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ESTIMATION OF AQUIFER PARAMETERS

1.0 INTRODUCTION

The transmissivity and storage coefficient of an aquifer can be determined analysing aquifer
test data. The ratio of transmissivity to storage coefficient, known as hydraulic diffusivity, can be
ascertained from observation of stream stage during passage of a flood wave and the corresponding
water level rise in an observation well in the vicinity of the stream.

2.0 DETERMINATION OF HYDRAULIC DIFFUSIVITY

The estimation of hydraulic diffusivity from the observation of stream stage and consequent
water table fluctuations in an adjacent aquifer is an inverse problem. An inverse problem can not be
solved unless the corresponding direct problem has been solved a priori. The stream-aquifer interaction
problem has been solved by several investigators (Todd 1955; Rowe 1960; Cooper and Rorabaugh
1963; Hall and Moench 1972; Morel-Seytoux and Daly 1975; Halek and Svec 1979 ) and the
stream-aquifer equations have been applied by various other investigators to estimate the aqunfer
diffusivity (Rowe 1960; Ferris 1962; Pinder et al. 1969; Brown et al. 1972; and Singh and Sagar
1977). An alternate approach is presented here to determine the diffusivity using the measurements
of stream stage- during passage of a flood wave and the consequent water level fluctuations in a
piezometer in the vicinity of the stream.

The unit step response function that relates rise in piezometric surface in an initially steady
state semi-infinite homogeneous and isotropic confined aquifer, bounded by a fully penetrating straight
stream, to a step rise in stream stage has been derived by Carslaw and Jaeger (1959) for an analegous
heat conduction problem. The unit step response function is

K(x,t)= erfc{x/V(4Bt)} (1)

where x = distance from the bank of the stream; 7 = time measured since the onset of change in stream
stage; 3 = the hydraulic diffusivity of the aquifer defined as ratio of transmissivity to storage
coefficient or as ratio of saturated hydraulic conductivity to specific storage; and erfc{} =

complementary error function.

In nature, a stream partially penetrates an aquifer. For a partially penetrating stream, the flow
is two-dimensional near the stream. To use eq. (1) in such case, it is necessary to install two
observation wells on one side of the stream in a line perpendicular to the stream. The first one should
be installed from the stream bank at a distance equal to the thickness of aquifer below the stream bed
bevond which the flow is one-dimensional (Streltsova, 1974). Thickness of the aquifer below the
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stream bed can be ascertained from the study of lithologs in the vicinity of the stream. The water
level fluctuations in this well can be considered to represent fluctuations in a fully penetrating stream
(Reynolds, 1987). The water level fluctuations in the other well represent the aquifer response. Eq.
(1) is a good approximation for an unconfined aquifer if the bhanges in water level are small in
comparison to the saturated thickness of the aquifer (Cooper and Rorabaugh 1963).

For varying stream stage, o(2), the rise in piezometric surface, s(x,), according to Duhamel’s
integral (Thomson, 1950) is given by:

‘ -
s(x,t) =0 K(x,t) + [ K(x,t-r) 42T) g (2)
) 0

in which o, is the initial sudden rise in the streasn stage and 7 is a time variable. Duhamel’s integral,
which can be expressed in two different forms (Thomson, 1950), has been used extensively for solving
stream-aquifer interaction problems (Pinder et. al., 1969; Venetis 1970; Hall and Moench 1972;
Abdulrazzak and Morel-Seytoux 1983; Morel-Seytoux 1988).

The hydraulic diffusivity can be determined using the fluctuations in stream stage during the
passage of a flood and the consequent changes in water level recorded in an observation well near
the stream either by applying a Laplace transform technique or using a least squares optimization
method. These methods are discussed below.

2.1 Laplace Transform Method

The Laplace transform, which transforms one class of function into another, has the advantage

that under certain circumstances, it replaces complicated functions by simpler ones (Widder 1961). An

approach based on Laplace transform for determining the hydraulic diffusivity is described below.

Taking the Laplace transform of the terms on both sides of (2)

o ® ® ¢t
fs(x,t)eﬂdt=foox(x,t)e'“tdt+f[f9%x(x,t-r)dr]e"“dt (3)
Q (4] 0 0

in which « is the Laplace transform parameter. Applying Faltung theorem, i.e.,
, 1
LifF,(: ~r) Fy(7)dr|=LiF\(1 ) |LFy(1 )]
] ]

eq. (3) reduces to
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(=]

[s(x,t) e dt =a, L[K(x,1)] +L[%‘i] L[K(x,t)] (4)
0

Substituting the Laplace transform of the complementary error function, K(x,t), into (4) (Abramowitz
and Stegun 1970)

fs(x,t) e tdt = [°0+L(%g” exp[-y(ax?/B)]/a {S)

0

Discretizing the time domain in steps of uniform size At, and assuming that the rate of change
of stream stage is a constant within a time-step, (5) is expressed as (Gustav 1961)

n YAt
E[S\?-uz f e *dt]
L (y-1)at
(86)
o . O.-0 7
[0+ Y {2 [ edt}lexp(-/(al’/B)}/a
i 3 (y-1)at

in which so.r_l n= [507-1 * soy }/2 and 507 is the observed water level rise at time yAt in a piezometer
located at a distance / from the stream bank. Integrating, (6) reduces to

a -a(y-1)A ~ayAt
E[So {e a(y-1)at_g -ay }

1 - %
V=1 Y2 a -
n-o
al? (7)

? (o,-0,,) -~a(y-1)At_ -ayAt exP{‘\ —~=—5

:[o’ +Z Y v-1 (e e ) p
’ y=1 ot a a
e

Equation (7) simplifies to

n
Z {Siuz{e -G(Y-I)At_e ﬂ‘f&t} }
¥Y=2

exp{-y(al?/B)} = — - (8)
/] g -0 -1 e-aiu‘l}ﬁt_e “ayat
[0p * 2 =}k )}]
’ v=1 At a

neo

Taking the natural logarithm of terms on either side and solving for § yields
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z;[syuz(e -a( y-1) M _e—a'(At)] 3
Y=
B =al? = e = (9)
OT._GY"l e oY - Y
ay » 3 SEEER ALy

In practice, an observation period is always finite. Therefore, the summations can be truncated
beyond a finite observation period. Introducing truncation errors in the summations of the series, (9)
is modified to

n

E {5\?—1/2(970(Y_1)M‘e'“YAt)}"'G; 2
=al?/1ln ¥ 10
ﬁ 2 O O' e—a(y—l)ﬁt_e-aya.t ( )
% 3 =50 2 )}+e,

y=1

The two series containing the average water level rise at the piezometer and the change in stream stage
will converge as they contain exponentials of negative terms. The rate of convergence will depend
upon the value of o and At. For example, for a step rise in water level in the observation well, for o
= 0.06 hour’l, At’= 1 hour, and n=240, the truncation error ¢, will be about 5%. Moreover, the
stream stage and the water level rise at the piezometer after some lag will become smaller after
recession of the flood wave. The truncation errors, €; and €, would, therefore, tend to zero with
increasing observation period. Hence, the hydraulic diffusivity, 8, can be computed with reasonable

accuracy using (10).

22 Least Squares Optimization Method
The hydraulic diffusivity, 8, can be determined minimizing the objective function

N
;[sf-{s(l,nm)lgmi(l—b;—m)-lybﬁ} 2 an

with respect to AB, where N is the number of observations, 3* is an initial guess of the hydraulic
diffusivity, and AB is an increment in 8. s/l.nAt) is given by

e SO COTMEAUNLE R L

The discrete kernel coefficient, 6,{‘x.m.m). be defined as:

s(l,nar) =0 erfc {

X

VAB(mat-1)
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in which m is an integer. Performing the integration

5,0 ALm) =1 + {(m-1)+ x* /(2B AY) } erf[xV/ {48 At (m-1)}]
- fm + 2 /(2B Av)} erf(xV (4B At m)}
+ xV{(m-1)/B At )} exp[-X° /{4B At (m-1)}]
-xV{m/(B At x)} exp{-x’/(48 At m)} (14)

Following a numerical method, the derivative ds(1,nAt)/dB at B=B* can be computed from (12).
The well known Marquardt algorithm (Marquardt 1963) is a technique of estimation of nonlinear
parameters by linearization and minimization of the least squares. The Marquardt algorithm has
been applied by several investigators to determine transmissivity and storage coefficient of a
confined aquifer from pumping test-data (Chander et al. 1981; Johns et al. 1992).

EXAMPLE

The proposed methods for determining the aquifer parameter from the response of the
stream-aquifer system have been tested using synthetic data. The water level rise in a piezometer has
been generated for different values of 3, for a flood wave that follows

' NH, ( 1 - cos wt) e for 0 <t <t
ot)= | (15)

1 0 fort>ty

where o(t) = the rise above initial water level in the stream; H,, = height of peak flood stage above
initial water level; 7; = the period of the flood wav_e; 1, = the time of flood peak; w=2n/t; the
frequency of oscillation; N =exp(dt )/(1 - cos w 1); and é=w cot(0.5w 1,).

Let the flood have the following characteristics:

Time of flood peak, . : 24 hours
Duration of the flood wave, 7, : 120 hours
Maximum rise in stream stage, H, :2m
Time-step size or sampling period, Af {1,0.5, 0.25 hour }
Duration of observation. nAs . { 120, 240. 360, 600 hours]
Distance of the piezometer from the stream, / { 50, 200m }

{

Hydraulic diffusivity, 8 25.0, 50000.0 m? per hour}

The standard deviation. s, of the error free set of rises in water level in a piezometer was

computed. Random errors with zero mean and a prescribed percentage of s, as standard deviation have

been added to the piezometric levels. These piezometric levels containing random errors have been
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regarded as observed piezometric levels and have been used for testing the proposed methods of

identification of parameter.

(a) Laplace Transform Technique

For solving a problem by Laplace transformation, measurements of input and output are made
in the time domain. There is a limit on how fine a spacing one can take near the origin and there is
also a limit on how long a time one can make measurement. Thus the transform is not as well
determined as one would wish. However, in practice the transform is applied. Gustav (1961) has
suggested an approach for choosing the time-step size. According to him, selection of time-step should
be based upon the fact that both the perturbation and the response should change on an average by
about 10% of their maximum values within successive intervals of the chosen time-step.

o

The error in the estimated diffusivity is linked to the duration of observation, time-step size,

value of Laplace transform parameter o, error due to numerical integration and the random error in

the observation.

The diffusivity evaluated by the Laplace transform technique is presented in Tables 1(a) and
1(b) for different durations of observation and Laplace transform parameter o. A time-step size of 1
hour, which satisfies Gustav’s condition, has been chosen. For the assumed flood wave and sampling
period of 1 hour, the changes in flood stage and piezometric level within two successive sampling
periods are contained within 6.9 and 6.4 percent of their respective maximum fluctuations. Two sets
of observations containing normally distributed random errors with 5 and 10 % of s, as standard
deviation have been considered. 'I_‘able 1(a) shows that when the duration of observation equals the
duration of flood wave, the error in estimation of hydraulic diffusivity is 26%. Table 1(b) shows that
for high hydraulic diffusivity, the error is 13%. When the duration of observation is twice the duration
of flood wave, the error is less than 4%. Thus the duration of observation should be at least twice
the duration of flood wave. From data containing random error, whose standard deviation is 10%
of sy, low hydraulic diffusivity can be computed with 98.5% accuracy if the duration of observation
is twice the duration of flood. The corresponding accuracy for higher diffusivity, when the data contain
random error at 10% of s, is 84%. The accuracy can be further improved using a smaller time-step.

For determining the hydraulic diffusivity, time-step size for which the maximum change in
the perturbation within two successive time-steps does not exceed by 2% of the maximum stream stage
rise, is preferable. Once the time step size is selected, a should be assigned a value such that 0.02 <
a Ar < 0.06. With this a, diffusivity can be estimated with at least 87% accuracy.

b) Least Squares Optimization
Using the rate of change of stream stage during passage of the flood and corresponding
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changes in piezometric levels at a piezometer, the parameter 3 was estimated applying the Marquardt
algorithm to (12) and is presented in Table 2. In a low diffusivity aquifer, the fluctuation in
piezometric level at an observation well is gradual. Therefore, in such an aquifer, for many initial
sampling periods, the rises in piezometric level are insigniﬁéant in comparison to the random error
that may occur. In an aquifer having high diffusivity, the response to a flood wave is quick. Hence,
in such type of aquifer, the rises in piezometric level during the first few and the last several sampling
periods are insignificant. It is found that if the periods corresponding to the insignificant water level
rises are excluded from the evaluation of the objective function, the parameter B is estimated
accurately. Accordingly, the objective function chosen was the sum of squares of difference between
the observed and predicted rises for a period during which the observed rise at the well is more than
20% of the maximum rise in it. For the case of high diffusivity aquifer, observations during 5th to
60th hour have been included in the objective fuaction. In the case of a low diffusivity aquifer, the
observations up to 20th hour have been excluded. The value of the objective function at the optimum
point is given in column 4 of Table 2. The results presented in Table 2 show that if the data are free
from random error, high hydraulic diffusivity of several thousand m2/hour magnitude as well as low
hydraulic diffusivity of the order of 25 m2/hour can be estimated with 99.99% accuracy. If the data
contain random error with standard deviation of 20% s, low hydraulic diffusivity is computed with
99.5 % accuracy. The accuracy for high diffusivity is 97.5%. The hydraulic diffusivity can thus be
estimated very accurately using the Marquardt algorithm using selected part of the observed
data. '

The transmissivity and storage coefficient both control the unsteady state response of an
aquifer to any boundary perturbation whereas the transmissivity alone controls the near steady state
response of an aquifer. Therefore, for determining the aquifer diffusidvity, the unsteady response of an
aquifer should be given more weight than the steady state response. The weighting factor in Laplace
transform is e Thus, Laplace transform technique automatically gives more weight to the unsteady
response (fluctuating part) of the aquifer which occurs earlier than to the near steady state response
which occurs later. This is the major strength and motivation for using the Laplace transform

approach.

The least squares optimization gives equal weight to all input data and thereby also to the
random error contained in it. When the response of the aquifer over a threshold level was considered.

the results improved. Thus, this approach requires careful screening of the input data.
3.0 AQUIFER PARAMETER DETERMINATION

The partial differential equation describing unsteady radially symmetric flow in a nonleaky

homogeneous confined aquifer of constant thickness can be written as :

7 NIH. Roorkee
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s =2 (16)

in which h is the piezometric head at a radius r from the pumped well at a time t since the start of
pumping. T and S are the transmissivity and storage coefficient, respectively. Equation (16) assumes
that the pumping well fully penetrates the aquifer layer during the test. A solution to equation (16)
which satisfies the initial condition h(r,0) = h, ; and the boundary conditions h(e,t) =h and lim ___
27rTah/ar = Q,, as given by Theis (1935) is

ho-h=4?_r“’T f (e ¥/u)du (17)
u=r?s/aTt -
where h, is the initial piezometric head, and Q,, is the constant rate of pumping.
Equation (17) is usually written as
Q
o =Y (18)
s AnT W(u)

where s is the drawdown (=h, - h) and W(u) is the Theis well function representing the exponential
integral of equation (17).

Equation (18) is nonlinear in T and S. These parameters can be estimated by nonlinear
regression analysis. The algorithm used for determining T and S is the one due to Marquardt (1963)
as explained below. Let s;* be the drawdown at any instant computed by substinuting the initial trial
values of parameters T* and S* in equation (18). Let aT and aS be the respective increments in T*
and S* to yield the improved estimates T and S at the end of each trial and let s; be the corresponding

drawdown value given as :
5;=f(T, S)
Expanding s; by Taylor series about the trial values.

s;=f(T* + AT, S* + AS)

or

i B bt ol
5, = Fyir,arys BEE ,S*) pp. SE(T" .S pg
5T 5S"
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or

§i= 8 LT AT + O Si Ag (19)
T 8S°

The increments AT and AS are determined such that the sum of squares of the difference between

the observed and the calculated drawdown is minimum.

. N

Min

AT, AS sum=2(sf—si)2 (20)
i

where s is the observed drawdown at any instant.

The linearized model given by equation (19) is substituted in equation (20) and normal
equations are formed by setting the partial derivatives of the objective function given by equatnon (20)
with respect to AT and AS equal to zero.

ie.. e
6 sum _
5T"
and
§ sum _
&S°
These equations will take the form
(ATA)AA=AT(s"-s") - (21)

where ) ]
8s, &8s,
8T 88"
8s, 652
8T &6S°|
A - |
RE
| 6sn Bsal
| 8T 55"
and AA =[ AT as)!
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AT is the transpose of the matrix A; s° and s* are the vectors of observed and calculated drawdowns
respectively.

The normal equations (21) are solved for AA and the new drawdowns are calculated by
substituting the improved estimates (T, S) of the parameters in equation (18). The error criterion is
checked and if the same is not satisfied, the process is repeated with the updated estimates of the
parameters.

In order to ensure convergence with relatively poor starting values, equation (21) is modified

(ATA+M) A4 =AT(s°-s")

Lo

where \ is the convergence factor and I is the identity matrix. Initial values of A are large and

decrease towards zero as convergence is reached.
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TABLE 1(a)- Estimation of Hydraulic Diffusivity by Laplace Transform Technique (time to

peak=24 hour, duration of the flood wave=120 hour, maximum rise in stream stage= 2m and

distance of observation well from the stream=50m, sampling period=1 hour)

Laplace
parameter

Standard deviation
of random error/

standard deviation
of error free data

(%)

Computed
B

(m? /hour)

B assumed for Duration of
generation of observation
synthetic data
{m2/hour) (hour)
25 120

240

360

600

8]
(9}
WHQPOOAWWLOOON

24.5

L8]
wn
NHOODWORNOBNOOAWONODODUWONWO
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TABLE 1(b). Estimation of Hydraulic Diffusivity by Laplace Transform Technique (time to
peak=24 hour, duration of the flood wave=120 hour, maximum rise in stream stage= 2m and
distance of observation well from the stream=200m, sampling period= 1 hour)

\

B assumed for Duration of Laplace Standard deviation Computed
generation of observation parameter of random error/ B
synthetic data standard deviation
of error free data
(m?/hour) (hour) (hour) -1 (%) m?\ hour)

240 0.01
360 0.01
0
5
0
0
5
0
600 0.01 0 50014
5
0
0
5
0
0
5
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TABLE 2. Estimation of Hydraulic Diffusivity by Marquardt Algorithm (time to peak=24 hour,
duration of the flood wave=120 hour, maximum rise in stream stage= 2m, distance of
observation well from the stream=50m, sampling period= lflour, duration of observation = 120

hour)

Assumed B for Standard Standard Minimum Number of Estimated
generation of deviation deviation objective function B
synthetic data of error of random function calls

free data error/sy attained

84

(m?\hour) (m) (%) ( m?) (m?/hour) <=
25 0.158 0 8.43x10°® 17 25
5 7.56x10°3 30 25

10 3.02x1072 33 25 i

20 1.21x107% 36 25
50000 0.682 0 0.30x10°° 38 49942
5 6.76x1072 45 49656
i 10 2.71x107? 48 49426
20 1.08 48 48772
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