
"ESTIMATION OF SEDIMENT-DISCHARGE OF JWALAMUKHI SITE USING ARTIFICIAL NEURAL NETWORK"

a

NATIONAL INSTITUTE OF HYDROLOGY ROORKEE 247 667

A summer internship report on the topic "Estimation of Sediment-Discharge of Jwalamukhi site using artificial neural network"

•

•

•

•

•

•

•

•

• • • • • •

Supervised by: Dr. Rama Mehta Scientist **National Institute Of Hydrology** IIT ROORKEE

Submitted by:

Pinki

M.Sc. (Ind. Maths & Informatics) IIT ROORKEE En.No.-14614009

A Report Submitted BY Pinki (Enrolment No: 14614009) Under the Supervision of Dr. Rama Mehta (Scientist)

DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE-247667 (INDIA)

DECLARATION

I hereby declare that the work presented in this project entitled "Estimation of Sediment-Discharge of Jwalamukhi site using Artificial Neural Network" in partial fulfillment of the degree M.Sc Industrial Mathematics & Informatics at Indian Institute of Technology, Roorkee is an authentic work of my own done under the guidance of Dr. Rama Mehta , Scientist, National Institute of Hydrology, Roorkee.

Date: 13 10 15 Place: Roorkee

۲

Pinki

TO WHOMSOEVER IT MAY CONCERN

It is certified that Ms. Pinki, (enrollment No. 14614009), student of M.Sc. Industrial Mathematics & Informatics, Indian Institute of Technology Roorkee, did an internship project from May 2015 to July 2015 under my supervision

Date: 13 10 15

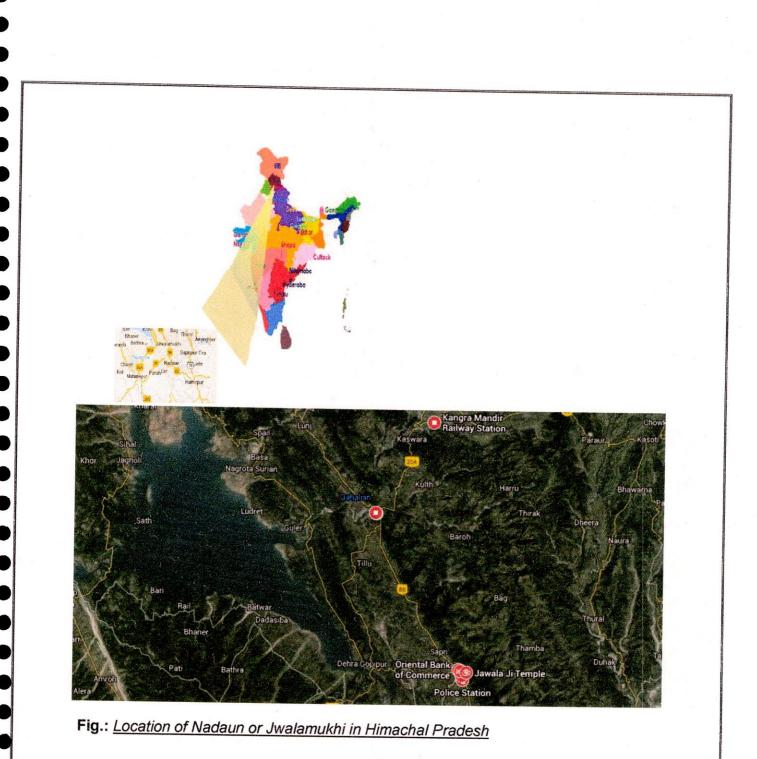
(Dr. RAMA MEHTA) Project Guide

Place: Roor kee

INTRODUCTION

Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bedload, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for Selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment discharges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common.

SEDIMENT-DISCHARGE RELATIONSHIP


Suspended sediment discharge relationship of the form Ss = aQ^b, where Ss is suspended sediment, Q discharge, and a and b are best fit estimated parameters. In regions where seasonal variation in erosion processes and source areas are controlled by floods generated by both spring snowmelt and summer storms, seasonal variation in sediment yield may mask any relationship with discharge. The relationship between sediment and discharge and the character of suspended sediment transport have been investigated for individual hydrological events. Variations in sediment concentration have been attributed to exhaustion and replenishment of the sediment supply, differences in travel distance between source areas and the locations of the measuring station, the location of sediment source areas and the existence of a time lag between sediment concentration and discharge peaks. Williams (1989) developed models for sediment rating relationships (linear and curved) for individual hydrological events by comparing sediment concentration and discharge ratios at a given discharge on the rising and falling limbs of discharge hydrographs. Although he summarized the physiographical and hydrological reasons for the existence of each type of relationship associated with sediment rating curves, only partial understanding of the controlling factors exists.

Artificial Neural Network (ANN) can be applied to predict the monthly, weekly and daily suspended sediment in the catchment by relating it to average rainfall, temperature, rainfall intensity and water discharge. Generally hydrological modeling using artificial neural network has adopted simple trained-and-tested procedure to find the best ANN structure. Sometimes due to inadequate data set, ANN structure is decided by this simple trained-and-tested provides biased testing. Cross validation procedure has been used for estimating the generalized performance for during smaller data set. Although suspended sediment load can be predicted using numerous developed equations their results often differ from each other and from measured data due to complexity of sediment transport nature.

Many researchers have studied the application of Artificial Neural Networks in vital topics of hydrology and hydraulics such as prediction of sediment load, rainfall-runoff modeling, flow prediction etc. Dr.Rama Devi Mehta in PH.D thesis of shri A.K.lohani ,Dept of Hydrology,IIT Roorkee and Cigizoglu (2002) made a comparison between ANNs and SRC for suspended sediment estimation and found that the estimations obtained by ANN's were significantly superior to the corresponding classical sediment rating curve ones.

The application of ANNs to sediment concentration Estimation is, however, not available in the literature. In this study, initially, ANNs are used to forecast the present or future sediment value using the past sediment values as input.

STUDY AREA

In the present study, the study area is Nadaun or Jwalamukhi in the Beas basin. Beas basin of Himachal Pradesh (Indian Himalaya) is selected as a study area, from where the Beas River originates. Thus being a catchment area of a river it is important to monitor the snow cover as it has lot of applications. Climatically, this area falls in the lower Himalayan zone (Sharma and Ganju 2000) and characterized by moderate temperature as mean minimum temperature -1.6°C, lowest minimum −12°C and mean maximum 7.7°C during winter (November to April) and high precipitation as mean standing snow 165 cm and mean cumulative snowfall 363 cm in the month of January (Singh and Ganju 2006). Due to moderate temperatures, the winter period remains short and the snow cover changes into 528 H S Negi et al 0∘C isothermal. The average altitude of this zone is between 2000 and 4000 m. However, middle Himalayan zone is characterized by cold temperature, mostly glaciated and altitude varies from 3500 to 5300 m and the upper Himalayan zone is extremely cold, receives dry snow and highly glaciated which is somewhat close to continental snow conditions, and altitude more than 5000 m.

As the study area receives high precipitation and significant changes in the snow characteristics due to moderate temperature, it also receives lot of avalanche activities along Manali–Leh highway, which is very important highway to the population of Ladhak, as it connects Ladhak division with rest of the country. In addition to catchment areas of Beas river, snow cover distribution was carried out because the areal extent of snow significantly changes in summer due to melting. This provides ample opportunity to validate snow indices under different melting conditions. This area also covers vegetation (pine trees), The total area of the basinis approximately 347 km²

DATA ANALYSIS

DATA USED

In this present study, we have monthly data of discharge and sediment of Nadaun/Jwalamukhi site from 1987 to 2009.that is collected by National Institute of Hydrology (NIH). Then we divided that data into monsoon and non-monsoon seasons. As we consider June to October in monsoon and November to May in non-monsoon, where the discharge is in Cumec and sediment is in mg/lit

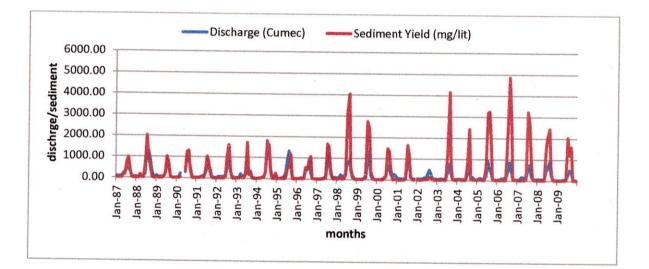


Fig.: Sediment and discharge monthly data of Nadaun/Jwalamukhi (1987-2009)

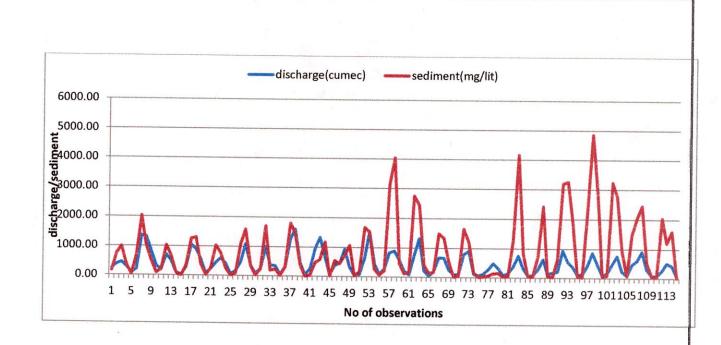
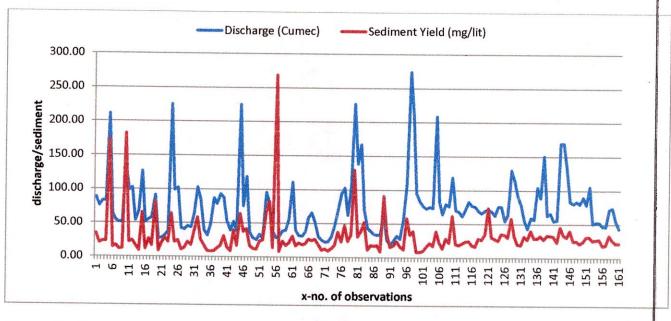
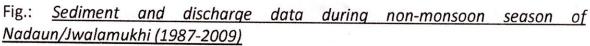




Fig.:<u>sediment and discharge data during monsoon season of</u> Nadaun/Jwalamukhi (1987-2009)

DESCRIPTIVE STATISTICAL ANALYSIS

Table1: MAXIMUM AND MINIMUM DISCHARGE

•

•

• • • • • • •

Maximum and	Maximum	Maximum	Minimum	Minimum
Minimum	Discharge (cumec)	Sediment (mg/l)	Discharge (cumec)	Sediment (mg/l)
Discharge Year	2.0			
1987	608.63	993.0452	54.53	14.27333
1988	1366.25	2034.881	51.24	9.112903
1989	710.00	1028.716	27.71	8.79
1990	1059.88	1312.374	32.24	10.78667
1991	604.10	1037.613	31.89	8.6
1992	1092.01	1589.248	39.37	8.322581
1993	1006.21	1713.7	28.44	12.41613
1994	1606.09	1807.739	25.46	11.37419
1995	1333.36	1176.537	30.42	8.464516
1996	939.75	1070.387	25.49	10.79355
1997	1550.52	1683.006	22.79	9.625
1998	895.73	4050.403	43.53	11.49677
1999	1326.31	2753.258	19.73	8.666667
2000	670.19	1487.126	24.94	11.86667
2001	906.28	1655.752	73.02	8.4
2002	489.16	151.4333	64.5	13.48714
2003	753.64	4164.012	61.78	16.65806
2004	643.69	2428.294	54.46	25.44516
2005	944.58	3259.555	43.46	18.98387
2006	872.01	4866.555	56.88	27.77097
2007	758.13	3237.639	54.62	23.25714
2008	909.31	2455.232	50.92	21.10345
2009	517.92	2040.961	43.86	18.11429

	Mean	Standard Deviation	Minimum	Maximum
Discharge (cumec)	232.03	303.41223 88	19.73	1606.09
Concentrati on (mg/l)	389.78664 87	797.89686 35	8.3225806 45	4866.5548 39

TABLE2. STATISTICAL DESCRIPTION

METHODS AND METHODOLOGY

Observed value:

It is the value of given monthly data of discharge and sediment.as we used it in further procedure.

Sediment rating curve:

The sediment rating curve is a relation between the river discharge and sediment load.Such curves are widely used to estimate the sediment load being transported by a river.Generally, a sediment-rating curve may be plotted showing average sediment concentration or load as a function of discharge averaged over daily, monthly, or other ne periods. Using the rating curve, the records of discharge are transformed into records of sediment concentration or load. Mathematically, a rating curve may be constructed by log-transforming all data and using a linear least square regression to determine the line of best fit. The relationship between sediment concentration and discharge is of the form:

 $S = aQ^b$.

The log-log transformation of equation is:

 $\log S = \log a + b \log(Q)$

where, S and Q are suspended sediment concentration (or load) and discharge respectively. a and b are regression constants.

A typical sediment-rating curve is a straight-line plot on log-log paper and a regression equation minimizes the sum of squared deviations from the log-transformed data. This is not the same as minimizing the sum of squared deviations from the original dataset. Therefore, this transformation introduces a bias that underestimates the sediment concentration (or load) at any discharge and it may result in underestimation by as much as 50% (Ferguson, 1986). Ferguson and others have suggested bias correction factors, but their appropriateness is uncertain . Further, depending upon the channel

characteristics, two or more curves may be fitted to the data. A major limitation of this approach, however is that it is not able to take into account the hysteresis effect that gives a loop rating curve. Therefore, as such, the conventional rating technique is not adequate in view of the complexity and importance of the problem and, hence, there remains a scope for further improvement.

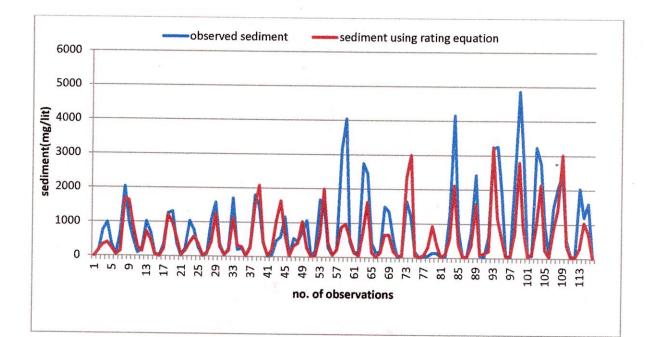
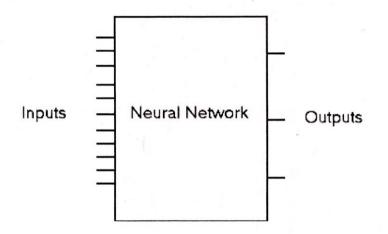


Fig.:Comparision of observed value of sediment to sediment obtained by rating equation.


ROOT - MEAN- SQUARE ERROR(RMSE) =

V (OBSERVED- RATING SEDIMENT)^2/N =761.4826

ANN TECHNIQUE

An artificial neural network is a system based on the operation of biological neural networks, in other words, is an emulation of biological neural system. The computing world has lot to gain from neural networks, also known as artificial neural network or neural net. The neural network s have the ability to learn by example, which makes them very flexible and powerful.

• ANN is a black box performing transformation.

For neural networks, there is no need to devise an algorithm to perform a specific task/work i.e. there is no need to understand the internal mechanism of hat task. These network are well suitable for real time systems because of their fast response and computational times.

Artificial Neural Network is an information processing system that tries to replicate the behavior of a past through their learning systems with input output data and it is appreciably applicable for sediment modelling. Artificial neural networks are able to imprecise nonlinearities in the data. ANN is data driven self-adaptive method based on multivariate nonlinear nonparametric statistical analysis for real world complex problem.

An artificial neural network is a type of biologically inspired computational model, which is based loosely on the functioning of the human brain.it is more useful to think of a neural network as performing an input-output mapping via a series of simple processing nodes or neurons. The task of each individual neuron is twofold: it integrates information from an external source or from other neurons, often via a linear function, and it outputs this value via transfer function, such as sigmoid. The ability to map a function is derived via the configuration of these neurons into a set of weighted, interconnected layers, where the neurons in the first and last layers have a one-one correspondence to the input and output values respectively. Between these two external layers are one or more interconnected, hidden layers. Which is the key to learning the relationships in **the data**.

Dendrites (receive messages from other cells)

Axon (passes messages away from the cell body to other neurons, muscles, or glands)

> Neural impulse (electrical signal traveling down the axon)

Terminal branches of axon (form junctions with other cells)

> Myelin sheath (covers the axon of some neurons and helps speed neural impulses)

Cell body (the cell's lifesupport center)

Fig<u>: Diagram of neuron in human brain</u>

Advantages of neural network

Neural networks, with their remarkable ability to derive meaning from complicated or imprecise data, could be used to extract patterns and detect trends that are too complex to be noticed by either humans or other computer techniques

ADAPTIVE LEARNING: an ANN is endowed with an ability to learn how to do tasks based on the data given for training or initial experience.

SELF ORGANISATION: an ANN can create its own organization or representation of the information it receives during learning time.

REAL TIME OPERATION: ANN computations may be carried out in parallel .special hardware devices are being designed and manufactured to take advantage of this capability of ANN's.

Adaptively (understands new ideas).

Evidential response (notice easily).

VLSI (very large scale integrated) implements ability.

A neural network can perform tasks that a linear program cannot.

When an element of neural network fails, it can continue without any problem ,a neural network learns and does not need to be reprogrammed.

And so on.....

Disadvantages

It needs training to operate.

Requires high processing time for large neural networks.

The architecture of a neural network is different from the architecture of microprocessors therefore needs to be emulated.

Basic model of artificial neural network

The models of ANN are specified by the three basic entities namely:

i) The model synaptic interconnections in ANN consists a set of highly interconnected neurons or processing elements such that each neuron output is found to be connected through weights to neurons or to itself; delay, lead and lag –free connections are allowed. The arrangements and the geometry of their interconnections are essential for ANN. The point where the connection originates and terminates are noted. The arrangements of neurons to form layers and the connection pattern within and between the layers is called network architecture. There exist five basic types of network architecture.

- a) Single layer feed forward network
- b) Multilayer feed forward network
- c) Single node with its own feedback.
- d) Single layer recurrent network.
- e) Multi-layer recurrent network.
- i) Training or learning rules adopted for updating and adjusting the connection weights;
- ii) Their activation functions.

Activation functions:

Activation function acts as a squashing function, such that the output of the neuron in a neural network is between certain values (usually 0 and 1, or -1 and 1)

When a signal is fed through a multilayer network with linear functions, the output obtained is remain same as that could be obtained using a single layer network. Due to this reason nonlinear functions are widely used in multilayer networks compare to linear functions. List of linear activation functions:

i) Identity function: f(x)=x for all x

The input function uses identity function for single layer network and output remains the same as input.

ii) Binary step function: f(x)= 1 if x>=theta

0 if x< theta

Here, theta represents the threshold value. This function is used in single layer network to convert net input to an output i.e. binary (1 or 0). It is also known as threshold function,

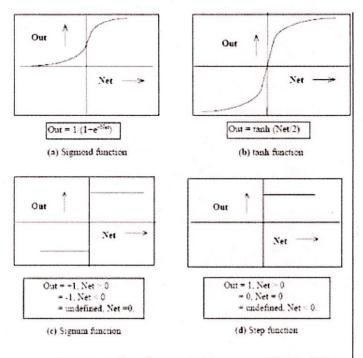
iii) Bipolar step function: f(x)= 1 if x>= theta

-1 if x< theta

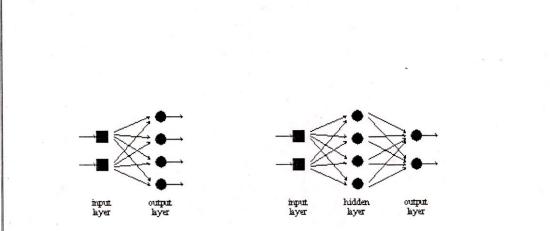
Where, theta represents the threshold value. This function is also used in single layer network to convert net input to an output that is bipolar (+1 or -1).

 iv) Piecewise –linear function: this function again can take on the values of 0 or 1, but can also take on values between that depending on the amplification factor in a certain region of linear operation.

> Phi (v) =1 v>=1/2 V, -1/2 >v>1/2 0 v<= -1/2


Nonlinear functions

These functions are used to achieve the advantages of a multilayer network from single layer network.


i) Sigmoidal function: it is the hyperbolic tangent function. Phi (v) = tan (v/2) =1-exp(-v)/1+exp(-v)

And other functions are:-

- i) Sigmoid
- ii) Tan(h)
- iii) Signum
- iv) Step

Common non-linear functions used for synaptic inhibition. Soft nonlinearity: (a) Sigmoid and (b) tanh; Hard non-linearity: (c) Signum and (d) Step.

a) Single layer network

b) Multi layer network

Neural network topologies

It focuses on the pattern of connections between the units and the propagation of data. for this pattern of connections, the main distinction is between:

- Feed forward neural network: where the data from input to output units is strictly feed forward .the data processing can extend over multiple (layers of) units, but no feedback connections are present, i.e. connections extending from outputs of units to inputs units in the same layer or previous layer.
- ii) Recurrent neural network: that do contain feedback connections.

We have given data of monthly discharge and sediment of Nadaun. We use excel file to plot the calibration and validation data where calibration data contains 70% of the observations and validation has only 30%.and which is further divided into training 15% and testing 15%. Then the above graph is of calibration and validation of monthly data where we have regression line and coefficients as well.

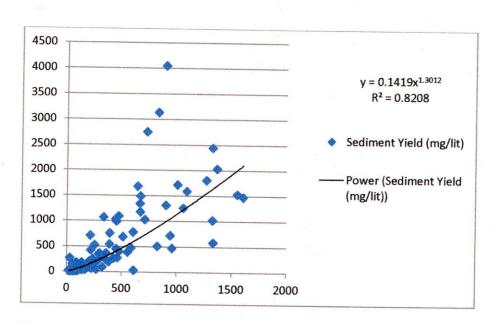
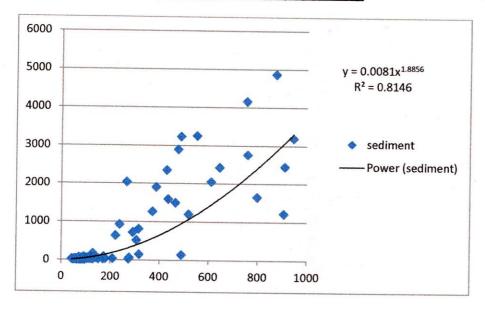



Fig.: Sediment discharge during at nadaun (Calibration)

Fig.: Sediment discharge at nadaun (Validation)

Then we classified that monthly data of discharge and sediment of nadaun (Jwalamukhi) from 1987-2009 in monsoon and non-monsoon seasons.

Here, R^2 is the regression coefficient.

MONSOON SEASON

The data is given as follows:

۲

.

•

۲

۲

۲

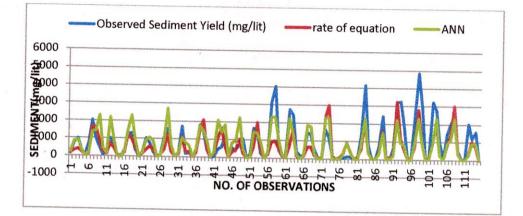
۲

•

•

.

۲


•

Year	Discharge (Cumec)	Observed Sediment Yield (mg/lit)	rate of equation	ANN
Jun-87	253.05	167.25	188.707	257.0219
Jul-87	392.14	760.9387	333.6491	858.4846
Aug-87	452.93	993.0452	402.4511	922.8399
Sep-87	300.91	360.0033	236.4134	327.3393
Oct-87	91.74	33.96129	50.40718	24.80968
Jun-88	213.85	712.5733	151.6014	190.8259
Jul-88	1366.25	2034.881	1692.56	1384.506
Aug-88	1327.68	1021.671	1630.664	1419.408
Sep-88	824.50	507.4467	877.3758	2316.528
Oct-88	323.55	94.95484	259.8046	427.9309
Jun-89	208.13	209.0653	146.3456	173.583
Jul-89	710.00	1028.716	722.2838	2203.051
Aug-89	512.18	688.7677	472.2506	930.0939
Sep-89	105.05	85.48	60.12352	14.07953
Oct-89	34.98	18.94839	14.37826	-12.605
Jun-90	291.41	347.57	226.7436	303.5325
Jul-90	1059.88	1259.67	1216.405	1495.949
Aug-90	900.71	1312.374	984.3134	2314.352
Sep-90	554.56	387.1067	523.7199	948.1812
Oct-90	.77.93	22.58065	40.76732	29.82871
Jun-91	237.32	250.03	173.596	239.2393
Jul-91	444.90	1037.613	393.1962	920.817
Aug-91	604.10	779.9161	585.3803	1083.87
Sep-91	426.38	268.1733	372.0359	912.2074
Oct-91	57.03	22.98387	27.15995	20.22048
Jun-92	174.60	82.8	116.4451	50.90421
Jul-92	472.10	1092.439	424.7575	925.7117
Aug-92	1092.01	1589.248	1264.592	2714.526
Sep-92	358.56	365.7367	296.9695	687.2881
Oct-92	91.11	30.95806	49.95643	25.19941
Jun-93	244.34	231.8567	180.3013	248.0859
Jul-93	1006.21	1713.7	1136.892	1071.314
Aug-93	382.69	197.1129	323.2211	825.7363

Sep-93	353.91	246.3333	291.9592	652.49
Oct-93	61.71	24.89677	30.09383	24.32728
Jun-94	323.64	321.5633	259.8982	428.4739
Jul-94	1270.53	1807.739	1539.938	1764.735
Aug-94	1606.09	1481.858	2088.935	1499.268
Sep-94	476.20	403.6383	429.5534	926.1354
Oct-94	62.58	19.18065	30.64671	24.9661
Jun-95	269.81	42.88	205.1251	272.5102
Jul-95	958.97	472.0903	1067.938	2093.456
Aug-95	1333.36	584.9613	1639.747	1410.515
Sep-95	· 668.75	1176.537	668.1663	1846.735
Oct-95	75.81	29.50903	39.33154	29.86039
Jun-96	389.55	544.3667	330.7822	850.5801
Jul-96	453.48	450.2742	403.0943	922.9547
Aug-96	939.75	721.4419	1040.185	2253.694
Sep-96	333.76	1070.387	270.5262	496.2263
Oct-96	56.04	31.99355	26.54696	19.20873
Jun-97	92.93	175.28	51.25881	24.03794
Jul-97	642.11	1683.006	633.7482	1466.576
Aug-97	1550.52	1533.194	1995.403	1397.53
Sep-97	462.84	273.64	413.9457	924.5655
Oct-97	109.98	70.84065	63.82092	9.366367
Jun-98	283.88	219.4633	219.1494	289.9542
Jul-98	828.22	3137.178	882.5274	2316.683
Aug-98	895.73	4050.403	977.2349	2315.486
Sep-98	585.36	472.08	561.8664	1002.6
Oct-98	219.82	128.5613	157.1271	206.4632
Jun-99	85.89	172.6333	46.27087	27.8818
Jul-99	725.09	2753.258	742.3217	2254.513
Aug-99	1326.31	2444.658	1628.466	1421.86
Sep-99	219.88	425.1233	157.1823	206.608
Oct-99	52.34	149.9774	24.28998	14.99808
Jun-00	210.14	177.0467	148.184	179.8868
Jul-00	670.19	1487.126	670.0387	1865.482
Aug-00	664.85	1344.103	663.1084	1794.167
Sep-00	254.32	526.0133	189.9442	258.2073
Oct-00	105.81	24.45484	60.69431	13.36535
Jun-01	109.77	62.447	56.15242	9.569668
Jul-01	796.98	1655.752	2356.789	2314.3
Aug-01	906.28	1225.19	3002.798	2312.435
Sep-01	128.88	176.3167	75.99518	-6.54469

Oct-01	76.10	22.33548	28.15088	29.8688
Jun-02	127.88	31.82667	74.8869	-5.95831
Jul-02	276.98	69.50323	321.4537	280.4301
Aug-02	489.16	145.7935	939.098	927.3478
Sep-02	317.06	151.4333	414.7119	391.8171
Oct-02	81.28	39:98065	31.87088	29.34974
Jun-03	151.42	45.66667	102.9754	-2.30716
Jul-03	370.23	1272.845	555.4654	764.2423
Aug-03	753.64	4164.012	2121.012	2297.969
Sep-03	314.16	817.9933	407.5778	377.6407
Oct-03	82.68	55.25161	32.91175	28.99983
Jun-04	90.66	38.88667	39.15874	25.46956
Jul-04	290.66	729.0487	352.0266	301.9972
Aug-04	643.69	2428.294	1575.618	1488.774
Sep-04	141.46	69.6	90.57547	-9.03647
Oct-04	178.91	35.2129	141.0344	65.86125
Jun-05	220.95	643.4967	209.941	209.1494
Jul-05	944.58	3199.91	3246.478	2228.628
Aug-05	550.98	3259.555	1175.238	945.195
Sep-05	385.04	1908.413	598.0852	834.919
Oct-05	114.70	72.24194	61.00125	4.817908
Jun-06	122.87	33.35333	69.45132	-2.41906
Jul-06	427.85	2353.245	729.5864	913.1819
Aug-06	872.01	4866.555	2792.381	2317.319
Sep-06	474.50	2899.443	886.7305	925.9641
Oct-06	102.16	61.07097	49.04787	16.72713
Jun-07	171.98	93.26333	130.9113	42.42048
Jul-07	486.19	3237.639	928.3573	927.0734
Aug-07	758.13	2765.761	2144.883	2301.292
Sep-07	236.74	931.43	239.109	238.4195
Oct-07	92.51	82.55161	40.67858	24.31553
Jun-08	464.22	1499.503	850.8849	924.7585
Jul-08	609.10	2055.777	1419.811	1115.804
Aug-08	909.31	2455.232	3021.784	2310.996
Sep-08	306.14	524.7733	388.1879	344.5199
Oct-08	89.91	64.61613	38.54621	25.90424
Jun-09	91.30	50.31	39.68218	25.08327
Jul-09	265.57	2040.961	296.9315	268.4148
Aug-09	517.92	1204.687	1045.87	931.1462
Sep-09	433.65	1599.433	748.3313	916.4554
Oct-09	69.58	29.21935	23.77787	28.67274

Simulation result

Fig. : <u>comparision of sediment between observed and calculated using rate</u> equation or using ANN.

Now, we use matlab software, to estimate sediment using ANN . In tools of matlab artificial neural network is inbuilt function and we use that for train the network by providing inputs, and further steps shown by these above screen shots.

Network Architecture	00
Set the number of neurons in the fitting network's hidden lay	er.
fidden Layer Define a fitting neural network. (fitnet) Number of Hidden Neurons: 10	Recommendation Return to this panel and change the number of neurons if the network do not perform well after training.
Restore Defaults	
Hidden Layer	Output Layer Output

Fig: DATA NETWORK.

•

• • •

•

•

•

This shows the network is of this type and no. of neurons is 10.

	n and Test Data ne samples for validation and testing.		
elect Percentages			Explanation
💑 Randomly divide up the 115 samples:			
Training:	70%	81 samples	Training:
Validation:	15% 👻	17 samples	These are presented to the network during training, and the network is adjusted according to its error.
Testing:	15% -	17 samples	Validation:
			These are used to measure network generalization, and to halt training when generalization stops improving.
			Testing:
			These have no effect on training and so provide an independent measure of network performance during and after training.

FIG.: DATA SELECTION FOR MONSOON PERIOD

•

• • •

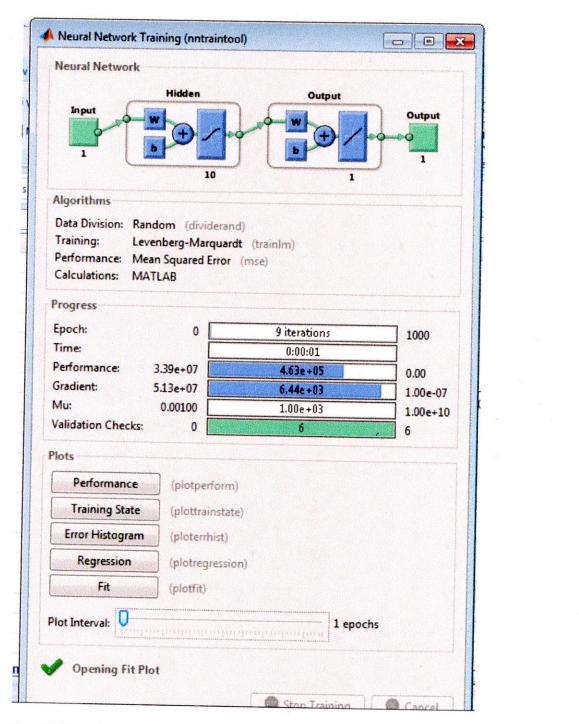
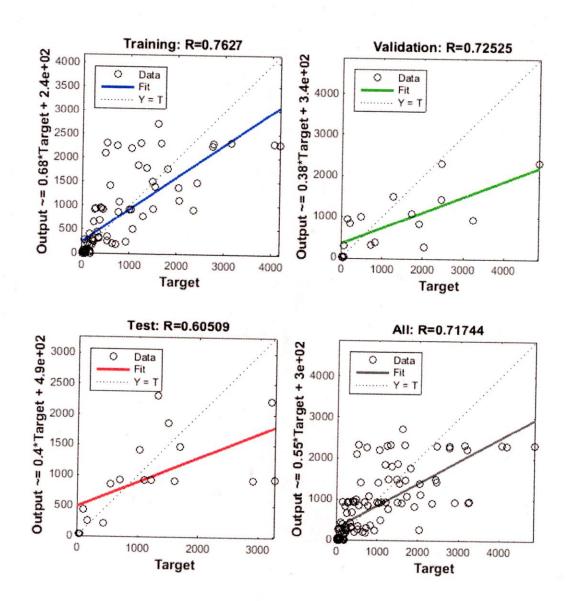
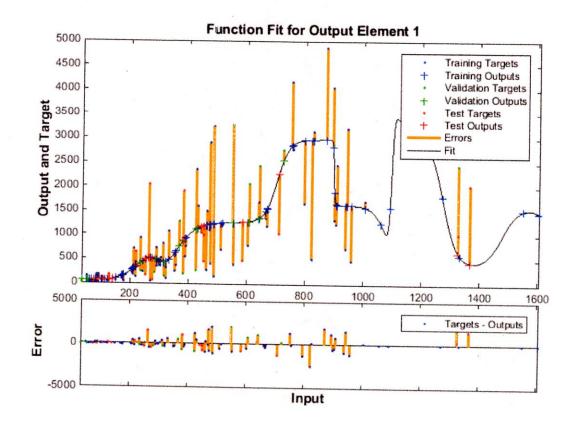



Fig: NEURAL NETWORK TRAINING

REGRESSION PLOT

The regression plot obtained from the trained network for monsoon is shown below:



Neural Fitting (nftool)	
Train Network Train the network to fit the inputs and targets.	
Train Network	Results
Choose a training algorithm:	🕹 Samples 🛛 MSE 🖉 R
Levenberg-Marguardt	Training: 81 437695,98829e-0 7.88927e-1
	Validation: 17 627393,13719e-0 7,73501e-1
This algorithm typically takes more memory but less time. Training automatically stops when generalization stops improving, as indicated by an increase in the mean square error of the validation samples.	Testing: 17 542124.22112e-0 3.51472e-1
Train using Levenberg-Marquardt. (trainIm)	Plot Fit Plot Error Histogram
Retrain	Plot Regression
lotes	
Training multiple times will generate different results due to different initial conditions and sampling.	Mean Squared Error is the average squared difference between outputs and targets. Lower values are better. Zero means no error.
	Regression R Values measure the correlation between outputs and targets. An R value of 1 means a close relationship, 0 a random relationship.

Fig: TRAIN NETWORK

In this ,mean square error (MSE)and R is shown for validation, training and testing i.e. shown in the screen shot. This training continues up to when either the errors are less or epochs are finished.

•

Fig: BEST ERROR FITTING CURVE

In this graph, best curve is fitted with taking care of errors

Best Validation Performance is 627393.1372 at epoch 12 10⁸ Train Validation Test Mean Squared Error (mse) 10⁶ 10⁵ Best 10⁴ 0 2 4 6 8 10 12 14 16 18 18 Epochs

PERFORMANCE PLOT OF THE MODEL:

•

•

•

.....

NON MONSOON SEASON

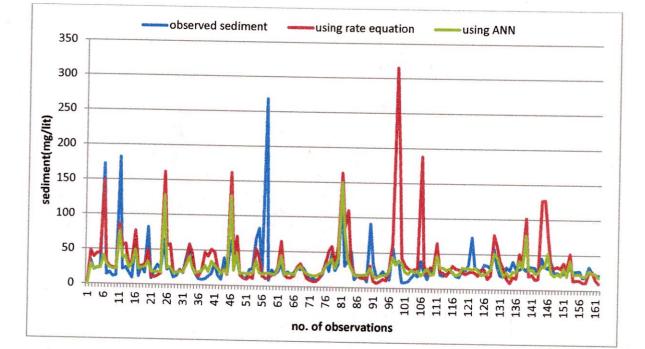
The data is given is as follows:

•

۲

ANN	rate of equation	Sediment Yield (mg/lit)	Discharge (Cumec)	Year	
29.52261	47.94971	34.32903	88.28	Jan-87	
21.36797	39.39202	20.94643	75.90	Feb-87	
23.24337	44.40189	23.14839	83.22	Mar-87	
23.16804	44.36173	23.09333	83.16	Apr-87	
41.3345	149.1644	172.929	211.21	May-87	
28.79811	32.00667	14.27333	64.70	Nov-87	
23.82886	25.62186	17.34839	54.53	Dec-87	
22.39434	23.63027	11.52903	51.24	Jan-88	
22.5048	23.75885	12.54483	51.46	Feb-88	
76.21914	86.35245	182.2871	138.75	Mar-88	
38.57096	55.77391	21.75	99.16	Apr-88	
40.40632	58.0899	24.29355	102.31	May-88	
23.50135	25.10369	16.79	53.68	Nov-88	
30.51288	34.48244	9.112903	68.52	Dec-88	
49.55262	76.95772	65.82258	127.00	Jan-89	
22.53457	23.79727	11.52857	51.52	Feb-89	
24.24491	26.33829	26.76129	55.70	Mar-89	
25.1863	27.99746	16.72	58.38	Apr-89	
32.72491	50.17614	82.51935	91.41	May-89	
18.23903	10.61769	8.79	27.71	Nov-89	
18.26729	10.67033	20.58065	27.81	Dec-89	
18.60206	12.93132	28.35806	32.24	Jan-90	
17.25712	16.18131	21.89643	38.30	Feb-90	
129.0619	162.0683	64.12258	225.12	Mar-90	
24.24491	55.77391	21.75	99.16	Apr-90	
25.1863	58.0899	24.29355	102.31	May-90	
17.78227	18.54716	10.78667	42.54	Nov-90	
17.29129	17.43677	13.08065	40.57	Dec-90	
19.26176	20.36531	21.97097	45.71	Jan-91	

Feb-91	43.60	17.47857	19.15206	18.20085
Mar-91	64.74	39.08065	32.03254	28.82574
Apr-91	103.19	58.52333	58.74473	40.88049
May-91	85.22	25.65806	45.79685	25.81342
Nov-91	39:41	16.63333	16.79018	17.20241
Dec-91	31.89	8.6	12.74716	18.64389
Jan-92	47.63	8.322581	21.48684	20.36942
Feb-92	87.05	8.6	47.08299	28.09359
Mar-92	78.87	12.7	41.40883	19.52888
Apr-92	93.24	16.9	51.48584	34.3329
May-92	87.98	31.07742	47.73492	29.18286
Nov-92	53.23	14.36667	24.83012	23.31668
Dec-92	39.37	8.664516	16.7686	17.20207
Jan-93	52.42	39.6129	24.33742	22.96234
Feb-93	38.28	16.6	16.16631	17.25928
Mar-93	225.12	64.12258	162.0683	129.0619
Apr-93	75.43	37.72	39.0751	22.0513
May-93	119.00	41.94258	70.71561	47.35989
Nov-93	36.36	16.6	15.12328	17.6199
Dec-93	28.44	12.41613	10.98691	18.42666
Jan-94	25.46	11.37419	9.508902	17.42123
Feb-94	33.47	23.33571	13.57543	18.37746
Mar-94	27.64	24.9129	10.58288	18.21877
Apr-94	95.96	67.96667	53.44993	36.43549
May-94	79.30	82.9	41.7017	19.63206
Nov-94	38.44	13.87	16.25587	17.24313
Dec-94	28.69	268.6	11.11055	18.48053
Jan-95	30.42	8.464516	11.98859	18.69339
Feb-95	38.48	23.50357	16.27698	17.2395
Mar-95	39.73	17.26774	16.9673	17.21164
Apr-95	56.53	21.05667	26.84754	24.52794
May-95	111.05	30.93871	64.6338	44.52699
Nov-95	39.52	16.57	16.85457	17.20428
Dec-95	31.81	21.18387	12.70964	18.6519
Jan-96	31.44	18.14194	12.51392	18.68124


Jan-01	95.58	8.4	43.26215	36.15959
Dec-00	209.02	39.26129	189.0737	38.33901
Nov-00	274.18	34.07333	315.3436	34.03459
May-00	110.72	58.30935	64.38078	44.39251
Apr-00	57.89	11.86667	27.69161	25.00298
Mar-00	27.68	16.4	10.60291	18.23039
Feb-00	32.17	23.94138	12.89673	18.61129
Jan-00	24.94	17.77097	9.257967	17.19158
Dec-99	19.73	15.36774	6.82641	14.47735
Nov-99	25.49	34.55	9.523555	17.43407
May-99	63.80	91.60645	31.42885	28.16991
Apr-99	33.70	8.666667	13.69671	18.32431
Mar-99	33.25	17.70645	13.46049	18.42543
Feb-99	34.59	17.28214	14.16919	18.09674
Jan-99	39.23	18.04516	16.69372	17.20227
Dec-98	43.53	11.49677	19.10856	18.1704
Nov-98	72.11	52.18667	36.85524	27.78498
May-98	167.34	38.73226	110.1879	39.9148
Apr-98	138.66	30.89333	86.27604	76.20141
Mar-98	226.95	129.4968	163.7849	150.4883
Feb-98	103.61	33.26071	59.05451	41.10146
Jan-98	63.03	24.14516	30.93219	27.64018
Dec-97	103.17	47.7	58.73176	40.86988
Nov-97	94.72	22.99	52.54954	35.51491
May-97	68.46	37.33548	34.44656	30.51263
Apr-97	47.53	18.41667	21.42378	20.31054
Mar-97	30.65	12.90645	12.10581	18.69964
Feb-97	22.96	9.625	8.313169	16.22433
Jan-97	22.79	12.64194	8.234871	16.1361
Dec-96	25.49	10.79355	9.523555	17.43407
Nov-96	30.87	18.62667	12.2186	18.70069
May-96	52.56	26.43387	24.42187	23.02566
Apr-96	66.09	24.59833	32.90127	29.69984
Mar-96	58.50	26.72903	28.07235	25.23269
Feb-96	37.26	19.83448	15.61176	17.41715

1

.

				· .	
	Feb-01	83.29	8.4	33.37545	23.33155
	Mar-01	76.67	9.958065	28.5535	20.45613
	Apr-01	73.02	15.91	26.04202	26.2863
	May-01	74.95	21.29032	27.3537	22.82759
1997 - 1997 1998 - 1997	Nov-01	73.44	17.2	26.32193	25.53557
	Dec-01	209.02	39.26129	189.0737	18.26729
	Jan-02	84.14	22.36129	34.01701	24.41947
	Feb-02	64.50	13.48714	20.61257	28.65927
	Mar-02	79.52	28.03871	30.58694	19.71631
	Apr-02	76.37	22.54667	28.34035	20.77802
	May-02	118.74	62.2871	65.11756	47.27862
	Nov-02	70.53	19.86667	24.39212	29.68109
	Dec-02	68.49	18.72903	23.08076	30.51291
	Jan-03	61.78	21.04516	19.00162	26.83836
	Feb-03	71.44	24.11786	24.98978	28.71642
	Mar-03	83.13	24.47097	33.2553	23.13046
	Apr-03	77.14	18.26667	28.87753	20.04393
	May-03	75.91	16.65806	28.01727	21.35439
	Nov-03	69.54	28.42667	23.75002	30.30631
	Dec-03	66.19	26.72258	21.6403	29.75745
	Jan-04	69.81	34.78065	23.92932	30.17935
	Feb-04	72.16	74.06552	25.4665	27.70887
	Mar-04	69.13	30.87097	23.48861	30.43938
	Apr-04	62.86	27.87667	19.63677	27.52612
	May-04	76.23	25.44516	28.24012	20.94317
	Nov-04	75.86	35.54333	27.98487	21.42269
	Dec-04	54.46	34.13548	14.98513	23.80284
	Jan-05	63.73	30.2871	20.15085	28.12112
	Feb-05	130.39	58.27143	77.68744	51.06217
	Mar-05	115.03	32.44194	61.33501	46.03852
	Apr-05	91.63	19.86667	39.95094	32.92767
	May-05	79.33	18.98387	30.44868	19.64234
	Nov-05	56.20	31.77333	15.89574	24.41576
	Dec-05	43.46	27.23871	9.790835	18.14031
	Jan-06	59.53	40.11613	17.7213	25.66112

Feb-06	56.88	29.20714	16.26117	24.64736
Mar-06	104.55	28.90968	51.22934	41.5841
Apr-06	89.37	32.70333	38.11103	30.70794
May-06	150.81	27.77097	102.1965	77.76324
Nov-06	62.76	33.21	19.57845	27.45966
Dec-06	66.20	32.80645	21.65043	29.76314
Jan-07	54.62	31.62581	15.06814	23.8621
Feb-07	56.33	23.25714	15.96865	24.45995
Mar-07	169.42	45.68387	127.2624	33.20871
Apr-07	169.68	33.68	127.633	32.99111
May-07	131.25	30.92903	78.65717	52.51318
Nov-07	84.09	39.96667	33.98055	24.35491
Dec-07	80.56	24.4	31.33959	20.36554
Jan-08	83.28	25.17419	33.36904	23.31894
Feb-08	79.94	21.10345	30.88835	19.93155
Mar-08	89.96	24.19355	38.59125	31.31762
Apr-08	78.90	31.09333	30.13507	19.53333
May-08	105.47	31.14194	52.0814	42.04121
Nov-08	50.92	26.08667	13.20155	22.23013
Dec-08	52.91	26.74839	14.18993	23.18014
Jan-09	52.70	27.52258	14.08391	23.0881
Feb-09	47.05	18.11429	11.37341	20.02863
Mar-09	46.69	19.23871	11.20757	19.81884
Apr-09	71.85	33.45667	25.26388	28.16667
May-09	74.01	26.24516	26.71313	24.49463
Nov-09	54.77	22.06333	15.14432	23.91695
Dec-09	43.86	21.73548	9.964964	18.31713

Simulation results:

Fig.: <u>Comparision of sediment between observed and calculated using rate</u> equation or using ANN for non monsoon season

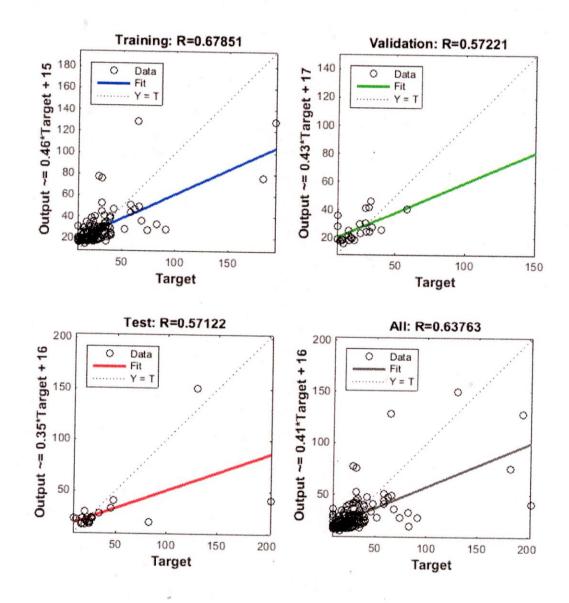
Now, similar procedure for training the network and same data network as above.

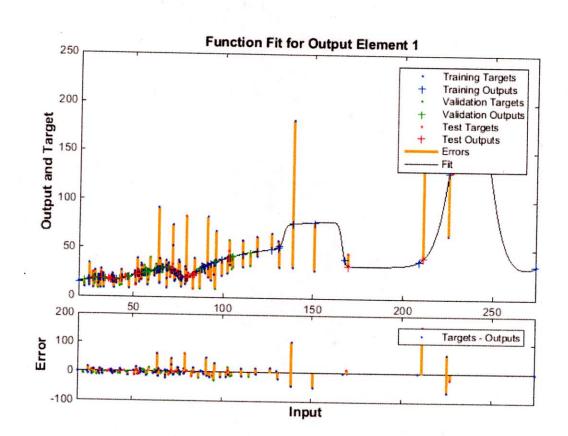
Neural Fitting (nftool)			
	n and Test Data me samples for validation and	I testing.	
Select Percentages			Explanation
🔩 Randomly divide up	the 161 samples:		🚭 Three Kinds of Samples:
Training:	70%	113 samples	🕽 Training:
Validation:	15% -	24 samples	These are presented to the network during training, and the network is adjusted according to its error.
😻 Testing:	15% -	24 samples	Validation:
			 Valuation: These are used to measure network generalization, and to halt training when generalization stops improving.
			😻 Testing:
			These have no effect on training and so provide an independent measure
			These have no effect on training and so provide an independent measu
			These have no effect on training and so provide an independent measu
			These have no effect on training and so provide an independent measure
			These have no effect on training and so provide an independent measure
			These have no effect on training and so provide an independent measure
			These have no effect on training and so provide an independent meas
			These have no effect on training and so provide an independent measure
			These have no effect on training and so provide an independent measure
			These have no effect on training and so provide an independent meas

Fig.: <u>Data classification for non monsoon period</u>

In this screenshot, training, validation and testing data is classified. i.e. here,161 samples, for training 113 samples, validation 24 samples and for testing 24 samples.

Now, after that similar procedure for train the network


Neural Fitting (nftool)				
Train Network Train the network to fit the inputs and targets.				
Train Network	Results			
Choose a training algorithm:		d Samples	MSE	🖉 R
Levenberg-Marguardt	💙 Training:	113	382.62293e-0	7.30949e-1
This algorithm typically takes more memory but less time. Training	Validation:	24	960.12543e-0	7.46858e-1
automatically stops when generalization stops improving, as indicated by an increase in the mean square error of the validation samples.	😻 Testing:	24	60.56256e-0	5.17425e-1
Train using Levenberg-Marquardt. (trainim)	F	Plot Fit Plo	ot Error Histogram	7
Retrain			gression	
Notes Optimize network on inputs and targ	ets			
Training multiple times will generate different results due to different initial conditions and sampling.	Mean Squared Er between outputs means no error.	ror is the average so and targets. Lower	quared difference values are better. Ze	ero
	outputs and targe	ies measure the cor ets. An R value of 1 andom relationship	means a close	


Fig.: TRAIN NETWORK

The above screen shot is showing errors for non-monsoon period of training, validation and testing data. And the values is displayed in the above screenshot.

REGRESSION PLOT

The regression plot obtained from the trained network for non -monsoon is shown below:

Fig.: BEST ERROR FITTING CURVE

In this graph, best curve is fitted with taking care of errors.

PERFORMANCE PLOT OF THE MODEL: Best Validation Performance is 109.4258 at epoch 9 10⁵ • Train Validation Test Mean Squared Error (mse) 10^4 10^3 10^2 ····· Best 10⁴ 10¹ 0 5 10 15 15 Epochs

RESULT ANALYSIS

1. On the basis of simulation result of both monsoon period and nonmonsoon period . i.e.(in fig.). It is observed that the peaks are almost the same for observed sediment and obtained sediment using rating equation as well as using ANN.

Or, The curve obtained by using ANN lies between observed value of sediment and rating equation .so, ANN is use in future to estimate the sediment (mg/lit).

- 2. Secondly ,on the basis of performance indices table (6.1 &6.2) the RMSE value, in monsoon period the value is more in comparison with the non-monsoon season .so, the results are better in non –monsoon season in the both the cases i.e. by using rating equation or by ANN..
- 3. In monsoon season, the correlation coefficient on the basis of regression plot of monsoon season, shows that the value of R =0.7627 in training,0.72525 in validation,0.60509 in testing &0.71744 overall and which is more in comparison to the non-monsoon season i.e. having value R=0.67851 in training=0.57221 in validation,0.57122 in testing and 0.63763 overall. So, results are far better to estimate sediment in non –monsoon season using ANN.

So, by this, it is observed that ANN is used to estimate sediment in future...

Equations for performance evaluation indices

- 1. Root mean square error(RMSE) = $\sqrt{\Sigma}((Y(observed)-y(cal))^2)/n$
- 2. Sum squared error(SSE) =

 Σ (Y(obs)-Y(cal))^2

- Mean bias error(MBE)= 1/n(∑(Y(cal)-Y(Obs)))
- 4. Mean absolute error(MAE)=

1/N(∑(abs(Y(cal)-Y(Obs))))

D

D

• • • • • • • • •

Performance indices:

Table 6.1 (Monsoon season)

ERROR	For Rating Equation	For ANN
RMSE	761.48266	733.3318
SSE	66683421	61844186
MAE	445.96017	461.93748
MBE	-273.36174	-98.73826

Table 6.2(Non Monsoon season)

ERROR	For Rating Equation	For ANN
RMSE	42.41046	27.76484
SSE	289582.2	124112.7
MAE	7.63296	1.26814
MBE	20.88191	12.36399

CONCLUSIONS

According to the simulation result, the peak of sediment using ANN lies between the observed sediment and sediment using rating equation . By performance indices Table(6.1)&(6.2), it is observed that RMSE value is less in Non-Monsoon season data using ANN while correlation coefficient(R) is high for Monsoon data. All the performance indices using ANN are giving better performance for both Monsoon and Non-Monsoon data.so, it is observed that , in future ANN can be used for further analysis of suspended sediment.

REFRENCES

1. Journal of Water Resources and Environment Engineering 2015, Volume 1, Issue 1, pp. 1-9 on "Discharge and Sediment Time Series: Uncertainty Analysis using the Maximum Likelihood Estimator and Artificial Neural Network" Water Resources Development and Management, Indian Institute of Technology Roorkee, Uttarakhand, India

2. Journal of Civil Engineering and Urbanism

Volume 4, Issue 3: 245-250 (2014) ISSN-2252-0430 Estimations of Sediments in Mahabad Dam Using Artificial Neural Networks and Comparing the Results with Hydrometer Approach Hiva Khezri1, Edris Merufinia2*

Prediction of Sediment Load Concentration in Rivers using Artificial Neural Network Model H. M. Nagy1; K. Watanabe2; and M. Hirano3

4. Indian Journal of Science and Technology Vol. 5 No. 8 (August 2012) ISSN: 0974-6846

5. Jain, S.K., 2001. Development of integrated sediment rating curves using ANNs. Journal of Hydraulic Engineering, ASCE 127 (1), 30–37

6. Dr. Rama Devi Mehta. Scientist Ph.D. Thesis of Shri A. K. Lohani, Dept. of Hydrology, IIT Roorkee on "ANN Suspended Sediment Dynamics in Tropical River Basins from Cochin University of Science.

7. A research paper on "suspended sediment estimation using neuro-fuzzy and neural network approaches"

OZGUR KISI

Hydraulics division, civil department, engineering faculty, erciyes university, 38039 kayseri, turkey kisi@erciyes.edu.tr