discharge at Rampur; sunD = discharge at Suni; bhaD = 
at Bhakra. 

• 
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The model FUZZY8 performed better than other models during calibration (CORR = 

0.98, RMSE = 87.42, EFF = 96.71%) and validation (CORR = 0:99, RMSE = 57.03, 

EFF = 97.58 %) because the coefficients of correlation and Efficiency (%) of 

FUZZY8 is higher among all other FUZZY models and RMSE of FUZZY8 is lower 

among all other FUZZY models as shown in table 4.3. The optimum structure of the 

FUZZY model was found to be 90 neurons in the hidden layer. 

4.4 ANALYSIS OF RESULTS OF ANN, RBF AND FUZZY MODELS 

The performance of the best ANN, RBF and FUZZY models for the prediction of 

runoff at Bhalcra during calibration and validation is presented in Figure 4.15 to 4.20. 

The scatter plots clearly demonstrate the potentiality of the developed ANN, RBF and 

FUZZY models in the prediction of runoff. 

Figure 4.15: Scatter plot for the result of best ANN model during calibration 
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Figure 4.16: Scatter plot for the result of best ANN model during validation 

Figure 4.17: Scatter plot for the result of best RBF model during calibration 
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Figure 4.18: Scatter plot for the result of best RBF model during validation 

Figure 4.19: Scatter plot for the result of best FUZZY model during calibration 
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Figure 4.20: Scatter plot for the result of best FUZZY model during validation 

4.5 COMPARISON OF RESULTS AMONG BEST ANN, RBF AND FUZZY 

MODELS. 

4.5.1 Calibration/Training Results 

During calibration, the coefficient of correlation for the ANN model (ANN8) is 0.99, 

whereas, the value of the coefficient of correlation for the RBF model (RBF9) is 0.97 

and for the FUZZY model (FUZZY8) is 0.98. RMSE for ANN model (ANN8) is 

54.24 and for RBF model (RBF9) is 111.87; whereas, the FUZZY model (FUZZY8) 

is 87.42. Therefore, the ANN model performed best (54.24) and RBF model (RBF9) 

performed worst (0.82) than all other models investigated in this study. Regarding 

efficiency, the ANN model (ANN8) performed the best (98.56%), whereas RBF 

model (RBF9) performed the worst (93.61%). 

4.5.2 Validation/Testing Results 

During Validation, the coefficient of correlation for the ANN model (ANN8) is 0.98, 

whereas, the value of the coefficient of correlation for the RBF model (RBF9) is 0.97 

and for the FUZZY model (FUZZY8) is 0.99. RMSE for ANN model (ANN8) is 

56.18 and for RBF model (RBF9) is 87.99; whereas, the FUZZY model (FUZZY8) is 
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57.03. Therefore, the ANN model performed best (56.18) and RBF model (RBF9) 

performed worst (87.99) than all other models investigated in this study. Regarding 

efficiency, the ANN model (ANN8) performed the best (97.69%), whereas RBF 

model (RBF9) performed the best (97.24%). 

4.5.3 Overall results 

From performance indexes, it was observed that the ANN model learned the process 

better than any other model during calibration and validation. Thus, it can be 

concluded from the overall performance of the models that the ANN model (ANN8) 

performed the best and the RBF (RBF9) model performed the worst during both 

calibration and validation. 

The results of the calibration and validation of the best ANN, RBF and FUZZY 

models in terms of various statistical indices are presented in the Table 4.4. The 

performance of the best ANN, RBF and FUZZY models in terms of observed and 

predicted runoff at Bhakra during calibration and validation is presented in Figure 

4.21 and 4.22 respectively. 

Table 4.4: Comparison of results among the best ANN, RBF and FUZZY Logic 

models during calibration and validation. 

Model 
Calibration Validation 

CORR RMSE EFF (/o) CORR RMSE EFF (/o) 

ANN8 0.99 54.24 98.56 0.98 56.18 97.69 

RBF9 0.97 111.87 93.61 0.97 87.99 97.24 

FUZZY8 0.98 87.42 96.71 0.99 57.03 97.58 
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CHAPTER 5 

CONCLUSIONS 

Rainfall - runoff prediction models using Artificial Neural Network (ANN) with back 

propagation algorithm, Radial Basis Function (RBF), Fuzzy Logic are developed. 

After training and validation of these models, comparison of results among the best 

ANN model by Back Propagation, Radial Basis Function and FUZZY Logic during 

calibration and validation were made. 

The analysis of the performance of ANN model by Back Propagation, FUZZY Logic 

and Radial Basis Function clearly indicate that the application of ANN model by 

Back Propagation helps in the better prediction of runoff at Bhakra in Sutlej river 

basin. 

The performance of the models reveal that these models are able to predict the 

evaporation and runoff with adequate accuracy. 
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