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PREFACE 

In this study Operational Management Models are developed for 

implementation at PaIla Well fields in the floodplain of River Yamuna, north west of 

NOT Delhi. The floodplain is largely recharged by the floodwaters during the monsoon 

season. The freshwater in the stream-aquifer system is underlain with deposits of 

geologically occurring saline water. Initially a simplified representation of the system 

is solved to obtain an insight into the problem. The real system is subsequently 

solved for the series of existing wells to augment drinking water needs of the city of 

Delhi. The study seeks to determine an optimum pumping schedule while controlling 

salinity due to upconing phenomena to desired levels. 

The nonlinear, non-convex problem involving discrete (pumping locations) 

and continuous (pumpages) decision variables is solved within a simulation-

optimization (S/0) framework. SIC approach provides an accurate representation 

of the aquifer responses but involve high computational burden. Therefore in the 

present study artificial neural network (ANN) is used as a virtual simulator of the 

variable density driven numerical flow model for aquifer simulation. 
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EXECUTIVE SUMMARY 

Groundwater pumping along riverbank floodplains is commonly practiced in 

many countries. The problem of pumping groundwater from a stream-aquifer system 

becomes complex, when it is underlain with geologically occurring saline water. The 

amount of pumping in this case is mostly guided from water quality considerations 

rather than water quantity. This is because any excess pumping, results in upconing 

of saline water leading to deterioration of water quality especially for drinking water 

needs. Therefore optimal pumping must ensure both quality and quantity. This is 

accomplished through regulated pumping from production wells that control quantity 

and quality, namely skimming wells. 

The nonlinear, non-convex problem involving discrete (pumping locations) 

and continuous decision variables (pumpages) is solved within a simulation-

optimization (S/O) framework. S/O approach provides an accurate representation 

of the aquifer responses but involve high computational burden. Therefore in the 

present study artificial neural network (ANN) is used as a virtual simulator of a variable 

density driven numerical flow model for aquifer simulation. Simulated annealing (SA), 

a non-gradient based algorithm is used as an optimiser in this study. 

In this study operational management models are developed and 

implemented for synthetic and real life aquifer systems. Synthetic examples 

representative of study area are initially analyzed to obtain insight into the problem. 

The real system involves pumping from a series of about 90 existing wells to meet 

drinking water needs, along the floodplain of river Yamuna, at Palle villgge northwest 

of Delhi. The river reach is significantly recharged by floodwaters, during the 

monsoon season. The freshwater in the aquifer system is underlain with deposits 

of geologically occurring saline water. The study seeks to determine optimal pumping 

schedules while controlling salinity due to upconing to desired levels. 

In general the model results suggest that the existing group of wells must be 
operated such that they are staggered in space and time. This is to avoid interference 

in upconing process between neighboring wells. This interference enhances the 

advective velocities of solute (salt water) towards the grid cells, containing the well 

screens, leading to increased concentration or salinity. Therefore care must be taken 

while deciding the location of future wells in the study area or similar study areas. 



The existing well spacing in the northern part of the study area is very close. 

Further since the locations and installed pumping capacities are already fixed for the 

study area, the model formulation is designed to optimize the duration of pumping 

(on a daily basis) and/ or their switching (on/ off) while constraining the salinity of 

water to desired levels. Two operational models are presented in this study. The first 

model seeks to determine maximum pumping from a group of 80 wells while 

restraining salinity levels that meet drinking water standards. The model predicts 

that about 25 — 30 MGD of water can be drawn safely during a normal water year 

during monsoon and non-monsoon seasons. A tradeoff curve prioritizes the amount 

of groundwater pumping from the group of wells. The second model seeks to 

minimize total salinity at grid cell locations for partial development of groundwater 

from a subset of wells. The second model is intended to supplement other supply 

sources when full potential need not be tapped. 

The mass balance with and without optimal pumpages from Pella well field 

helps in understanding the aquifer flow dynamics. PaIla well fields help in utilizing the 

induced flood recharge, which would otherwise join river boundary. 
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1.0 INTRODUCTION 

Large-scale pumping to meet increasing demand for water from flood plains 

and bank storage near the river is commonly practiced all over the world. Under 

typical climate conditions in India the high runoff in Himalayan Rivers is mostly 

confined to a few months (3 months) during the monsoon season. The floods during 
this period recharge the adjacent riverbanks and flood plains in the vicinity of the 

river. Even though the floods are of short duration, they result in significant recharge 

in alluvial sandy floodplains. The relatively low flows during the non-monsoon season' 

are mostly from snowmelt and base flow from bank storage along the river reach. 

Pumping from production wells along the banks from this naturally replenishing 

groundwater reservoir helps in meeting the demand especially during the non-

monsoon season on a sustainable basis. 

The problem of pumping groundwater from this stream-aquifer system 

becomes complei, when it is underlain with geologically occurring saline water. 

The amount of pumping in this case is mostly guided from water quality 

considerations rather than water quantity. This is because any excess pumping, 

results in up coning of saline water leading to deterioration of water quality especially 

for drinking water needs. Therefore optimal pumping must ensure both .quality and 

quantity. This is accomplished through regulated pumping from production wells 

that control quantity and quality, namely skimming wells. Skimming wells also find 

wide application in coastal and deltaic regions prone to seawater intrusion. 

In this study operational management models are developed and 

implemented on synthetic and real life aquifer systems. Synthetic examples 

representative of study area are initially analyzed to obtain insight in to the problem. 

The real system involves pumping from a series of about 90 existing wells to meet 

drinking water needs, along the floodplain of river Yamuna northwest of Delhi (India). 

The river reach is recharged by floodwaters besides rainfall-recharge from adjacent 
areas during the monsoon season. The freshwater in the aquifer system is underlain 

with deposits of geologically occurring saline water. The present study seeks to 
determine an optimum pumping schedule while controlling salinity due to upconing 

to desired levels. 

The phenomenon of upconing is demonstrated using a simplified aquifer 

system (see figure 1.1) representative of the study area with a production well, a 
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Fig. 1.1 Phenomena of upconing (isochlors) due to pumping from a hypothetical 
aquifer system at the end of (a) 50-days (b) 250-days and (c) 2000-days 
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river boundary and a saline bottom layer with a constant concentration of 5 kg/m3. 

The aquifer system is simulated using a variable density flow model SEAWAT-2000 

(Langevin et al 2004) beginning from steady state conditions. Upconing due to 

continuous pumping of 2000 m3/day at the end of 50,250 and 2000 days under average 

recharge conditions (10% of rainfall) is shown in fig 1.1. The figure clearly indicates That 

the pumping rate is unsustainable in terms of quality of water over the planning horizon. 

Using optimisation techniques it is very easy to find out the optimal rate of pumping that 

meets the desired levels of salinity. Location or adjacent spacing among wells also 

influences the upconing process. This is demonstrated by comparing upconing 

responses with same rate of pumping (2000 m3/day) for the two production wells that 

are: (i) closely spaced and (b) widely separated wells. The two cases are shown in 

fig .1.2. The velocity vectors and the isochlors for the closely spaced wells are 

relatively much higher due to the interference in process of upconing, which 

enhances the advective velocities of solute (salt transport). Therefore both location 

and pumping rates happen to be decision variables for skimming wells. However the 

real-life problems are much more complex in terms of aquifer properties, geometry, 

boundary conditions, confining conditions, input/ output stresses etc. 

In the present study the nonlinear, non-convex problem involving discrete 

(pumping locations) and continuous decision variables (pumpages) is solved within 

a simulation-optimization (S/O) framework. S/0 approach provides an accurate 

representation of the aquifer responses but involve high computational burden (Das 

and Datta, 1999, Zheng and Wang 2002a, Rao et al 2004a). Therefore in the present 

study artificial neural network (ANN) is used as a virtual simulator of a variable 

density driven numerical flow model SEAWAT 2000 for aquifer simulation. 

This report is a study intended for optimal operation of pumping wells prone 

to saline water upconing (often referred as skimming wells) for field implementation. 

The chapter 1 provides introductory background for operating a series of pumping 

wells in a floodplain underlain with saline water. The chapter 2 discusses model 

formulation. Chapter 3 deals with solution methodology. In chapter 4, model 
application is illustrated using a simplified aquifer system to obtain insight and 

understanding of the problem. Chapter 5 deals with model application to the real 

system involving a series of existing pumping tube wells at Palla village. The two 

models developed in chapter 2 are applied to obtain optimum pumping schedtiles 

for field implementation. Two pumping schedules are presented towards the end of 

3 
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the chaOter. The first deals with operation of 80 wells during both monsoon and 

non-monsoon seasons. The second is intended to supplement demand during peak 

summer season by operating only part of the wells. The report concludes with 

suitable recommendations for optimal operation of wells. 

2.0 MODEL FORMULATION 

The study primarily aims to develop. an  operational model for field 

implementation using a combined simulation—optimisation (SIC) approach which 

seeks to maximize pumpages from a series of existing production wells, while 

controlling the process of upconing from underlying saline water to desired levels. 

The model is formulated considering this objective function with respect to the study 

area as discussed in chapter 5. Since the production wells already exist, their 

location cannot become decision variable. However, when only part (subset) of the 

wells operate, location could become discrete decision variable in terms of on or 

off (i.e. zero or one) from a set of candidate wells. Further since all the wells have 

pumps installed of fixed capacity the rate of pumping cannot be a decision variable. 

However since the duration of pumping in a day can be varied (say 12 to 18 hours 

per day), the rate of pumping could be considered as a continuous decision variable 

within a range. The optimal rate of pumping so determined by the model could be 

converted into equivalent fixed capacity via the duration of pumping per day. This 

however involves an implied assumption that the aquifer simulation in terms of 

heads and concentrations for the two cases is the same. This assumption is 

considered to be a reasonable approximation of the reality. 

Two types of model formulations are considered in the present study. The 

first seeks to determine maximum pumping in space and time over a range of 

pumping subject to a set of constraints assuming all or part of the wells are operated. 

Here pumping rates are continuous decision variables and hence the formulation 

is mixed-integer model. The second formulation assumes that only part of the wells 

are operated and seeks to minimise the total salinity in space and time with fixed 
pumping rates and discrete pumping locations in terms of on or off (i.e. zero or 

one). The second formulation is a pure combinatorial model. The first model seeks 

to determine the maximum potential that can be developed for drinking water 

purposes over a planning horizon of one year. The second model is intended to 
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manage target pumping to meet a given demand and therefore must be less than 

the maximum potential as obtained from the first model. 

Mathematically the two models may be formulated in general within S/O 
framework as follows. 

2.1 Model 1 Formulation 

NKJ I 

Max. J1=IEIZano,j,k) 
n=1 k=1 j=1 

Where, V' is the pumpage (decision variable) from production wells located at the 

node i, j, k (also a decision variable) at the end of the nth time period. 

2.2 Model 2 Formulation 

NKJ I 

Min.  J1 = IIEEC 
n=1 k=1 j=1 1=1 

Where, Cibk  is the salinity concentration (state variable) in the production well screen 

location at the node i, j, k at the end of the nth time period, where the pump is on. 

Subject to the following constraints: 

Concentration (c) in production wells should be less than specified value cs. 
c" <c v All production wells at the end of the nth time period 

Head (h) at nodes should not fall below a specified value k 

<k v All production wells at the end of the nth time period 

Nonlinear flow and transport equations should be satisfied. 

= 0 v All i, j, k and n; hand q represent heads and source/sink terms 

Lower and upper bounds for pumpages. 

Omin < Q:(r,./A) < Qmax 

6 



In the above equations, I, J, K, and N represent the number of rows, columns, 

layers and time periods relevant to the aquifer system. The decision variables are 

restricted to discrete values in respect of location and continuous values in respect 

of pumpages. The pumpages are however fixed in case of model 2. The first 

constraint relates to groundwater quality, which ensures that salinity is within desired 

limits. The second constraint relates to quantity of water that is available on a 

sustainable basis by restraining draw down. The third constraint relates to the 

physics of flow and is simply mass conservation and is accounted through the 

simulator. Qmin and cax  correspond to lower and upper bounds for the pumpages. 

The last constraint does not apply-to model-2 as they are fixed. 

3.0 SOLUTION METHODOLOGY 

3.1 Simulation — Optimisation (S/O) Framework 

The conceptual management model, developed in this study uses a S/O 

framework (Rao et al 2004a, 2004b). The S/O framework in the present study has 

four important features. First, it interfaces the aquifer simulator (numerical model) 

to account for the complex behavior of groundwater flow in space and time. Second, 

the optimisation problem is nonlinear, non-convex and involves both continuous 

and discrete decision variables. Gradient-based optimisation methods do not work 

well in such situations. Therefore, simulated annealing (SA), a non-gradient based 

search algorithms is used. In this framework handling nonlinearities in objective 

function and constraints is not a difficulty as they are external to the optimiser. The 

third, relates to high computational burden that is inherent to all S/O based 

approaches. This is largely over come by replacing the simulator with trained 

artificial neural network (ANN). The fourth relates to algorithmic guidance to further 

reduce the computational burden 

The general structure of 5/0 framework is shown in figure 3.1. It consists of 

a driver optimiser and an external simulator. The algorithm calls the simulator to 
verify the constraints and evaluates the objective function during each iteration. 

This procedure is repeated until either a near optimal solution or a preset termination 

criterion is met. The simulator and the optimiser are discussed in the following 

sections. 
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3.2 Simulator - SEAWAT 2000 model 

It is a variable density-driven flow and transport model. The SEAWAT 2000 model 

was developed by Guo and Langevin (2002, 2004) by combining' the popular 

MODFLOW 2000 (Harbaugh et al 2000) and MT3D (Zheng and Wang 1998) models. 

The governing equations for 3-Dimensional density-dependent miscible flow and 
transport model are written as follows: 

Flow Equation 

—V.(pq)+73qs  _ a(Po)  
at 

In which, 

a a a 
V is the gradient operator —

ax
+T

y 
±—

az 

q is the specific discharge vector [LT-1], with its components given by 

... (3.1) 

kx  ap kap y 
qx.__;  qy =--, 

  

P ax pay 

k op 
-1- [— + Jog] 

du az 

p is the fluid pore pressure [ML-7-9; 

qy,  qz  are the individual components of specific discharge and kk lc, represent 
intrinsic permeability's [L9 in the three coordinate directions; 

g is the gravitational constant [LT2]; 

p is the dynamic viscosity [ML-11-1]; 

p is the variable fluid density [ML-3]; 
_ 
p is the density of water entering from a source or leaving through a sink [ML-3]; 

qs  is the volumetric flow per unit volume of aquifer representing sources/ sinks [T1]; 

is porosity [dimensionless]; 

t is the time [T]; 
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Transport Equation 

V .D(V c)—V(vc)+ q,=—
ac 

at 
... (3.2) 

In which, 
c is the solute concentration [ML-1 

D is the dispersion coefficient [12T-1] and 

v represents the seepage velocity [LT-'] 

The empirical equation for density, as a function of concentration (Baxter 

and Wallace 1916) may be written as, 

P = Pf  + Ec 

In which, E is a dimensionless constant having an approximate value of 0.7143 for 

salt concentrations ranging from zero for freshwater to 35 kg/ m3  for saline water 

and pf  is the fluid density of freshwater. 

Both MODFLOW and MT3D use the implicit finite difference approach to 

solve the flow and transport equations, respectively. The SEAWAT does not solve 

the flow equation (3.1) directly. Appropriate modifications are incorporated to 

account for density variations between saline water and freshwater in MODFLOW. 

The pressure head is converted to equivalent freshwater head for the variable 

density water in space and time. This approach enables MODFLOW (constant 

density) to be used with minor changes. During any computational time step, the 

flow field is first solved by the MODFLOW and this is followed by the solution for 

concentration variations using MT3D. The updated density field is then determined 

from the new concentrations and is incorporat3d back into MODFLOW as relative 

density difference terms. The flow and transport equations are solved repeatedly 

through implicit coupling for the same time step until the difference in fluid density 

between consecutive iterations is less than a user specified tolerance (Figure 3.2) 

3.3 Artificial Neural Network as the Simulator 

The simulator involves the numerical solution of a system of nonlinear partial 

differential equations to determine the state variables. The iterative solution process 
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Fig. 3.2 Solution procedure of SEAWAT 2000 model 

as discussed earlier involves high computational burden. Further the optimisation 

process involves calling the simulator several thousands of times to verify the 

constraints. This involves a significant amount of computational time, especially 

when heuristic optimizers such as SA are adopted (as discussed jn a later section). 

Therefore, there is a need to reduce this computational time. This is largely achieved 

in this study by replacing the simulator with trained neural networks. The network is 
used to determine the aquifer response only at points of interest in space and not 

at all points in the region. This is similar to using nonlinear regression equations for 

replacing the simulator (Alley 1986). 

3.4 Structure of ANN 

There are no fixed rules for developing ANN, even though a general framework 

can be followed based on experience., 
 Briefly, neural networks are composed of 

simple elements or neurons operating in parallel. A neural network is trained to 

perform a particular function by adjusting the weights and biases between the 

connecting elements. A neural network is characterized by its architecture 

representing the pattern of connection between nodes, and its method of determining 

connection weights and the transfer function. Atypical ANN consists of a number of 

nodes that are organised according to a particular arrangement. In a feed-forward 
network the nodes are generally arranged in several layers, starting from the first 

input layer and ending at the final output layer. There may be one or more hidden 

layers in between (see figure 3.3). The number of nodes and the number of layers 
are generally determined by a trial and error procedure i.e., through supervised 

training. A detailed description of multi-layer neural networks is discussed in papers 
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Fig. 3.3 General Configuration of a Feed forward Three-LayerANN (ASCE, 2000) 

by the Hsieh, C (1993), Rogers and Dowla (1994), ASCE (Task Committee of ASCE 
2000), and in ANN toolbox (MATLAB 2000). 

The goal of ANN in general is to establish a relation of the form: 

(Ym)= f(x") . .. (3.3) 

in which, Ym is an m dimensional output or target vector consisting of resulting variables 
of interest y1, y2, ..yn  and X^ is an n dimensional input vector consisting of x4, x2, ... xn. 
Each input is associated with a quantity called weight or connection strength. The 
sum of the inputs and weights form an intermediate scalar, s , given by 

S = (wnx„ ) = WTX 
n=1 

... (3.4) 

in which, w = (4/1, w2 ,..., ww ) denotes the weight vector of the neuron. The quantity s 

is passed through a nonlinear transfer function f to yield the output y = f(s) and f is 
the commonly used sigmoidal transfer function given by, 

f (s) = 1/0+ exp(—s)) ... (3.5) 

This function can map most non-linear processes. Generally, the network is trained 

using a back propagation algorithm that will adjust the weights and biases so as to 
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minimise the error function E given by, 

E=1E(y,-02 ... (3.6) 
P p 

in which, y, is the ANN output, tp  is the desired output, p is the number of output 

nodes, and p is the number of training patterns or data sets. 

3.5 Methodology 

The basic idea of the approach used in this study is to design neural network 

that behaves as a virtual simulator to obtain aquifer responses for given inputs. In 

the present study, ANN seeks to mimic the numerical model (or predictor of the 

predictor). This is achieved in three stages as under: 

Obtaining the data sets for ANN training in the region of interest. 

ANN training (or supervised learning) using a back propagation algorithm. 

Network response using optimal weights and biases. 

The first step involves generating data sets (or patterns) for ANN training 

using actual simulators. For this purpose, the numerical simulator is executed 

repeatedly for random input stresses (within a range) and the aquifer responses 

(output) in the region of interest are obtained. These input-output data sets are 

used for ANN training. Two aspects are important, while generating data sets. The 

first relates to the number of patterns that must be used for training and the second 

concerns the range of input data variation. In general ANN's are data driven models 
and therefore, more the number of patterns or realizations, the better is the training 

or learning process. In the present study, this is not a restriction as any number of 

training patterns could be generated using the numerical simulator. The range of 

input variation is also important in ANN learning process. This is because ANN'S 

are known to be good interpolators rather than extrapolators. Therefore, input data 

should preferably cover the full range of expected inputs. 

The second step involves ANN training or in other words input-output mapping. 

The data sets are first normalized (scaled between zero and one) before being 

subjected to training. The training is accomplished using a back propagation (BP) 
algorithm (MATLAB 2000). The BP algorithm in general consists of a forward pass 
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and a backward pass. In the forward pass initially random weights are generated to 

compute network response for a given input in the data sets. This response is 

compared with the target value as determined by the actual simulator from the data 

sets. The difference is the error. The goal of the BP algorithm is to minimise this 

error. This is achieved by adjusting the weights and biases during the backward 

pass. The procedure is repeated iteratively until the goal of minimizing the error is 
achieved to desired level. 

On successful completion of training optimal weights and biases are 

obtained. For any given input (preferably within the range of training), the output 

response can now be computed by the network using these weights and biases. 

This process involves only matrix operations. The goodness of fit or the efficiency 

of the network can be evaluated using statistical measures from calibration and 
validation data sets. 

The first step involves generating data sets (or patterns) for ANN training 

using actual simulators. For this purpose, the numerical simulator is executed 

repeatedly for random input stresses (within a range) and the aquifer responses 

(output) in the region of interest are obtained. These input-output data sets are 

used for ANN training. Two aspects are important, while generating data sets. The 

first relates to the number of patterns that must be used for training and the second 

concerns the range of input data variation. In general ANN's are data driven models 

and therefore, more the number of patterns or realizations, the better is the training 

or learning process. In the present study, this is not a restriction as any number of 

training patterns could be generated using the numerical simulator. The range of 

input variation is also important in ANN learning process. This is because ANN's 

are known to be good interpolators rather than extrapolators. Therefore, input data 
should preferably cover the full range of expected inputs. 

The second step involves ANN training or in other words input-output mapping. 
The data sets are first normalized (scaled between zero and one) before being 

subjected to training. The training is accomplished using a back propagation (BP) 

algorithm (MATLAB 2000). The BP algorithm in general consists of a forward pass 

and a backward pass. In the forward pass initially random weights are generated to 

compute network response for a given input in the data sets. This response is 

compared with the target value as determined by the actual simulator from the data 
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sets. The difference is the error. The goal of the BP algorithm is to minimise this 

error. This is achieved by adjusting the weights and biases during the backward 

pass. The procedure is repeated iteratively until the goal of minimizing the error is 

achieved to desired level. 

On successful completion of training optimal weights and biases are 

obtained. For any given input (preferably within the range of training), the output 

response can now be computed by the network using these weights and biases. 

This process involves only matrix operations. The goodness of fit or the efficiency 

of the network can be evaluated using statistical measures from calibration and 

validation data sets. 

3.6 Optimiser - Simulated Annealing Algorithm 

In this study simulated annealing (SA) algorithm (Kirkpatrick et al. 1983, 

Aarts and Korst 1989, Dougherty and Marriott 1991) is used as an optimiser. The 

SA algorithm uses an imperfect analogy between the way solids cool and anneal 

and the optimisation of a function with many degrees of freedom. The annealing 

process involves slow cooling of solids from a very high temperature (when its 

molecules are highly mobile) to a low or minimum energy state (optimal) of crystalline 

lattice. If the cooling is rapid the system does not reach highly ordered state but 

ends up in a higher energy state (sub-optimal). 

The basic idea of the method (see figure 3.1) is to generate a random 

configuration (decision vector) iteratively through perturbation, and evaluate the 

objective function and the constraints after determining the state variables by using 

the simulator. If the trial point results in infeasibility i.e., if the constraints are violated, 

it is rejected and a new point is generated. If the trial point is feasible and the 

objective functions value is smaller than the current best value (for a minimization 

problem), then the point is accepted and the record for the best value is updated. If 

the trial point results in feasibility, but the objective function is higher than the current 
best value, then the trial point is either accepted or rejected using the Metropolis 

criterion (Metropolis et al.. 1953). This is implemented by, coner_ating a random 

deviate, uniformly distributed on the interval (0,1). If the random deviate thus 

generated is smaller than the acceptance probability, then the uphill move is 

accepted. In computing the probability for the acceptance of an uphill move, a 
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parameter called 'temperature' is used. It is important to note that this temperature 

(has no units) and is simply a control or iteration parameter. For the optimisation 

problem, this temperature can be a target value for the cost function corresponding 

to a global minimum. Initially, a larger temperature or target value is selected. As 

the trials progress, this value is progressively reduced using a cooling factor. The 

acceptance probability of uphill moves steadily decreases to zero as the 

temperature is reduced. Thus in the initial stages, the method is likely to accept 

worse configurations, while in the final stages, the worse designs are almost always 

rejected. The entire process is terminated after performing a fairly large number of 

trials or chains (iterations). The strategy avoids getting trapped in a local minimum. 

The initial temperature, cooling factor, chain length and termination criteria are 

referred to as annealing parameters. The annealing parameters are difficult to 

determine (Wang and Zheng, 1998a). However, certain guidelines have been defined 

by Dougherty and Marryott (1991), Press et al. 1989), Cunha (1999) and others for 
choosing the values of these parameters. 

3.7 Computational Time Burden 

In general, the computational burden is substantial in all S/O problems. This 

is much more when heuristic algorithms, such as SA, are used for optimisation. 

The CPU (central processing unit) time depends on a number of factors. These 

include the time consumed by the simulator, the number of decision variables, the 

tightness of constraints, the speed of the processor, the efficiency of perturbation 

procedure (genetic rearrangement) and the annealing parameters (initial 

temperature, cooling factor, number of configurations or iterations at each 

temperature i.e., chain length and termination criterion) used. The SA procedure in 

the present methodology introduces a computational time burden that has two 
distinct components. 

The first component is due to the time consumed by the function calls to the 
simulator and is associated with every trial configuration. This is virtually reduced 

to near zero with ANN as the simulator. An increase in the areal extent of study 

domain or number of nodes in the aquifer system does not affect the computational 

time as long as ANN replaces the simulator. Nevertheless, obtaining data patterns 

for training can be time consuming. Also, larger study area implies increase in the 

number of decision variables and constraints and hence the computational burden. 

16 



The second component is the average time consumed for generating a 

feasible configuration. This time is significant When the number of decision variables 
is large. The second component is kept to a minimum through efficient perturbation 

procedure discussed earlier. The total CPU time is determined by sum of the two 

components multiplied by the total number of iterations or chains prescribed in SA 
procedure and are problem specific. 

It is important to note that while ANN reduces the computational burden in 

terms of time, and facilitates longer chain lengths (for SA) and tighter constraints 

for optimisation, it reduces the probability of finding a global optimal solution. This 

is because ANN mimics the simulator imperfectly, which in turn mimics the real 

physical system. Although the simulations by ANN are very good in general, the 

reproduction cannot be exactly the same, resulting in a slightly altered feasible 

domain, which may or may not contain the optimal solution obtained with the 

simulator. Johnson and Rogers (2000) have, however, concluded that ANN virtually 

replaces the full model. This is indeed true only within the range of input values for 

which ANN is trained, but not otherwise (ASCE Task Committee 2000). In general, 
there will be a successive dilution in the optimal solution with respect to the true 

global optimum. This is due to both, the SA procedure itself, which provides only near' 

optimal solutions, and the ANN. 

4.0 ILLUSTRATIVEAPPLICATION OF MODEL USING SYNTHETIC DATA 

4.1 Application of Model-1 

To illustrate the conceptual model discussed in the previous chapter and to 

obtain an initial understanding of the problem a simplified aquifer system 

representative of the real problem in terms of geometry, boundary conditions and 

aquifer properties is analyzed. The analyses of the results are intended to provide 

an insight and confidence in tackling the complex real problem discussed in the 

next chapter. 

The operational management model proposed in this study seeks to control 
up coning of underlying saline water while providing an optimal pumping schedule. 

To illustrate this concept and methodology a simplified aquifer system with wells 

representative of the study area and the aquifer parameters is considered here. A 7 

layer, 25 rows, 13 column finite difference grid was constructed using a pre- 
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processor (see figure 4.1). Typically a river boundary with constant head on one 
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aquifer parameters are listed in table 4.1. 
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Fig. 4.1 Conceptual representation of the aquifer system 
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Table 4.1 
Aquifer and other parameters used for SEAWAT 2000 model 

S. No Particulars Values 

1 Hydraulic conductivity in X, Y and Z directions 45, 45 and 4.5 m/day 2 
Porosity, specific yield 0.35, 0.15 

3 Specific Storage (I m.) 0.001 
4 Longitudinal and vertical dispersivity (pi, pt) 66 and 11 m 
5 Uniform rainfall recharge 0.12 m/monsoon season 
6 Grid in X and Y directions (Dx, Dy) 100 m 
7 Grid in Z direction (Dz) 10 m 
8 Time step (Dt) 3 months 
9 Concentration of freshwater 0 
10 Max. Conc. of saline water (bottom-most layer) 5 kg/ m3  
11 Maximum density of saline water 1003.5 kg/ m3  
12 Density of freshwater 1000 kg/ m3  

The SEAWAT-2000 model was implemented using a false transient approach 

under average recharge conditions fora long time period (5000 days) until steady 

state conditions in terms of heads and concentrations were achieved. This approach 

sirtiulates initial conditions for the S/0 model as discussed in the next section. To 
ensure computational burdens were manageable the coupling parameter, DNSCRIT 
in the advection package of MT3D was set at 0.1 kg/ m3  for early convergence. For 
real aquifer systems this needs to be further reduced for improving the accuracy of 

simulated concentrations. The courant's numbers was set at unity in the advection 
package of MT3D. 

4.1.1 Skimming well and Proof of Concept Test 

Initially a single skimming well pumping at steady rates from different layers 
to control up coning is considered (see figure 4.1). Intuitively a skimming well 

pumping from a layer farthest from the layer that is saline (in Z-direction) is likely to 
contain least amount of salinity consistent with a density dependent flow phenomena: 

The solution in terms of optimal location and rates arrived by the management 

model (5/0) must be consistent with this intuition. In reality the problem involves 

determination of maximum pumpages in space and time, which satisfy the 
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constraints in terms of heads and concentrations. The head constraint in the 

uppermost layer ensures that the quantity of water that is pumped does not exceed 

the quantity of water that is replenished on an annual basis. The concentration 

constraint ensures that salinity does not exceed desired levels. This constraint is 

applied only to the grid cell from which pumping takes place during a given stress 

period or season. 

The time of one year is typically divided into four seasons of three months 

(90 days) each with reference to climatic conditions prevalent in India. Thus the 

problem involves discrete (location in the Z-direction) and continuous (rate of 

pumping) decision variables. The S/0 model simulation begins from steady state 

conditions discussed earlier. During the first time step beginning monsoon season 

15 —20 percent of average rainfall is assumed as uniform recharge over the study 

area. Additional recharge of 1.8 m is assumed arbitrarily along the left bank (for one 

grid width of 100m) from floodwaters during the monsoon season. No recharge 

(being negligible) is assumed during the remaining 3 seasons: 

For any given set of pumpages the SEAWAT-2000 model takes on an average 

of 45 seconds to execute fourstress periods (360 days) involving iterative solution of 

flow and transport on a desktop PC (Pentium 4 with 2.4 G. Hertz processor). Since 

the optimization process by SA involves several thousands of function calls to the 

simulator a virtual ANN simulator was developed to reduce the computational burden. 

To generate training sets (patterns) for the ANN the SEAWAT-2000 model 

was repeatedly executed to generate random pumpages (input) assuming a uniform 

distribution for the single well pumping in the range of 500 — 5000 m3/day at any one 

random location (i.e. 3, 4'h or 51h layer) while setting the remaining two locations to 

zero pumping during each of the four stress periods. No constraints are imposed 

for generating data sets. The corresponding aquifer responses (output) in terms of 

heads (upper layer) and concentration in well pumping screen locations (i.e. 3, 
4th 

and 5'h layer) are recorded. Repeated execution of SEAWAT-2000 involved some 

25 hrs of computer run to obtain nearly 2000 data sets of input-output. The data 

sets covered a full range over which each input variable (i.e. pumping) is varied. 

This is because ANN's are known to be good interpolators rather than extrapolators;  

Before training the input-output data sets are standardized (Rao et al 2004). 

A 3-layer feed-forward network with an input, sigmoid and linear output layers were 
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trained usingANN toolbox of MATLAB (2000) to obtain optimal weights and biases 

for each network. The supervised training was accomplished with the help of a 

back-propagation algorithm as implemented in MATLAB. Typically, to train a 3-6-1 

ANN architecture (see figure 4.2) for concentration of solute at one of the locations 

(i.e. 3 input values pertaining to pumping in 3rd, 4th  and 5'h layer) for 1ststress period 

would mean 3 input neurons, 6 hidden neurons and one output neuron. Similarly 

there will be 12 neurons as input and 6 hidden neuron and one output neuron for 

training of concentration at any one location at the end of 4'" stress period. This 

training procedure is repeated for each output variable i.e. head and concentration 

at each location of well screen (layer) at the end of each stress period. Training 

process for a single output in general takes only a few seconds. However it takes 

much more time if more than one output is trained simultaneously. 

w2 

Yl 

P1  
Input layer 

Hidden layer 

Yl=f (PTWI+ID1).W2+b2  

Where f is given by equation 3.5  

0 

b2 

Output Layer 

P = input layer vector; 
= input weights matrix; 

W2 = hidden layer matrix; 
b.]  = bias vector for hidden layer; 
b2  = bias vector for output layer; and 
Y = output layer vector 

Fig. 4.2 Atypical neural network 
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The network with optimal weights and biases in the form of a small program 

involving simple matrix multiplication and addition works as a virtual simulator of 

SEAWAT-2000. The behavior of ANN virtual model in general showed high goodness-

of-fit (R2  = 0.97 to 0.99) which in fact nearly replaces the full numerical model 

for calibration and validation sets (Johnson and Rogers 2000, Rao et al 2004). 

The ANN virtual simulator is subsequently interfaced with SA for optimisation. The 

SA model was implemented while confining heads in the r layer and concentrations 

in the grid cell from where pumping is resorted to 63 meters and 2.5 kg/m' 

respectively. 

The annealing parameters kr SA were arrived through trial and error 

(Dougherty et al 1991, Cunha 1999, Rao et al 2004). The initial temperature is set 

such that more than 75% of the feasible configurations are accepted in the beginning. 

The chain length (equilibrium criterion) was set in the range of 50 — 60 times the 

number of decision variables) and the cooling factor (rate of reducing the 

temperature) was varied in the range of 0.4 to 0.6. The SA procedure was terminated 

when four successive temperature reductions did not yield improvement in solution. 

The optimal solution is presented in table 4.2. 

The solution was consistent with the intuition that pumping must confine to 

the topmost layer for all stress periods and verifies the management model for 

optimality in terms of location. The values pertaining to rate of pumping at these 

locations depend on the tightness of the constraint in terms of concentration and 

cannot be verified for global optimality. However, the solution (near-optimal) was 

verified with the actual simulator i.e. SEAWAT-2000 for heads and concentrations 

as listed in table 4.2. For most solutions (near-optimal) concentration rather than 

head was the limiting constraint. This is evident from table 4.2 wherein concentration 

in third layer reaches its limiting value at the end of the 4th stress period i.e. 2.5 kg/ 

m3. It is also worth noting that over 25,000 calls to simulator could be made with 

ANN as the simulator in less than 30 minutes of CPU time. The computational 

burden in the present study is discussed in a later section. The evolution of model 

solution using SA procedure is depicted in figure 4.3. 

4.1.2 Optimal Pumping Cycle 

To arrive at an optimum pumping schedule the illustration was designed, 

consistent with the real life problem discussed in the next chapter. A series of 5 
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Table 4.2 
Optimal Solution for Pumpages for a Skimming Well and Corresponding 

Head and Concentrations 
Stress 
Period 
(Season) 

Particulars 3m Layer  4th Layer  5th Layer 

First 
(0 - 90 days) 

Pumpage (m3/day) 568.7 0 0 
Head (m) 64.80 64.86 64.89 
Concentration (Kg/m3) 0.80 1.18 1.88 

Second 
(90-180 days) 

Pumpage (m3/day) 3147.5 0 0 
Head (m) 63.91 64.19 64.36 
Concentration (Kg/m3) 1.69 2.00 2.55 

Third 
(180-270days) 

Pumpage (m3/day) 3957.7 0 0 
Head (m) 63.61 63.97 64.17 
Concentration (Kg/m3) 2.18 2.46 2.93 

Fourth 
(270-360days) 

Pumpage (m3/day) 3678.0 0 0 
Head (m) 63.68 64.02 64.21 
Concentration (Kg/m3) 2.50 2.75 3.16 

Note: 
Heads are constrained in the 3rd  layer only (not less than 63m.) 
Concentration is constrained in the layer from which pumping takes place (not more than 2.5kg/m3, 
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Fig. 4.3 Evolution of solution using SAAlgorithm 
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wells pumping from 3rd  layer is considered for four stress periods as shown in 

figure 4.4. The third layer was chosen consistent with the results of the previous 

section. The number of wells On series) and time steps is kept small to ensure that 

the number of decision variables is minimum in space and time. An optimal pumping 

schedule for operating 2, 3 or 4 wells out of 5 wells is planned. The pumping was 

varied in the same range of 500 — 5000 m3/day as discussed in the previous section. 

Two additional wells are assumed to be pumping at a fixed rate of 900 rn3/d to meet 

agricultural demand in the neighboring areas through out the year. The problem 

involves determination of optimal location and their steady rates of pumping during 

each stress period. 

The initial conditions were kept the same as in previous section and data 

sets were generated using SEAWAT-2000. The range of variation of head and 
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Fig. 4.4 Head (m) and concentration (kg/m') distribution at the end of 4th stress 
period for the optimal solution for a series of 5 wells in the 3rd layer. 
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concentration at the end of each stress period is listed in table 4.3. The ANN model 

was later trained and interfaced with SA code. For this study the average head (at 

five pumping locations) and concentration at each location are constrained at 63 

m. and 2.5 kg/m3  respectively. It is important to note at this stage, that the 

concentration limit of 2.5 kg/m3  was chosen arbitrarily based on the range of values 

over which the concentration varied for the range of pumpages and not from drinking 

water requirements. For the real aquifer system this must meet drinking water 

standards. The SA code was implemented on similar lines as discussed in the 

previous section. The optimal solution is listed in table 4.4. The optimal solutions 

were also tested with the actual simulator to ensure that the constraints were 

satisfied in terms of heads and concentrations. 

Table 4.3 

Data range generated using SEAWAT -2000 Model for ANN Training 

For a series of 5 wells 

Stress 
period 

Concentration n kg/rna  Average Head (m) 
in 5 wells Well 1 Well 2 Well 3 Well 4 Well 5 

First Max. 
Min. 

0.429 0.371 0.489 0.323 0.411 64.530 

1.815 1.923 1.967 1.93 1.806 63.403 

Second Max. 
Min. 

0.723 0.629 0.869 0.578 0.719 64.416 

2.311 2.537 2.554 2.489 2.268 63.512 

Third Max. 
Min. 

1.274 1.045 1.359 1.006 1.089 64.618 

2.634 2.962 2.931 2.913 2.601 63.321 

Fourth Max. 1.567 1.446 1.808 1.334 1.497 64.431 

Min. 2.813 3.274 3.193 3.249 2.791 63.371 

Interestingly, the optimal solution (table 4.4) suggests, that operating only 3 

wells rather than 4 wells out of 5 wells in series gives the maximum pumpage. This 

is due to the interference from neighboring wells (including two additional agricultural 

wells), which enhance the advective velocities leading to increase in concentration 

in the grid cells from where pumping is resorted. Here interference refers to 

interference in upconing process from adjacent wells. Once the concentration level 

exceeds the permissible level the trial solution is rejected leading to lower pumpages 

in the intermediate wells (Wells# 2, 3 and 4 in figure 4.3). The wells 1 and 5 have 

relatively less interference being on extreme edges of the series of wells. Therefore 
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Table-4.4 
Optimal Pumping Cycle and corresponding Heads and Concentrations 

For a Series of 5 Wells 3  
' -11  

Season 
(Stress 
period) 

Well 
Operation 
Plan 

Well 'I Well 2 Well 3 Well 4 Well 5 Total 

First 2-Wells 0 4815.7 0 0 4593.9 34924.2 
Second 0 0 0 3260.2 4943.4 
Third 0 4841.3 0 0 4458.8 
Fourth  3784.2 4226.6 0 0 0 
First 3-Wells 4833.9 4926.1 0 0 3686.4 45864.8 
Second 3421.0 4168.2 0 0 4460.0 
Third 4798.2 0 2769.6 0 3771.0 
Fourth  4948.1 0 2738.3 0 1344.1 
First 4-Wells 1456.3 0 1379.3 3766.3 750.7 44807.5 
Second 4187.1 0 2021.3 779.0 4855.2 
Third 4953.7 1454.7 3712.7 0 4462.5 
Fourth 2464.2 4170.6 0 2316.9 2077.1 

higher pumpages are mostly located in wells 1 and 5 as evident from table 4.4. 

This leads to an important inference that operating more wells does not necessarily 

yield more water from skimming wells in general. This is unlike constant density 

flow phenomenon. In other words, for maximizing pumpages, the group of wells 

that must be operated should be staggered in space and time such that there is 
minimum interference from neighboring wells. 

4.1.3 Computational Burden 

The CPU time in general depends on a number of factors. This includes the 

time consumed by the simulator, the number of decision variables, the tightness of 

constraints, the speed of the processor and annealing parameters (initial 

temperature, cooling factor, chain length or equilibrium and termination criterion). 

The SA procedure in the present methodology introduces a computational time 
burden that has two distinct components. 

The first component is due to the time consumed by the function calls to the 

simulator and is associated with every trial feasible configuration. This virtually 

reduces to near zero with ANN as the virtual simulator. The second component is 
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the average time consumed in for feasible solutions until equilibrium and termination 

criteria are met. The second component can be kept to minimum through efficient 

coding and algorithmic guidance such that infeasible trials are terminated at the 

earliest stage and improved solutions are found that are problem specific. The total 

CPU time is determined by sum of the two components multiplied by the total number 

of iterations or chains. At initial temperature the number of iterations is large mainly 

due to infeasible solutions. At final temperature the uphill moves are too many in 
general. The total number of iterations is problem specific and therefore can be 

determined only after actual model execution. In the present study the computational 

times were 2, 5 and 90 minutes of CPU time corresponding to 2, 3 and 4 well 

pumping schedules respectively listed in table 4.4 on a desktop PC with moderately 

tight constraint concerning concentration (limiting constraint was set at 2.5 kg/m3). 

However under tighter constraints this could take several hours. 

4.2 Application of Model-2 

The proposed model seeks to control up coning of saline water from a pre-

selected set of candidate well in series. The goal is to determine a subset of optimally 

located wells that provide groundwater of minimal salinity in space and time. To 

illustrate this concept and methodology a simplified homogeneous, isotropic aquifer 

system representative of the study area and aquifer parameters is considered. An 

8 layer, 32 rows, 13 column finite difference grid was constructed using a pre-

processor (see figure 4.5). Typically a river boundary with constant head on one 

side and a groundwater divide contour (no-flow boundary) on the other side is 

considered. The lower-most layer is assumed to have constant salinity concentration 

of 5kg/m3. The input variables and aquifer parameters are listed in table 4.5. To 

obtain initial conditions for the 8/0 model the SEAWAT-2000 model was implemented 

using a false transient approach under average recharge conditions for a long time 

period (5000 days) until steady state conditions in terms of heads and concentrations 

was achieved. 

4.2.1 Optimal Location of Wells 

The illustrative example was conceived and designed consistent with the 

real problem discussed in next chapter. The planning horizon of one year is assumed 

to be divided into two stress periods (seasons) of 180 dais each. The two stress 
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Table 4.5. 
Aquifer and other parameters used for 

S. No Particulars 
• 

Values 
1  Hydraulic conductivity in X, Y and Z directions 40, 40 and 4 m/day 
2  Specific yield, Specific storage 0.15, 0.001 (/m) 
3 Longitudinal and vertical dispersivity (pi, pt) 30 and 10 m 
4 Uniform rainfall recharge 0.12 m/monsoon season 
5 Grid in X and Y directions (Dx, Dy) 50 m 
6 Grid in Z direction (Dz) 10 m 
7 No of Rows, Columns and layers 32, 13 and 8 
8 Stress period 6 months (180 days) 
9 No of stress periods, times steps 2, 18 
9 Concentration of freshwater 0 
10 Max. Conc. of saline water (bottom-most layer) 5 kg/ m3  
11 Maximum density of saline water 1003.5 kg/ m3  
12 Density of freshwater 1000 kg/ rn3  
13 Aquifer top and bottom elevation 80m, Om 
14 Constant head in river 75m 
15 Courant number, Coupling parameter DNSCRIT 1, 0.01 kg/ m3  

periods correspond to monsoon and non-monsoon seasons, typical of Indian rainfall 

conditions. Recharge is assumed to occur only during the monsoon season. 

A series of eight candidate wells is considered (see figure 4.5). It is assumed 
that only four wells operate at a fixed rate (say, 500 m3/day) during any given stress 
period or season. It is required to determine their optimal location in space and 

time. All the wells were assumed to pump from the uppermost layer i.e. 3rd  layer 
(barring 13' and 266  layers for possible variation in draw down due to pumping). The 
idea of pumping from the 3rd  layer is obvious as salinity concentration is expected 
to be least towards topmost layer in a density driven flow phenomenon. The 

illustrative problem was designed such that the optimal solution is known intuitively, 
as a proof of concept. 

The eight candidate wells considered in this study, implies 16 decision 

variables for two time steps. If each decision variable takes 2 values i.e. zero or 
one, this results in 216  possible configurations. For any given set of pumpages the 
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SEAWAT-2000 model takes on an average, 60 seconds to execute two stress 

periods (360 days) involving iterative solution of flow and transport on a desktop 

PC. Since brute force technique is impractical and the optimisation (SA) process 

involves several thousands of function calls to the simulator a virtual ANN simulator 
was developed to reduce the computational burden. 

To generate training sets (patterns) for the ANN the SEAWAT-2000 model 

was repeatedly executed to pumping at random pumping (assuming uniform 

distribution) locations. During each run random locations were generated at any 

four locations out of eight possible candidate wells and were assigned a fixed 
pumping rate of 500m3/day. The remaining 4 locations were assigned zero pumping. 
After the model execution, the corresponding aquifer responses (output) at each 

well in terms of concentration at the screen located grid cells were recorded. 

Repeated execution of SEAWAT-2000 involved some 30 hrs of computer run to 
obtain more than 1800 realizations (data sets) of input-output. 

Initially the input variables (0.0 or 500.0 m3/d) pertaining to pumping are 
converted into zero-one variables (a typical data set is shown in table 4.6). The 

input-output patterns are then standardized before ANN training. For this purpose, 

the input-output data series (patterns) are scaled between zero (0.0) and one (1.0). 

A 3-layer feed-forward network with an input, sigmoid and linear output layers were 

trained using ANN toolbox of MATLAB (2000) to obtain optimal weights and biases 

for each network. The supervised training was accomplished with the help of a 

back-propagation algorithm as implemented in MATLAB. Typically, to train an 8-6-1 

ANN architecture for concentration of solute at one of the locations for 151  stress 
period would mean 8 input neurons, 6 hidden neurons and one output neuron. 

Similarly there will be 16 neurons as input and 6 hidden neuron and one output 

neuron for training of concentration at any one location at the end of 2nd stress 

period. This training procedure was repeated for each output variable i.e. head and 

concentration at each location of well screen (layer) at the end of each stress period 

The network with optimal weights and biases in the form of a small program 
involves only simple matrix operations to behave as a virtual simulator of SEAWAT-

2000. The behavior ofANN virtual model in general showed high goodness-of-fit (R2=0.97 
to 0.98). Similar details have been discussed in Rao et al (2004). The virtual model was 

subsequently interfaced within 8/0 model to replade the SEAWAT-2000 simulator 
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The annealing parameters for SA were arrived through trial and error 

(Dougherty et al 1991, Cunha 1999, Rao et al 2004). The initial temperature (set at 

0.2) was arrived such that more than 800k of the feasible configurations are accepted 

in the beginning. The chain length (equilibrium criterion) was set in the range of 80 

—90 times the number of decision variables) and the cooling factor (rate of reducing 

the temperature) was varied in the range of 0.7 to 0.9. The SA procedure was 

terminated when four successive temperature reductions did not yield improvement 

in solution. The optimal solution is presented in table 4.7. Evolution of model solution 

using SA procedure is depicted in figure 4.6. 

The optimal solution was found to be along expected lines and consistent 

with the intuition. In the first stress period the model allocates the fixed pumpage 

(500 ms/day) in the 181, 3rd, 
 5Fl and 71h locations, while in the second stress period it 

chooses 2nd, 41h, 6'h, and 81h locations. The only other alternative solution, which the 

model can find with same value of objective function, could be to interchange the 

locations between first and second stress periods. The net effect was to stagger 

the pumpages in space and time. The model staggers in order to minimize the 

effect of interference from neighboring wells which enhance the advective velocities 

leading to increase in concentration in grid cells from where pumping is resorted 

as evident from table 4.6. 

4.2.2 Computational Burden and Algorithmic guidance 

The computational burden was discussed with the model-1 and is the same 

with the model-2. For the unconstrained problem the optimal solution was attained 

after 4262 feasible calls to the simulator with CPU time of 60 seconds. The number 

of calls however, depends on the beginning search point, which actually depends 

on the random seed. Therefore this could be achieved with much less or even 

more number of calls depending on the random seed. In any event the computational 

burden is largely controlled with ANN as the simulator. 

If the problem is constrained for salinity (say 0.4 kg/m3) at each pumping 

location (which is on) the computational burden increases to 1075 seconds. This 

is due to increase in the number of infeasible calls that get rejected by the constraint. 

Here the computational burden arises from the second component also as 

discussed earlier. This can only be controlled through efficient algorithmic guidance. 
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Fig. 4.6 Evolution of model solution using SAAlgorithm 

A simple algorithmic guidance, which is problem specific, was designed from intuitive 

understanding of the density driven flow phenomenon that is reflected in the optimal 

solution in table 4.7. A small subroutine was coded to ensure that the trial random 

allocations of fixed pumpages were staggered in space and time. Computationally 

this is achieved in space and time as follows. For the simplified problem under 

consideration, staggered allocations in space were made while ensuring that center 

of gravity (C.G) of allocated pumpages lies some where in the middle band along 

the arm of the series of pumpages 18' through 811, beginning 18l location (see figure 

4.4). Along time this is achieved by avoiding allocation at the same location in the 

next time period. With this approach the computational burden could be reduced to 

120 seconds. In fact with this algorithmic guidance the annealing algorithm could 

be directly linked to numerical simulator (without virtual simulator ANN) for the 

illustrative example presented in this study. 

However it is important to note that this approach has been applied to a 

simplified aquifer system. Real systems involve many other aspects, such as 

external stresses, variation aquifer properties, geometry and boundary and confining 

conditions. Nevertheless this concept can be extended in general to the real systems 

to determine optimal locations of skimming wells and to reduce computational 

burden via algorithmic guidance. 

4.3 Discussion of results of model-1 and model-2 

The analysis of results of model-1 and model-2 clearly indicate the 

implications of a density driven flow phenomena involving upconing. Unlike a 
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constant density flow phenomena well interference from closely spaced wells 

adversely affects the advective flow and transport of salts in the aquifer zone below 

the well screens. The advective velocities get enhanced in the vertical direction 

from neighboring wells, there by increasing the salt concentrations. Therefore both 

location and pumping rates are decisive factors to determine the amount of pumping 
in space and time. 

To control pumping or in other words the salinity of extracted groundwater 

staggering in space and time are absolutely essential. The extent of staggering in 

spatial and temporal would however depend on the aquifer system under consideration 

in terms of geometry, boundary conditions, aquifer properties and input/ output 

stresses. These conditions are unique for any aquifer system. Therefore each one 

has to be analyzed separately to determine maximum groundwater that can be 

tapped on a sustainable basis. 

5.0 MODEL APPLICATION TO PALLA WELL FIELDS USING REAL DATA 

5.1 Description of Study area and Data Availability 

The study area near Palla Village lies northwest of Delhi in survey of India 

toposheet 53H/1/SE. The study area (figure 5.1) is approachable from NH-1 via 

Bakhtarpur village. The river Yamuna receives much of its flows during the monsoon 

season (July to September). The study area is often flooded during this season. 

The palla flood plains within the embankments get significant recharge during this 

period. A battery of 90 tube wells (plate 1) was constructed in various stages since 

year 2001 along the periphery of left embankment to augment drinking water supply 

from this induced recharge. The wells (see details in appendix A) also draw 

groundwater from rainfall recharge from adjacent areas along the reach besides 

the river boundary (Figure 5.2). At present the wells are pumping 30 —35 MGD of 

groundwater by operating these wells for 12 — 16 hours a day. The land use in and 

around the study area is mainly agriculture, involving cultivation of seasonal crops 

The cross sections typical of model area (figure 5.3) indicate predominantly 

sandy soils with intermittent clay lenses. Recent alluvial deposit3 are predominant, 

consisting of sand, silt, clay, Kankar or occasional gravel. Fine mica flakes are 

noticed often in sandy formations. The generalisation of the subsurface geology 
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Fig. 5.1: Index map of the study area. 

reveals that there are broadly four formations. The first and the topmost formation 

is characterized by medium to fine grained colored Yamuna sand with few gravels. 

This is followed by a zone characterized by medium to coarse-grained gray colored 

Yamuna sands with gravels and kankars. In the southern part of the well field and 

near to margin of first and second zone a gravel predominant zone with coarse 

sand and kankars have been observed. The bulk of this gravel predominant zone 

lies in second zone characterized by medium to coarse sand. As one moves from 

the southern part of the well field towards extreme north the occurrence of the 

gravel predominant zone reduces drastically. Below the above-mentioned layers 

are layers characterized by fine-grained brownish sand with consolidated silt, clay, 

kankar and gravels. 

In general the study area is underlain with geologically occurring saline water 

everywhere at varying depths. The saline-freshwater interface is observed at a 

depth of 60 — 70 in the northern part of the study area. In the southern part it is 
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Plate 1. Production wells in series at Palle sector in river Yamuna floodplain 

rather shallow and is noticeable at 30 — 40 meters. The salinity is expected to 

increase with depth. While modeling, to be on safer side, the maximum salinity 

below the interface has been assumed to be 2000 mg/I for the bottom layer. The 

depth of water varies from 3 — 4 m below ground level. The water level fluctuation 

between pre and post monsoon varies from 1.0 to 1.5 m. The groundwater quality 

from the production wells is good and is suitable for drinking purposes. The average 
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EC (electrical conductivity) and pH values of the groundwater from production wells 

tapping multiple aquifers upto a depth of 40-45 m has been measured as 400mS/ 

cm and 7.5 respectively 

Data pertaining to rainfall, lithologs, groundwater levels in space and time 

and a few pumping tests are available. Data pertaining to groundwater quality in the 

saline zone (especially in A01), river stage, cross-sections, and river flow along 

space and time are - not available and hence these have been assumed suitably 

with limited field checks. 

In summary there is very little variation in sub-surface configuration of aquifer 

material along the stretch of Palla flood plain. In general finer material (clay) increases 

with depth in varied proportion of kankars. Therefore the hydraulic conductivity in 

the study area is expected to vary between 10 — 25 m/ day, with higher values at the 

top. In the Z direction the values are expected to be one tenth of the above-mentioned 
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38 



values. The specific yield and specific storage values are expected around 0.2 and 

0.0001 respectively. The above values in the present study including dispersivity, 

however, are arrived by trial and error or through a parameter estimation procedure. 

5.2 Development and Calibration of Regional Aquifer Model (RAM) 

The focus of present study is to develop an optimal pumping schedule in 

space and time for the group of 90 wells in the flood plain of river Yamuna near 

PaIla Village bordering Haryana. The aquifer system pertaining to the area of interest 

(A01) marked ABCD (figure 5.4) has been modeled. To model the AOI, suitable 

boundary conditions have been defined along the four sides and the bottom. In the 

absence of a hydrologic boundary, it is difficult to determine the western boundary 

condition along edgeAB or to assess the amount of flux from this direction, therefore, 

the areal extent of study area in this direction has been extended until a well-defined 

hydrologic boundary condition is encountered. In the present case the western Yamuna 

canal along a ridge happens to be the boundary condition on the western side. 

With the western Yamuna canal as boundary condition on one side and the 

river Yamuna on the other side, the study encompasses an area of about 240 km2. 

Modeling this area has helped in defining the boundary condition along AS. This 

approach is sometimes referred as regional to local scale. Generally a coarser 

grid is defined for modeling at regional level and a finer grid at local level i.e. the 

A01. It is important to note that A01 is kept as minimum as possible to ensure that 

computational burdens are kept to minimum with a density dependent flow simulator 

— SEAWAT 2000. Further SEAWAT 2000 involves a transport model, which in general 

requires a finer grid. Although in the present study the simulator is replaced with 

ANN model, ANN in turn requires a large number of data patterns, which can be 

obtained only by running the original simulator. 

The regional model extending upto Yamuna canal has been first calibrated 

and then the A01 is cut using telescopic mesh refinement (TMR) approach, which is 

built in pre-processors of many groundwater models (Rumbaugh, 2004). The TMR 

model at local scale with appropriate boundary conditions along the edges is expected 

to behave like the original model (RAM). The calibration is intended to simulate initial 

conditions in RAM in terms of groundwater heads and concentrations beginning 

monsoon season when the system is assumed to be in quasi-steady state condition. 
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The study area map was digitized for river boundary, floodplain 

embankments, well locations and wesmtern Yamuna canal alignment. A finite 

difference grid (250 x 250m) with 53 rows, 99 columns and 7 layers was constructed 

to represent the aquifer system. The ground elevations in the upper-most layer 

were made to conform to the topography in the region (figure5.4). The upper most 

layer shows variable thickness in space due to varying topography. 

As hard rock or impervious bed is not encountered for several hundreds of 

meters in depth and since the production wells tap up to a depth of 45 meters, a 

no-flow boundary was set at a depth of 80- 100 meters. The remaining layers were 

assigned constant thickness as indicated in figure 5.4. Keeping in view the 

groundwater flow direction.  on regional scale and based on the topography, which 

in general is falling from western Yamuna Canal (on the ridge line) towards the river 

Yamuna, the northern and southern edges are considered as no-flow boundaries. 

The groundwater table also follows this topography indicating general flow direction 

towards river Yamuna. The western Yamuna canal and the river Yamuna are 

considered as constant or specified head boundaries on the basis of available data. 

The bottom-most layer (7th layer) is assumed to be saline with a constant TDS of 

2000 mg/I. In the 6th and 5th layers the southern most 10 and 5 rows were assigned 

the same constant TDS (2000 mg/I) respectively to represent rising saline-

freshwater interface towards southern part of study area, as indicated by borehole 

logging data. All remaining cells were set at an initial concentration of zero. The 

grid cells in all the layers, left of western Yamuna canal and right of river Yamuna 

were made inactive. Thus the model contains some 26000 active cells. 

The Aquifer parameters used in the present study are Ested in table 5.1. These 

were arrived based on available data of lithologs and limited pumping test data analysis. 

Recharge was assumed to vary in the range of 10— 15 percent of rainfall. Additional 

recharge (0.5m) was assumed in the flood plain within the embankments to account 

for recharge from intermittent flood pondage during the monsoon season. Draft 

(abstraction) for various water uses (mainly agricultural) per grid cell was arrived at 

after conducting sample field survey in the study area as presented in appendix B. 

Initial parameter calibration in terms of observed and simulated heads was 

accomplished using a constant density model — MODFLOW (Harbaugh et al 2000) 

and PEST (Daugherty et all998) in arriving at reasonable value of equivalent hydraulic 
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Table 5.1 

Regional Aquifer model parameters used by SEAWAT —2000 

S. No Particulars Values 

1 Hydraulic conductivity in X, Y and Z directions 

(in the upper most layer taken as 20 m/day) 9.8, 9.8 and 1.0 m/day 

2 Specific yield, Specific storage i 0.2, 0.0001 (/m) 

3 Longitudinal and vertical dispersivity. (p,, p,) 60 and 10 m 

4 Uniform rainfall recharge 0.10 m/monsoon season 

5 Grid in X and Y directions (Dx, Dy) 250 m 

6 Grid in Z direction (Dz) 10 — 25 (variable) 

7 No of Rows, Columns and layers 53, 99 and 7 

8 Concentration of freshwater 0 

9 Max. Conc. of saline water (bottom-most layer) 2 kg/ m' 

10 Maximum density of saline water 1001.43 kg/ m' 

11 Density of freshwater 1000 kg/ m' 

12 Courants number, Coupling parameter DNSCRIT 1,0.01 kg/ m' 

13 Density — Concentration slope 0.71 

conductivity (K) in the X-Y directions for steady state conditions. (his value of K was 

subsequently improved in the variable density simulator -SEAWAT -2000. 

In the present study approximate calibration of the RAM is intended to arrive 

at initial conditions in terms of heads and concentrations in general and A01 in 

particular at the beginning of the water year (i.e. July) before onset of monsoon 

season where in it is assumed that the aquifer system is in quasi-steady state 

conditions. To arrive at this initial condition the SEAWAT-2000 model was 

implemented with initial arbitrary heads/ concentrations and the model was run for 

a long period such as 5000 days under average draft/ recharge stresses. This 

approach is sometimes referred as false-transient approach. At this stage it was 

assumed that a quasi-steady state condition beginning monsoon season was 

accomplished since the simulated heads were in reasonable agreement with 

observed heads at the beginning of water year typically for the year 2004. The 

observed and simulated heads and concentrations are shown in figure 5.5. Since 

the observed data pertaining to concentrations are not available, these are not 

plotted. 
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Fig. 5.5 Observed (continuous line) and Simulated (dashed line) contours of 
groundwater levels - first layer beginning monsoon season, year 2004. 

5.3 Modeling Area of Interest — TMR model 

The actual area of interest (A01) as discussed earlier is the region close to 

the production wells defined by boundaries ABCD in figure5.4. The TMR feature 

built in the pre-processor (Rumbaugh 2004) was used to isolate the A01 from the 

RAM. A finer grid with 125 x 125 m is used for the TMR model. Almost all features 

(with some exceptions) of the original model are exported into the TMR model. The 

western boundary (i.e. edge AB of A01 in figure 5.4) within the TMR model is now 

represented as an equivalent constant head boundary varying in space and not in 

time (a CHD file of MODFLOW 2000 is created). The TMR model with more that 

36000 active cells were separately run and were found to behave approximately 

similar to original model in terms of aquifer responses i.e. heads and concentrations. 

The TMR aquifer model for the A01 is used for further analysis. However, 

since the TMR model still involves high computational burden (due to finer grid 

despite reduction in areal extent) it needs to be further replaced with ANN model as ' 

discussed in the next section. 
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5.4 Application of Model-1 to Real System at Palle using Virtual TMR model 
for full groundwater development 

5.4.1 Data generation, ANN Training and Optimal Solution 

Illustration of management models 1 & 2 using simplified aquifer models 
were discussed earlier in chapter 4. Model-1 seeks to maximize pumpages from 
prckluction wells in space and time subject to a set of constraints. In the real system 
under consideration there are 89 production wells. Assuming 10 percent of the 
wells need maintenance and repair at any time, it is proposed to operate only 80 
wells at any given time. 

Since the solution methodology uses S/0 technique, the number of decision 
variables need to be restricted, failing which the computational burden will become 
unmanageable even with ANN as the virtual simulator on a desktop PC. Therefore the 
80 wells were grouped into 8 subgroups with each group containing 10 wells (see 
figure 5.6). This implies 8 decision variables during each time step or season. In all 
there are 16 decision variables corresponding to monsoon and non-monsoon seasons. 



No flow boundary 
Computed boundary 

Prochittion Wells 

Floodplain recharge ion 

The range of pumping for each group was restricted between 200 to 2000 m3/ 

d with respect to the installed pumping capacities of the real system. Within each 

group same rate of pumping was assumed. Thus random pumpages were generated 

within the above range and were assigned to the 8 groups during each of the two 

stress periods corresponding to monsoon and nonmonsoon season. Uniform rainfall 

recharge (10 percent of rainfall) and additional flood recharge within the embankment 

(0.5m) was assumed for monsoon season (see figure 5.7). No recharge was 

assumed during the non-monsoon season. The SEAWAT — 2000 was repeatedly 

executed with TMR aquifer model discussed earlier for generating data sets for ANN 

training. No constraints were imposed for generating data sets for ANN training. 

Each run was found to take nearly 20 minutes (Pentium IV PC, 2.4 GHz processor) 

involving 2 stress periods of 180 days each corresponding to the two seasons. 

Fig. 5.7 Finite difference grid of TMR model showing extent 
of floodplain recharge 
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During each stress period the 8 pumpages and their corresponding 

concentrations were recorded at typical well locations representative of the subgroup 
of 10 wells. This meant during each run 16 pumpages and their corresponding 
concentrations, Heads were not recorded as it was presumed that water quality 
and not quantity was a limiting constraint. Some 250 data sets were generated and 

appended in stages involving nearly 83 hours of total computer execution time. The 
ANN training was carried out on similar lines as discussed before in section 4. 

The S/0 model was implemented with ANN as virtual simulator. The model-1 seeks 
to determine maximum pumpage subject to water quality constraint to meet drinking water 
requirements. The total dissolved solids of water should not exceed 1kg/m3  (1000 mg/I) as 
per drinking water standards in India. The optimal solution where in the average salinity of 

the 8 groups On grid cells at well screen locations in fourth layer) during each stress period 

was restricted to 720 mg/I corresponding to pumping of 24 MGD is presented in table 5.2. 
Clearly if the salinity level is relaxed a higher objective function can be realized. This leads 

to a tradeoff curve as shown in figure 5.8. The tradeoff curve prioritizes the amount of 
groundwater pumpage with respect to acceptable levels of salinity. 

Table 5.2. 
Optimal Pumping Schedule from a group of 80 wells with average salinity 

of all groups constrained at 720 mg/I to pump 24 MGD 
Group I Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 

Installed 
Capacities of 
Production 
wells 
(m3itlay) 
Running at 
full capacity 
for duration 
indicated 
below 

2993 1922 2267 2611 1196 2700 1250 2000 
2938 3000 2500 2500 1310 1950 2779 2146 
2500 2410 2500 2500 2339 2104 1639 2267 
2500 3250 2500 2500 1950 2400 1739 2074 
2543 2550 2500 2500 2600 1922 3243 850 
2267 900 2500 2500 2260 1922 2939 1660 
2267 3150 2907 1971 2500 1922 1310 1979 
2543 2679 3000 2104 2100 2188 1488 2074 
2267 2543 2500 2500 2407 2675 1628 1979 
2814 2407 2500 2819 2100 2747 2000 1475 

Optimal pumpage per day (m3/day) 
Monsoon 18738 19661 8212 18763 6439 8382 17226 14739 
Nonmonsoon 17593 18637 6038 14151 9448 7831 12465 17484 

Duration of pumping per day (hours) 
Monsoon 17.5 19.0 7.7 18.4 7.4 8.9 20.7 19.1 
Nonmonsoon 16.5 18.0 5.6 13.9 10.9 8.3 14.9 22.7 

5.4.2 Mass balance and effect of Induced flood recharge 

The optimal solution (table 5.2) when implemented using the actual simulator 

SEAWAT —2000 gives the picture of total flux mass balance (kgs) on an annual basis 
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Fig. 5.8 Tradeoff curve between total pumpage and salinity 

(360 days) as under The mass balance witll and without optimal pumpages from 

Palle well field helps in understanding the aquifer flow dynamics. 

MASS INFLOW 

With Palle 
Well pumping 

Without Palle 
Well pumping 

Storage 17210954422.7 7394235191.2 
Constant head 
(flux from western side) 

349135740.7 95267435.1 

Wells 0.0 0.0 
River leakage 25870685059.5 4341989678.0 
Recharge 22185506250.0 22185506250.0 
Correction for Vol. 6311470.4 3422899.4 
Total inflow 65622592943.4 34020421453.9 

MASS OUTFLOW 

Storage 4110891021.9 8245771662.6 
Constant head 
(flux from western side) 

1094317742.4 1957334680.1 

Wells 57455247430.0 18582724402.5 
River leakage 2898353462.0 5177833471.3 
Recharge 0.0 0.0 
Correction for Vol. 63790004.2 56763850.4 
Total outflow 6562250660.8 34020428067.2 
Inflow - Outflow -6717.3 -6613.3 
Percent error 0.0 0.0 
(not significant up to 4th decimal place) 
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While the amount of recharge on a seasonal basis is the same for the two 

cases above, the aquifer storage, river leakage, flux from western boundary and 

the draft (pumpage) are different. The flux from western boundary is not significant 

(relative to total inflow/ outflow). This indicates that a no-flow boundary could as 

well be used as an approximation in place of a constant head boundary condition 

arrived using TMR model along the western side of study area (A01). 

From the mass balance table above with PaIla wells pumping about 57 billion 

kg of groundwater will meet demand from agricultural (18 billion kg) and drinking water 

at PaIla (39 billion kg corresponding to 24 MOD). This pumping comes from rainfall and 

induced flood recharge (40%), river boundary (38%) and aquifer storage (22%). 

The aquifer storage is depleted due to PaIla well fields pumping. It is important 

to note the values of flow into and out of aquifer storage for the two cases. For the 

first cqse with PaIla well pumping a net storage space of approximately 13 billion 

kgs is created due to a modest draft of 2 to 4 meters at the end of a year (see 

figure 5.9). On the other hand without PaIla well pumping a negative or excess 

storage of about one billion kg joins the river (constant head) boundary. Therefore 

PaIla well pumping helps in utilizing groundwater recharge, which would otherwise 

join the river boundary. 

It is important to note that recharge in the present study was estimated on 

the assumption that 10% of the annual rainfall (700 mm) reaches the groundwater 

table. Further an additional flood recharge of 500 mm during the monsoon season 

is assumed to occur in the flood plain. • These values were verified through 

approximate calibration of the regional model in terms of observed groundwater 

levels (figure 5.5). However this value needs to be experimentally determined for 

reliable estimation by installing a network of peizometers in the floodplain. This will 

help assess flood recharge for each flood event during the monsoon season to 

arrive at a dependable recharge on a seasonal basis. This assessment could be 

highly variable for a flood year when compared to a drought year. Reportedly, the 

flood level reaches 210.6 meters (high flood level) at least 2 or 3 times near the 

well fields at PaIla on an average during the monsoon season. The alluvial sandy 

soils in the top layer with high hydraulic conductivity and storage properties can 

easily recharge the draft space of 2 to 3 meters discussed in the previous paragraph 

during a normal flood during the monsoon season. 
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for a constant to pumping of 24 MOD at PaIla. 
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The river leakage (which could be either way) or conductance depends mainly 

on hydraulic conductivity (of bed material and its thickness) and the head difference 

between river stage and the groundwater level in the well field. The amount of river 

leakage in terms of mass balance needs to be looked with caution in the context of 

constant head boundary as an infinite source of supply. A significant amount of 

water comes directly in the well field due to proximity of the river boundary. River as 

a constant source of supply in the model is a reasonable assumption given the fact 
that the river Yamuna is perennial. 

5.4.3 Discussion of results 

The results of model 1 application are consistent with the philosophy of 

operating skimming wells discussed in illustrative application using hypothetical 

data in chapter 4. The evolution of model solution is indicative of the near optimal 

solution considering the large number of iterations involved in arriving at the solution. 

The model prefers to pump more quantity of groundwater from locations, which 

have minimum interference in upconing. In other words it chooses locations from 
which the average salinity is minimum. 

In northern part the cluster of wells are very closely spaced, therefore except 

the first group of wells, which does not have interference from one side, the second 

and third groups show reduced pumpage. In the southern part although the saline 

interface is raised the model still prefers to pump from these wells due to the wide 
spacing among the wells. 

The tradeoff curve helps the decision maker to prioritize groundwater 

pumpage with respect to acceptable salinity of water (figure 5.8). The tradeoff curve 
shows approximately a linear trend. 

5.5 Application of Model-2 to Real System at Palla using Virtual TMR model 
for partial groundwater development 

5.5.1 Data generation, ANN Training and Optimal Solution 

Application of model-2 is intended where in only part of the wells are operated 

to supplement a given demand or to meet a partial demand. Model-2 was applied to 

the same group of 80 wells in 8 subgroups. Here the model seeks to minimise total 
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concentration at specific locations that are optimal out of 8 groups. Since at each 

location 10 wells operate the concentration is chosen at any one representative location. 

To illustrate the model it is assumed that peak demand is required to be met 

for a period of one month during the summer season i.e. with no recharge. The 

model begins from quasi-steady state condition as discussed in the previous 

section. The pumps are assumed to be operated for 12 hours a day. It is required to 

determine the optimal locations of 3, 4 and 5 groups out of the possible 8 groups in 

terms of zero-one (on-off) decision variables. Since there are only 8 decision variables 

(zero-one) the combinatorial problem can be solved by enumeration or brute force 

method. However the simulator has to be replaced with ANN virtual model. 

As discussed previously the data patterns (about 200) were generated by 

randomly choosing any 4 groups for pumping while assigning remaining groups 

with zero pumping with SEAWAT-2000 simulator. This was followed by ANN training. 

The goodness of fit for calibration and validation using typically 10 and 50 data 

patterns respectively is shown in figure 5.10 and figure 5.11. The virtual TMR model 

was subsequently embedded in S/O model for optimisation using the SA algorithm. 

The SA parameters are arrived by trial as discussed in the previous section. The 

optimal solution is presented in table 5.3 below. 

Table 5.3. 
Optimal Spatial Pumping locations (On/ Off) of a subset of ells which seeks 

to minimize salinity using model-2 duration of pumping is one month) 

Group I Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 

Installed 
Capacities of 
Production wells 
(m3/day) 
Running for 12 
hours a day 

2993 1922 2267 2611 1196 2700 1250 2000 

2938 3000 2500 2500 1310 1950 2779 2146 

2500 2410 2500 2500 2339 2104 1639 2267 

2500 3250 2500 2500 1950 2400 1739 2074 

2543 2550 2500 2500 2600 1922 3243 850 

2267 900 2500 2500 2260 1922 2939 1660 

2267 3150 2907 1971 2500 1922 1310 1979 

2543 2679 3000 2104 2100 2188 1488 2074 

2267 2543 2500 2500 2407 2675 1628 1979 

2814 2407 2500 2819 2100 2747 2000 1475 

Optimal Solution for operating part of the group of wells 
30-wells operation 
Demand met =8.0 MOD 

Off on On On Off On Off Off 

40-wells operation 
Demand met =10.3 MOD 

Off Off On On On On Off Off 

50-wells operation 
Demand met =12.5 MOD 

Off Off On On On On On Off 
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Figure 5.10 Typical SEAWAT/ ANN computed concentrations at one 
representative location for calibration 

Figure 5.11 Typical SEAWAT/ANN computed concentrations at one 
representative location for validation 
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Partial groundwater development for a given period say 30 days could be 

operated by alternating different group of wells during two time steps. In other words 

staggering along both space and time. The model was therefore implemented on 
similar lines after going through the steps of ANN training and optimisation using 

the S/0 model in two time steps of 15 days each (i.e. 16 decision variables for the 

same 8 groups during two time steps. The optimal solution is presented in table 5.4 

Table 5.4. 
Optimal Spatial and temporal Pumping locations (On/ Off) of a subset of wells 

which seeks to minimize salinity using model-2 (duration of pumping is one month 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group? Group 8 

Installed 
Capacities of 
Production wells 
(m3/day) 
Running for 12 
hours a day 

2993 1922 2267 2611 1196 2700 1250 2000 

2938 3000 2500 2500 1310 1950 2775 2146 

2500 2410 2500 2500 2339 2104 1639 2267 

2500 3250 2500 2500 1950 2400 1739 2074 

2543 2550 2500 2500 2600 1922 3243 850 

2267 900 2500 2500 2260 1922 2939 1660 

2267 3150 2907 1971 2500 1922 1310 1979 

2543 2679 3000 2104 2100 2188 1488 2074 

2267 2543 2500 2500 2407 2675 1628 1979 

2814 2407 2500 2819 2100 2747 2000 1475 

Optimal Solution for operating part of the group of well 

During first 15 days Off Off On On On On Off Off 

During next 15 days Off Off On On On On On Off 

5.5.2 Discussion of results 

The Relative concentrations for different combinations of 3, 4 and 5 well 

groups among eight well groups invariably decide the optimal solution. The peak 

demand that can be met for the 3, 4 and Swell groups are 8.0, 10.3 and 12.5 MGD 

respectively. The model prefers to choose such groups from which least salinity is 

encountered at the end of the pumping period i.e. one month. The 3-Well group 

prefers 3'°, 41h and 6'h groups as evident from the figure 5.6. These wells encounter 

least salinity due to spatial staggering. While the groups 7'h and 8
1h also have wide 

spacing along the river but have a raised saline interface and hence not included. 

Similar argument can be said in respect of 4 and 5 well groups. 

In table 5.4 the model prefers groups 3, 4, 5 and 6 for both the time periods. 

Evidently the model prefers above locations because of the wide spacing among 
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this group of wells. This also implies that in this particular case the spatial staggering 

clearly dominates the temporal staggering for minimising the total salinity from the 
4 groups of wells. 

5.6 Limitations of Modeling Study and Data Availability 

Limitations of a modeling study mainly.stem from assumptions that are built 
in numerical and conceptual models. Further a modeling study is demanding in 

terms of data requirement that are often not available. The present study is no 

exception to these limitations. The limitations include the following: 

It is difficult to represent the boundary condition pertaining to geologically 
occurring saline water in deeper layers, which causes upconing 

phenomenon. The only information available is that a certain amount of 

salinity (TDS or EC) is known at some known depth. Details of hydraulic 

conditions (or peizometric head) are not known. Therefore a constant 
concentration (2 Kg/m3) is assumed in the bottom-most layer in the present 
study. This may be the only a reasonable approximation of the reality. 

River is represented as a time invariant specified head boundary condition 

based on riverbed details and site inspection. Data pertaining to river 
discharge, flood levels and cross-sections are not available. 

There is no data pertaining to water quality (salinity) in space and time. 

Therefore even though a density dependent model is used only heads are 

calibrated to field conditions. However it can be assumed that concentration 

is indirectly reflected through heads in a density dependent flow phenomena. 

6.0 CONCLUSIONS AND RECOMMENDATIONS 

The guiding philosophy of skimming wells prone to upconing in general must 

be based on optimal spacing and operating the wells by staggering both in 
space and time. 

The proposed optimum pumping schedules (tables 5.2, 5.3 and 5.4) can be 

used for field implementation based on existing locations and installed pump 
capacities at Palle well field. 

The existing well locations, their adjacent spacing (of 90 wells) i.e. the group 

of wells (especially northern side) is closely spaced resulting in well 
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interference i.e. upconing below the pumping screen locations. This 

interference enhances the advective velocities of solute (salt water) towards 

the grid cells, containing the well screens, leading to increased concentration 

or salinity. Therefore care must be taken while deciding the location of future 

wells in the study area or similar study areas. 

The flood recharge during the monsoon season in the upper alluvial sandy 

layer is expected to be abundant. The aquifer properties (specific yield and 

hydraulic conductivity) are conducive for causing significant recharge during 

floods even if they are of short duration. Nearly 25 — 30 MGD of water can be 

drawn safely during both monsoon and nonmonsoon seasons to meet 

drinking water standards (i.e. salinity less than 1000 mg/I). More groundwater 
extraction could be limited by quality and not quantity. However this will lead 

to withdrawal of water from the river boundary. The tradeoff curve (figure 

5.8) prioritizes groundwater development in the study area. 

Palla well fields help in utilizing the induced flood recharge, which would 

otherwise join river boundary. 

When part of the wells must be operated to supplement demand from other 

sources or to meet peak demand during the pre-monsoon season model 2 

provides (table 5.3) the best solution. This minimizes the salinity and prefers 

group of wells, which have minimum well interference (due to upconing). 

The model in general prefers wells other than those in the northern side 

clusters of wells. Preferably groups 3 through 6 may be operated in view of 

wide spacing of wells. In other words spatial staggering is more dominant 

to temporal staggering. 

In the present study each group of well contained 10 wells. This was done 

to minimise the number of decision variables and constraints to minimum. 

The ultimate goal was to keep computational burdens that could be managed 
on a desktop PC. However more improved solutions could be obtained if 

smaller group of wells (say 5 wells per group) with more number of decision 

variables. This could be achieved through parallel processors. 

Considering the limitations of model assumptions and data availability the 

results from this study are suggestive and subjective. 
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Further improvements in model could be considered when transient data 

pertaining river stage and groundwater salinity in space and time are made 
available. 

6.1 Scope of future Work 

The results of a combined simulation-optimisation model largely depend on 

the extent of calibration of an aquifer model to field conditions. There is further 

scope in transient model calibration to realistic field conditions through improved 

data collection and understanding of the aquifer system under study. The data 
collection must include: 

A network of peizometers with in the flood plain to make a realistic 

assessment of flood recharge during the monsoon season. 

Water quality data (salinity) in shallow and deeper layer aquifers in the study 
area. 

A realistic assessment of depth and salinity of underlying aquifer in the river 
Yamuna flood plain. 

Isotope data to assess groundwater contribution to river Yamuna at specific 
locations. 

River stage and regulated discharge of river Yamuna near Palla village. 

**** 
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DISCLAIMER 

The opinions expressed in this report are solely those of the authors i.e. 

scientists. National Institute of Hydrology (NIH) and Central Ground Water Board 

(CGWB) are not responsible whatsoever. 
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APPENDIX A 

DEPOSIT WELLS CONSTRUCTED IN PALLA AREA, YAMUNA. 
FLOOD PLAIN NCT DELHI 

Deposit 
Well No. 

Depth of 
const-ruction 

Water 
LeveL 

Discharge 

M.bgl Meg! Lpm 
 44.00 3.42 2550 
 45.00 4.07 3250 
 46.00 4.08 3150 
 45.00 2.72 3000 
 40.50 4.07 2410 
 46.00 4.00 900 
 46.00 2.78 2815 
 45.00 6.07 2680 
 43.00 4.17 3000 

 40.00 3.50 2500 
 44.00 3.70 2500 
 44.00 3.80 2500 
 38.00 3.65 2500 
 38.00 3.90 2500 
 55.00 3.80 2907 
 55.00 4.05 2820 
 51.00 - 2500 
 53.00 4.57 2612 
 44.00 3.74 2994 
 44.00 3.72 2938 

21 44.00 - 2500 
22 45.00 - 2500 
23 50.00 - 2500 
24 41.00 - 2500 
25 44.00 - 2500 
26 45.00 - 2500 
27 44.00 - 2500 
28 41.00 - 2500 

(Contd.) 
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29 43.00 - 2500 
30 61 4.67 2100 
31 51 5.23 2400 
32 64 5.05 2500 
33 57 - 2260 
34 49 4.34 2700 
35 53.00 - 2600 
36 41.00 5.10 2100 
37 42.00 5.01 1950 
38 45.00 1950 
39 39.00 1980 
40 31.00 - 1980 
41 39.00 5.31 2340 
42 40.00 5.13 1628 
43 44,00 4.74 2267 
44 43.00 6.75 1310 

45 . 40.00 - 1640 

46 46.00 - 1488 
47 45.00 6.18 2267 

48 44 5.80 1196 

49 37 - 2780 

50 34 - 2074 

51 37.00 6.27 1250 

52 47.00 5.60 2544 

53 43.00 8.32 1250 

54 43.00 - 1310 

55 34.00 850 

56 43.00 5.92 1740 

57 47.00 8.10 1476 

58 51.00 5.35 2267 
59 39.00 5.10 2267 

60 44.00 6.72 2940 

61 47.00 5.90 2408 

62 44.00 6.28 3244 

63 43.00 4.80 2544 

(Contd.) 
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64  36.00 6.69 2074 

65  44.00 4.75 2676 

66  48.00 7.34 2267 

67  45.00 4.86 2748 

68  33.00,  3.42 1660 

69  45.00 5.67 1923 

70  35.00 5.23 2146 

71 38.00 4.50 2188 

72 42.00 3.81 2105 

73 50.00 4.96 2105 

74  44.00 - - 

75 51.00 4.99 1972 

76  45.00 4.83 - 

77 43.00 3.43 2408 

78  43.00 4.70 1923 

79  51.00 5.50 1923 

80  48.00 5.20 1923 

81  51.0 4.70 1128 

82  42.0 4.43 2105 

83  50.0 4.78 1734 

84  40.0 4.35 1874 

85  40.0 5.26 2105 

86  41.0 4.90 2544 

87  46.0 5.63 2408 

88 40.0 5.63 2188 

89 45.0 - 2680 
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APPENDIX B 

GROUNDWATER DRAFT 

For Irrigation Purpose 

Monsoon (3 months) 182667 

(Meter^3/day) 

For domestic, Industrial 

and farmhouses etc 
Monsoon (3 months) 7222 

(Meter^3/day) 

Weighted Average 

Non Monsoon (9 months) 302231 135123.644 38.38739 

(Meter43/day) 119564 

Non Monsoon (9 months) 

(Meter"3/day) 13200 20422 

For Industries Non Monsoon (9 months) 

Monsoon (3 months) 21222 (Meter"3/day) 21200 42422 

(Meter^3/day) 

(MeterA3 /day in 220 Sq. Km Total 365075 

Per grid 

Weighted Average 38.38739 r&/day/grid cell 
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Conserve Water-Save Life 

TR-4T stiV ‘id  i441-11: 
ITTZTatk  misruid -RH ft Id 44 

(a124-4 4q) 
Those who use rainwater wisely by means of rivers, 

wells, canals etc. for the purposes of navigation, 

recreation, agriculture etc. prosper all the time. 

(Atharva Veda) 

qid ajyqt tiTIAl: VII a Th-q abza: 

7T 4 TEM-TsTR-T 3TM: ü Trrq 4E1a:  I 

(anrif 4q) 

One should take managerial action to use and conserve the 

water from mountains, wells, rivers and also rainwater for use 

in drinking, agriculture, industries etc. 

(Atharva Veda) 
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