
TRAINING COURSE 

ON 

COMPUTER APPLICATIONS IN HYDROLOGY 

( UNDER WORLD BANK AIDED HYDROLOGY PROJECT) 

Module 13 

- 

Estimation of 

Aquifer Parameters 

BY 

G C Mishra, NIH 

NATIONAL INSTITUTE OF HYDROLOGY 
ROORKEE - 247 667, INDIA 



ESTIMATION OF AQUIFER PARAMETERS 

1.0 INTRODUCTION 

The transmissivity and storage coefficient of an aquifer can be determined analysing aquifer 

test data. The ratio of transmissivity to storage coefficient, known as hydraulic diffusivity, can be 

ascertained from observation of stream stage during passage of a flood wave and the corresponding 

water level rise in an observation well in the vicinity of the stream. 

2.0 DETERMINATION OF HYDRAULIC DIFFUSIVITY 

The estimation of hydraulic diffusivity from the observation of stream stage and consequent 

water table fluctuations in an adjacent aquifer is an inverse problem. An inverse problem can not be 

solved unless the corresponding direct problem has been solved a priori. The stream-aquifer interaction 

problem has been solved by several investigators (Todd 1955; Rowe 1960; Cooper and Rorabaugh 

1963; Hall and Moench 1972; Morel-Seytoux and Daly 1975; Halek and Svec 1979 ) and the 

stream-aquifer equations have been applied by various other investigators to estimate the aquifer 

diffusivity (Rowe 1960; Ferris 1962; Pinder et al. 1969; Brown et al. 1972; and Singh and Sagar 

1977). An alternate approach is presented here to determine the diffusivity using the measurements 

of stream stage-during passage of a flood wave and the consequent water level fluctuations in a 

piezometer in the vicinity of the stream. 

The unit step response function that relates rise in piezometric surface in an initially steady 

state semi-infinite homogeneous and isotropic confined aquifer, bounded by a fully penetrating straight 

stream, to a step rise in stream stage has been derived by Carslaw and Jaeger (1959) for an analogous 

heat conduction problem. The unit step response function is 

IC(x,t)= erfc {iN(413t)} (1) 

where x = distance from the bank of the stream; t = time measured since the onset of change in stream 

stage; ati = the hydraulic diffusivity of the aquifer defined as ratio of transmissivity to storage 

coefficient or as ratio of saturated hydraulic conductivity to specific storage; and etic(.) = 

complementary error function. 

In nature, a stream partially penetrates an aquifer. For a partially penetrating stream, the flow 

is two-dimensional near the stream. To use eq. (I) in such case. it is necessary to install two 

observation wells on one side of the stream in a line perpendicular to the stream. The first one should 

be installed from the stream bank at a distance equal to the thickness of aquifer below the stream bed 

beyond which the flow is one-dimensional (Streltsova, 1974). Thickness of the aquifer below the 
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stream bed can be ascertained from the study of lithologs in the vicinity of the stream. The water 

level fluctuations in this well can be considered to represent fluctuations in a fully penetrating stream 

(Reynolds, 1987). The water level fluctuations in the other well represent the aquifer response. Eq. 

(1) is a good approximation for an unconfined aquifer if the 'changes in water level are small in 

comparison to the saturated thickness of the aquifer (Cooper and Rorabaugh 1963). 

For varying stream stage, a(t), the rise in piezometric surface, s(x,t), according to Duhamel's 

integral (Thomson, 1950) is given by: 

s (x , ) = ao  K(x, t ) + f K(x , t -r) d a(r)  dr  
dr 

( 2 ) 

in which cro  is the initial sudden rise in the stream stage and r is a time variable. Duhamel's integral, 

which can be expressed in two different forms (Thomson, 1950), has been used extensively for solving 

stream-aquifer interaction problems (Pinder et. al., 1969; Venetis 1970; Hall and Moench 1972; 

Abdulrazzak and Morel-Seytoux 1983; Morel-Seytoux 1988). 

The hydraulic diffusivity can be determined using the fluctuations in stream stage during the 

passage of a flood and the consequent changes in water level recorded in an obsermation well near 

the stream either by applying a Laplace transform technique or using a least squares optimization 

method. These methods are discussed below. 

2.1 Laplace Transform Method 

The Laplace transform, which transforms one class of function into another, has the advantage 

that under certain circumstances, it replaces complicated functions by simpler ones (Widder 1961). An 

approach based on Laplace transform for determining the hydraulic diffusivity is described below. 

Taking the Laplace transform of the terms on both sides of (2) 

t 

f s (x, t ) e'dt = fao IC(x,t ) etdt + f 
[ da 

d
(
r 

 fqx,t-r)cir]e -atdt (3) 
o o 

in which a is the Laplace transform parameter. Applying Faltung theorem, i.e., 

L[fFi(t -r)F2(r)drI=L{FM )}L 2(t )1 

eq. (3) reduces to 
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is (x , t ) e dt =a01,[K(x, 
+11dcr 1[1qx  I  )] 

(4) 

Substituting the Laplace transform of the complementary error function, K(x,t), into (4) (Abramowitz 

and Stegun 1970) 

is(x,t) e'dt = [ao +Li exp[-1(ax 2  / ft)] /a 
dt 
da (5) 

Discretizing the time domain in steps of uniform size At, and assuming that the rate of change 

of stream stage is a constant within a time-step, (5) is npressed as (Gustav 1961) 

y=1 (y-1)At 
11-1. CO 

E [An f e'dt 
yAt 

) 
yAt 

=[ao+E 
a-a  

AtY-1 f e-atilt)] expej(a12/13 )1/a 
y=1 (Y-1)At 

in which erin  ---=7 [s07.1  + s07  ]/2 and s°7  is the observed water level rise at time -yAt in a piezometer 

located at a distance / from the stream bank. Integrating, (6) reduces to 

E
0 ife  -a (y-1)Ltt_e  -ayllt 

is 
y=1 2 a 
In= 

(7) 

y ( a-a y-) 1  (e-crot-iyat_e-aym) exp(--k P n"  
100 4- 2, At a a yci 

Lena 

Equation (7) simplifies to 

E [4112 {e 'urn' -e 'ant} 
y=1 

( 8 ) 

yt 1 
flea 

Taking the natural logarithm of terms on either side and solving for 13 yields 
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13 = al 2/ [In 

 

E Es y°-1/ 2(e -cr(y-1)14  -e 
Y=1 n-ma 

v. .  -a(y-1)& -ay& E y
At

y-.)( 
a 
 )) 

Y=1  
is -KG 

12 

( 9) 

ao  

In practice, an observation period is always finite. Therefore, the summations can be truncated 

beyond a finite observation period. Introducing truncation errors in the summations of the series, (9) 

is modified to 

E (4_ince-aornAt  - e -cwAt) } + 61  
[ 13 = a12 / la y=1  

n a -a  
ao + E f (  Y

At
v-1 ) ( c  

a ) } + 62 

The two series containing the average water level rise at the piezometer and the change in stream stage 

will converge as they contain exponentials of negative-terms. The rate of convergence will depend 

upon the value of a and At. For example, for a step rise in water level in the observation well, for a 

= 0.06 hour-I, at= 1 hour, and n=240, the truncation error El  will be about 5%. Moreover, the 

stream stage and the water level rise at the piezometer after some lag will become smaller after 

recession of the flood wave. The truncation errors, €1  and €2  would, therefore, tend to zero with 

increasing observation period. Hence, the hydraulic diffusivity, fi,  can be computed with reasonable 

accuracy using (10). 

2.2 Least Squares Optimization Method 

The hydraulic diffusivity, /3, can be determined minimizing the objective function 

as " '4;At)  43}12  

with respect to 45, where N is the number of observations, /3* is an initial guess of the hydraulic 

diffusivity, and As is an increment in ft.  samit) is given by 

s (1 , ns t ) = ao erfc Uptol 
 na )

1+E
y=i

[(ay -ay_i ) Sr (I, a , n-Y 4-1 )1 

The discrete kernel coefficient, blx,am). be defined as: 

at 

er (X/Atiln) ferfc{  

t N, 4/3 (mat 
}dr 

-r ) 
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in which m is an integer. Performing the integration 

°ix 44m) = I + (('n-1)+ I 1(213 ) erfixil(4,6 At (rn-V)] 

- (in + x2  1(213 At)) erf(x/V(413 At m)) 

+ xV((m-1)/(ft & w)) exp[-x2  44(3 At (m-.1))1 

- xV(nz/(13 At w)) exp(-1/(40 At m)} (14) 

Following a numerical method, the derivative aso,Thaayag at i3=13" can be computed from (12). 

The well known Marquardt algorithm (Marquardt 1963) ii a technique of estimation of nonlinear 

parameters by linearization and minimization of the least squares. The Marquardt algorithm has 

been applied by several investigators to determine transmissivity and storage coefficient of a 

confined aquifer from pumping testcdata (Chander et al. 1981; Johns et al. 1992). 

EXAMPLE 
The proposed methods for determining the aquifer parameter from the response of the 

stream-aquifer system have been tested using synthetic data. The water level rise in a piezomeler has 

been generated for different values of 13, for a flood wave that follows 

NHO  ( 1 - cos rat) ea  for 0 < t < t _ _ a 

a(t) = (15) 

0 for t > td  

where a(t) = the rise above initial water level in the stream; II0  = height of peak flood stage above 

initial water level; rd  = the period of the flood wave; c = the time of flood peak; co=2.11td, the 

frequency of oscillation; N=exp(6to)/(1 - cos co to); and 6=co cot(0.5w t). 

Let the flood have the following characteristics: 

Time of flood peak, tc. 

Duration of the flood wave, td  

Maximum rise in stream stage, Hp 

Time-step size or sampling period, Ai 

Duration of observation, nAt 

Distance of the piezometer from the stream, 1 

Hydraulic diffusivity, 13 

: 24 hours 

: 120 hours 

:2m 

: ( 1, 0.5, 0.25 hour } 

: ( 120, 240. 360. 600 hours) 

: ( 50, 200m } 

: (25.0, 50000.0 m2  per hour) 

The standard deviation. sd, of the error free set of rises in water level in a piezometer was 

computed. Random errors with zero mean and a prescribed percentage of rd  as standard deviation have 

been added to the piezometric levels. These piezometric levels containing random errors have been 
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regarded as observed piezometric levels and have been used for testing the proposed methods of 

identification of parameter. 

(a) Laplace Transform Technique 
For solving a problem by Laplace transformation, measurements of input and output are made 

in the time domain. There is a limit on how fine a spacing one can take near the origin and there is 

also a limit on how long a time one can make measurement. Thus the transform is not as well 

determined as one would wish. However, in practice the transform is applied. Gustav (1961) has 

suggested an approach for choosing the time-step size. According to him, selection of time-step should 

be based upon the fact that both the perturbation and the response should change on an average by 

about 10% of their maximum values within successive intervals of the chosen time-step. 

The error in the estimated diffusivity is linked to the duration of observation, time-step size, 

value of Laplace transform parameter a, error due to numerical integration and the random error in 

the observation. 

The diffusivity evaluated by the Laplace transform technique is presented in Tables 1(a) and 

1(b) for different durations of observation and Laplaw transform parameter a. A time-step size of 1 

hour, which satisfies Gustav's condition, has been chosen. For the assumed flood wave and sampling 

period of 1 hour., the changes in flood stage and piezometric level within two successive sampling 

periods are contained within 6.9 and 6.4 percent of their respective maximum fluctuations. Two sets 

of observations containing normally distributed random errors with 5 and 10 % of sd  as standard 

deviation have been considered. Table 1(a) shows that when the duration of observation equals the 

duration of flood wave, the error in estimation of hydraulic diffusivity is 26%. Table 1(b) shows that 

for high hydraulic diffusivity, the error is 13%. When the duration of observation is twice the duration 

of flood wave, the error is less than 4%. Thus the duration of observation should be at least twice 

the duration of flood wave. From data containing random error, whose standard deviation is 10% 

of sd, low hydraulic diffusivity can be computed with 98.5% accuracy if the duration of observation 

is twice the duration of flood. The corresponding accuracy for higher diffusivity, when the data contain 

random error at 10% of sd, is 84%. The accuracy can be further improved using a smaller time-step. 

For determining the hydraulic diffusivity, a time-step size for which the maximum change in 

the perturbation within two successive time-steps does not exceed by 2% of the maximum stream stage 

rise, is preferable. Once the time step size is selected, a should be assigned a value such that 0.02 < 

a Ai < 0.06. With this a, diffusivity can be estimated with at least 87% accuracy. 

b) Least Squares Optimization 
Using the rate of change of stream stage during passage of the flood and corresponding 
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changes in piezometric levels at a piezometer, the parameter 0 was estimated applying the Marquardt 

algorithm to (12) and is presented in Table 2. In a low diffusivity aquifer, the fluctuation in 

piezometric level at an observation well is gradual. Therefore, in such an aquifer, for many initial 

sampling periods, the rises in piezometric level are insignificant in comparison to the random error 

that may occur. In an aquifer having high diffusivity, the response to a flood wave is quick. Hence, 

in such type of aquifer, the rises in piezometric level during the first few and the last several sampling 

periods are insignificant. It is found that if the periods corresponding to the insignificant water level 

rises are excluded from the evaluation of the objective function, the parameter 0 is estimated 

accurately. Accordingly, the objective function chosen waS the sum of squares of difference between 

the observed and predicted rises for a period during which the observed rise at the well is more than 

20% of the maximum rise in it. For the case of high diffusivity aquifer, observations during 5th to 

60th hour have been included in the objective funk:lion. In the case of a low diffusivity aquifer, the 

observations up to 20th hour have been excluded. The value of the objective function at the optimum 

point is given in column 4 of Table 2. The results presented in Table 2 show that if the data are free 

from random error, high hydraulic diffusivity of several thousand m2/hour magnitude as well as low 

hydraulic diffusivity of the order of 25 m2/hour can be estimated with 99.99% accuracy. if the data 

contain random error with standard deviation of 20% sd, low hydraulic diffiisivity is computed with 

99.5 % accuracy. The accuracy for high diffusivity is 97.5%. The hydraulic diffusivity_can thus be 

estimated very accurately using the Marquardt algorithm using selected part of the observed 

data. 

The transmissivity and storage coefficient both control the unsteady state response of an 

aquifer to any boundary perturbation whereas the transmissivity alone controls the near steady state 

response of an aquifer. Therefore, for determining the aquifer diffusivity, the unsteady response of an 

aquifer should be given more weight than the steady state response. The weighting factor in Laplace 

transform is eCt.  Thus, Laplace transform technique automatically gives more weight to the unsteady 

response (fluctuating part) of the aquifer which occurs earlier than to the near steady state response 

which occurs later. This is the major strength and motivation for using the Laplace transform 

approach. 

The least squares optimization gives equal weight to all input data and thereby also to the 

random error contained in it. When the response of the aquifer over a threshold level was considered, 

the results improved. Thus, this approach requires careful screening of the input data. 

3.0 AQUIFER PARAMETER DETERMINATION 
The partial differential equation describing unsteady radially symmetric flow in a nonleaky 

homogeneous confined aquifer of constant thickness can be written as: 
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a2h1 ah _ s ah 
8r 2 r ar - T at 

(16) 

in which h is the piezometric head at a radius r from the pumped well at a time t since the start of 

pumping. T and S are the transmissivity and storage coefficient, respectively. Equation (16) assumes 

that the pumping well fully penetrates the aquifer layer during the test. A solution to equation (16) 

which satisfies the initial condition h(r,O) = h. ; and the boundary conditions h(cc,t) = h0  and lim 

27rTah/dr = Qw  as given by Theis (1935) is 

ho  h -  arrL-17,J 
(e -uhndU 

u=r 2 s/4Tt 

where h0  is the initial piezometric head, and Qw  is the constant rate of pumping. 

Equation (17) is usually written as 

4rTT
u 

 

where s is the drawdown (=h. - h) and W(u) is the Theis well function representing the exponential 

integral of equation (17). 

Equation (18) is nonlinear in T and S. These parameters can be estimated by nonlinear 

regression analysis. The algorithm used for determining T and S is the one due to Marquardt (1963) 

as explained below. Let s,* be the drawdown at any instant computed by substinuting the initial trial 

values of parameters T' and S* in equation (18). Let AT and AS be the respective increments in T'' 

and S" to yield the improved estimates T and S at the end of each trial and let s, be the corresponding 

drawdovm value given as: 

s, = f (T, S) 

Expanding ; by Taylor series about the trial values. 

s, = f (Ts 4- AT. S• AS) 

Or 

s, 
f (T . s .) . 6 f (T• , S')  AT  6 f (T• , S•)  

6T as .  
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or 

Si =Si+  AT+  is AS 
8s: Ss: .  

8T' 8S• 
(1 9 ) 

The increments AT and AS are determined such that the sum of squares of the difference between 

the observed and the calculated drawdown is minimum. 

Min 
AT,AS suin  = E (sr- 

i=1 

where o where s , s the observed drawdown at any instant. 

The linearized model given by equation (19) is substituted in equation (20) and normal 

equations are formed by setting the partial derivatives of the objective function given by equation (20) 

with respect to AT and AS equal to zero. 

Le_ 
6 sum  - 0 

67" 

and 
6 sum  - 0 
as .  

These equations will take the form 

(A T A) PA =A 7 (s°  - sa) ( 2 1 ) 

where 

A = 

) 2 (2 0 ) 

SS Ss k 

ST' SS' 
AA = [ AT AS]T 
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AT  is the transpose of the matrix A; s°  and s.  are the vectors of observed and calculated drawdowns 

respectively. 

The normal equations (21) are solved for AA and the new drawdowns are calculated by 

substituting the improved estimates (T, S) of the parameters in equation (18). The error criterion is 

checked and if the same is not satisfied, the process is repeated with the updated estimates of the 

parameters. 

In order to ensure convergence with relatively poor starting values, equation (21) is modified 

as 

(AT A+).1) =A T(s 

where X is the convergence factor and I is the identity matrix. Initial values of X are large and 

decrease towards zero as convergence is reached. 
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TABLE 1(a)- Estimation of Hydraulic Diffusivity by Laplace Transform Technique (time to 

peale--24 hour, duration of the flood wave=120 hour, maximum rise in stream stage a 2m and 

distance of observation well from the stream=50m, sampling period=1 hour) 

Duration of Laplace Standard deviation Computed 
observation parameter 

a 
of random error/ 
standard deviation 
of error free data 

/3 

(hour) (hourrl  (t) (m2/hour) 

p assumed for 
generation of 
synthetic data 

(m2/hour) 

25 120 0.01 0 18.6 
5 18.8 
10 19.0 

0.05 0 24.9 
5 25.3 
10 25.6 

0.10 0 25.0 
5 26.4 
10 27.7 

240 0.01 0 24.1 
5 24.3 
10 24..5_ 

0.05 0 25.0 
5 25.3 
10 25.7 

0.10 0 25.0 
5-  26.3 
10 27.5 

360 0.01 0 24.8 
5 25.0 
10 25.2 

0.05 0 25.0 
5 25.3 
10 25.6 

0.10 o 25.0 
5 25.2 
10 27.4 

600 0.01 0 25.0 
5 25.2 
10 25.4 

0.05 0 25.0 
5 25.3 
10 25.6 

0.10 0 25.0 
5 26.1 
10 27.2 
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TABLE 1(b). Estimation of Hydraulic Diffusivity by Laplace Transform Technique (time to 

pealt=24 hour, duration of the flood wave=120 hour, maximum rise in stream stage= 2m and 

distance of observation well from the stream=200m, sampling period= 1 hour) 

p assumed for 
generation of 
synthetic data 

(m2/hour) 

Duration of 
observation 

(hour) 

Laplace Standard deviation 
parameter of random error/ 

standard deviation 
of error free data 

(hour)-1 (t) 

Computed 
P 

m2\hour) 

50000 120 0.01 0 43418 
- 5 51106 
10 60949 

0.05 0 50182 
5 54448 
10 59243 

0.10 0 50599 
cmand' 5 57877 

10 66667 
240 0.01 0 49215 

5 56001 
10 64241 

0.05 0 50210 
5 53879 
10 57936 

0.10 0 50599 
5 56822 
10 64/42 

360 0.01 0 49880 
5 56105 
10 63535 

0.05 0 50210 
5 53355 
10 56782 

0.10 0 50599 
5 - 55910 
10 62013 

600 0.01 0 50014 
5 55093 
10 60963 

0.05 0 50210 
5 52727 
10 55425 

0.10 0 50599 
5 54828 
10 59556 
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TABLE 2. Estimation of Hydraulic Diffusivity by Marquardt Algorithm (time to peale24 hour, 

duration of the flood wave=120 hour, maximum rise in stream stage 2m, distance of 

observation well from the stream=50m, sampling period= lbour, duration of observation = 120 

hour) 

Assumed fl for Standard 
generation of deviation 
synthetic data of error 

free data 

Standard 
deviation 
of random 
error/sd  

Minimum 
objective 
function' 
attained 

Number of 
function 
calls 

Estimated 

0 

ed 

(m2\hour) (m) ( ) m2 ) c-ser (m2/hour) 

25 0.158 0 8.43x10-8  17 25 

5 7.56x10-1  30 25 

10 3.02x10-2  33 25 

20 1.21x10-1  36 25 

50000 0.682 0 0.30x10-8  38 49942 

5 6.76x10-2  45 49656 

10 2.71x10-1  48 49426 

20 1.08 48 48772 
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