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INTRODUCTION TO LINEAR PROGRAMMING 

1.0 INTRODUCTION 
Optimization is the science of choosing the best amongst a number of possible alternatives. 

For many engineering problems, a number of feasible solutions are available. It is required to evaluate 
each alternative and then choose the best from the point of view of interest, say economic or 
convenience etc. The best solution under the given circumstances is known as the optimum solution. 

The variables which are unknown, and are manipulated to obtain the optimum solution are 
termed as decision variables. The decision maker evaluates the available alternatives on the basis of 
some prescribed criterion. This criterion function is normally referred to as the objective function. 
The availability of resources is usually limited, and is expressed with the help of constraints. These 
constraints are imposed during the decision making process to determine the optimum solution. 

The optimization techniques are also known as mathematical programming techniques. It can 
be classified in several ways, such as on the basis of the existence of constraints, the nature of design 
variables, the physical structure of the problem, the nature of the equations involved, the permissible 
values of the design variables, the deterministic nature of variables involved, the separability of the 
functions, the number of objective functions involved, the nature of the problem, etc. the usual way 
of classifying the optimization techniques is based on the nature of the problem or equations involved. 
Following this way, the techniques can be classified as Linear Programming (LP), Nonlinear 
Programming (NLP), Geometric Programming (GM), quadratic Programming (QP), and Dynamic 
Programming (DP). This classification is extremely useful from the computational point of view since 
there are many methods developed solely for the efficient solution of a particular class of problems. 
In addition, some other classes of optimization techniques also exist which are very much relevant 
for the hydrologists. These techniques are based on the statistical methods and stochastic process 
techniques. Now a days, many new types of optimization techniques are also emerging, such as 
Genetic Algorithm (GA), Simulated Annealing Algorithm (SAA), etc. However, one should not forget 
the classical methods of optimization which are analytical and make use of the techniques of 
differential calculus in locating the optimum points of continuous and differentiable functions. 
Moreover, the calculus methods of optimization form a basis for developing most of the numerical 

techniques of optimization. 

Although the optimization encompasses a very wide range of subjects, keeping the objectives 
of this course and the current status of the application of optimization techniques in operational 
hydrology in our country, these notes is confined to the linear programming only. Some advanced 
topics in linear programming, such as duality and post optimality analysis, too are discussed briefly. 
After reading this course material, one would be able to understand the fundamentals of linear 
programming and the simplex method and get the idea of the potential use and worth of the 
optimization techniques in handling large and complex real-life hydrological problems. 
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Introduction to Linear Programming 

2.0 LINEAR PROGRAMMING 
The linear progranuning type of optimization problem was first recognized in the 1930s by 

economists while developing methods for the optimal allocation of resources During World War II, 
the United States Air Force sought more effective procedures of allocating resources, and that lead 
to the development of the linear programming. G.B. Dantzig, who was a member of the Air Force 
Group, formulated the general linear programming problem, and devised the simplex method of 
solution in 1947. This has become a significant step in bringing the linear programming into wider 
usage. Since then, linear programming models are being used widely to solve a variety of military, 
economic, industrial, social, engineering and hydrological problems. The number of applications of 
linear progranuning has become so immense that it is not possible to describe all of them here. 

The optimization problems in which the objective function and constraints are linear function 
of decision variables along with the condition that the decision variables are positive are termed as 
linear programming problems. Thus, any optimization problem can be classified as a LP problem 
provided it meets the following conditions: 

The decision variables involved in the problem are nonnegative, i.e., positive or zero. 

The criterion function or objective function is described by a linear function of the decision 
variables, that is, a mathematical function involving only the first powers of the variables with 

no cross products. 

The operating rules governing the processes, commonly known as constraints, are expressed 

as a set of linear equations or linear inequalities. 

The LP models have been extensively used to solve different kinds of small to large water 
resources problems. Although the objective function and the constraints are not related linearly with 
the decision variables in many real-life water resources problems, these can be approximated by linear 
functions, and LP technique can be used to obtain the solution. 

3.0 MATHEMATICAL REPRESENTATION OF A LP PROBLEM 
There are many ways to represent a linear programming problem. A general linear program 

formulated for a real-life or hypothetical problem will look like a conventional type. Solutions are 
generally sought by converting the general linear program to a standard form. A compact and 
computationally desirable way of representation of a linear program is a matrix form. Each form is 

described in following section. 

3.1 Conventional Form 
A general linear program consists of a linear objective function and a set of linear constraints. 

The constraints may be expressed in terms of inequalities or equalities. In most cases, especially in 
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Introduction to Linear Programming 

real-life water resources problems, constraints appear as inequalities. In many cases, it is observed 
that a linear program may consist of both types of constraints, i.e., some constraints may be equality 
type and some may be inequality type constraints. 

Mathematical representation of a general linear program is often referred to as the 
conventional form. A general linear programming problem in conventional form can be written as: 

Minimize (or Maximize): Z = fix) 

Subject to: 

...(1) 

gi(x) 5 0; j =1, 
fti(x) 0; j = 1, 

j= 1, 

2, . . , m1  
2 ..... m2  
2, . . . , m3  

...(2) 

...(3) 

...(4) 

where Z is objective function, x is an n-dimensional decision vector, g3(x) and h(x) are inequality 

constraints, and /j(x) is equality constraint. mi, m2  and m3  denote the number of constraints for 

these types of constraints, respectively. The objective function is expressed as a linear function of 

the decision variables. 

3.2 Standard Form 
The standard form of a linear programming problem with in constraints and n variables can 

be represented as follows: 

Minimize (or Maxhnize): Z = ci  xi  + c2  x2  + + cn  xn ...(5) 

Subject to: 

xii xi + x12 x2 +.... +xinxa  =b1 

a22 + a22  x2  + + x„ bn  

aro + anu xz •• • +amn xn = bm  

0, i = 1, 2,  n. 

131 0, i = 1, 2,  m. 

where Z represents the objective function; x;  are the decision variables and ci  are the cost (or 

benefit) coefficients representing the cost (or benefit) incurred by increasing the x1  decision 

variable by one unit. The right hand side of constraint equations represents the resource 
availability. These arise due to limited availability of a particular resource, say water. The ati  

coefficients are called technological coefficients and quantify the amount of a particular resource i 
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required per unit of the activity j. 

The standard form of a LP problem is useful for solving the LP model algebraically. The 
main features of the standard form are: 

The objective function is of the either maximintion or minimization type, 

All the constraints are expressed as equations, i.e. equality type constraints except the 
nonnegativity constraints associated with the decision variables, 

All the decision variables are restricted to be nonnegative, 

The RI-IS constant of each constraint is nonnegative. 

3.3 Matrix Form 

In matrix notation, the standard linear programming problem can be expressed in a compact 
form as: 

Min. (or Max.) Z = CT  X —(9) 

Subject to: A X = b ...(10) 
X 0 ...(11) 
b 0 ...(12) 

where A is an (m x n) matrix, X is an (n x 1) column vector, b is an (m x I) column vector, C is 
a (n x 1) column vector, and Z represents the objective function. The terms "Min." and "Max." 
refer to minimization and maximization, respectively, and notation T refers to the transpose 
operation. In other words, it can be expressed as: 

X = [xi, x2,  , X]T  ...(13) 
C = [ci, c2,  

I an an 
I an a22 

cn
iT 

a In 

a 2n I 

...(14) 

A = I • ...(15) 

I • 

aria am2 a 

b = [b1, b7„ bmIT  ...(16) 
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Introduction to Linear Programming 

4.0 FORMULATION OF A LP MODEL 
The three basic steps in constructing a linear programming model are as follows: 
Identify the decision variables to be determined, and represent them in terms of algebraic 
symbols. 

Identify all the restrictions or constraints in the problem, and express them as linear equations 
or inequalities which are linear functions of the decision variables. 

Identify the objective or criterion, and represent it as a linear function of the decision 
variables, which is to be either maximized or minimized. 

These three basic steps will be more clear when one formulates a number of linear programs. 
Here, one should notice that the model building is not a science, but primarily an art and comes 
mainly by practice. Depending upon the experience, skill and scientific knowledge about the system 
under consideration, the developed model will meet the realism, and will fulfil the intended 
objectives. Any discrepancy in the model formulation will yield an erroneous result, and sometimes 
may even show physically meaningless solution. Hence, the readers are advised to work out many 
exercises on problem formulation before handling a real life problem of public welfare or direct 

implementation. 

5.0 ASSUMPTIONS IN LP 
There are four basic assumptions which are implicitly built into LP models: 

Proportionality Assumption 
It is assumed that the contribution of the jth decision variable to the effectiveness measure, 

9 xj, and its usage of the various resources, aii  )4, are directly proportional to the decision variable. 

Additivity Assumption 
This assumption indicates that the total usage of resources and contribution to the overall 

measure of effectiveness are equal to the sum of the corresponding quantities generated by each 

activity conducted by itself at the given level. 

Divisibility Assumption 
According to this assumption, the fractional values of the decision variables are permissible. 

Deterministic Assumption 
The parameters of the LP model are assumed to be known with certainty. 
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6.0 REDUCTION OF A GENERAL LINEAR PROGRAM TO A STANDARD FORM 
The simplex method for solving linear programming problems requires problem to be 

expressed in standard form. But not all linear programming problems appear like standard form. In 
many cases, some of the constraints are expressed as inequalities rather than equations, it is most 
often true in case of water resources problems. In some problems, all the decision variables may not 
be even nonnegative. Hence the first step in solving a linear program is to convert.it  to a problem in 

standard form. The procedure to convert a general program to a linear program is outlined below: 

Convert all inequalities to equalities. 
Convert all decision variables unrestricted in sign to strictly non-negative. 
Make all the right-hand side constants of the constraints nonnegative. 

6.1 Handling Inequality Constraints 
An inequality constraint of the type 5 can be converted to equality type by introducing a new 

nonnegative variable called a slack variable. This new variable is added in the left-hand side of the 

constraint. Hence, the constraint 

an + ai2  x2  + + ain  x„ bi ...(I7) 

can be written as: 

aii xt + xz + + ain xn + ai 131; si 0 

Here si  represents the slack variable. 

Similarly, an inequality constraint of the type can be converted to equality type by 
introducing a new nonnegative variable called a surplus variable. This new variable is subtracted from 
the left-hand side of the constraint. Thus, the constraint 

an  x1  + an  x2  + + ain  xn b1 ...(19) 

can be written as: 
an  x1  + a12  x2  + + ain x - s2  = hi; s2 0 ...(20) 

Here s2  represents the surplus variable. Further, a constraint of type, if desired, can be easily 

converted to a 5 type by multiplying by -1 throughout the equation. 

6.2 Handling Variables Unrestricted in Sign 
In some situations, it may become necessary to introduce a variable in the optimization model 

that can be both positive and negative values. Since the standard form requires all the variables to be 
nonnegative, an unrestricted variable must be transformed. For this, the unrestricted variable is 
replaced by the difference of the two nonnegative variables. 
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6.3 Handling Constraints Having Negative Right-Hand Side Constants 
Since the right-hand side constant of each constraint must be nonnegative, the constraints 

having negative right-hand side constants are multiplied by -I throughout to get the constraint in the 
standard form. Thus, the constraint 

3x1  - x2  - 2x3  = -5 ...(21) 
will take the form 

- 3x1  + x2  + 2x3  = 5 

in standard form. It should be noted here that if inequality type constraints are being multiplied by 
-1, their nature will reverse. 

6.4 Interchanging the Nature of the Objective Function 
The nature of the objective function, if desired, can be changed by putting a negative sign 

with the prescribed expression for the objective function. That means a maximintion problem is 
equivalent to a minimization problem with the negative of the objective function, i.e., 

Max [Z] = Min [-Z] ...(23) 

7.0 CANONICAL SYSTEM 
A system of equations which possesses at least one basic variable in all equations is called a 

canonical system. In order to get a canonical system, a sequence of pivot operations are performed 
on the original system such that there exists at least one basic variable in each equation. The number 
of basic variables is decided by the number of equations in the system. 

A variable is said to be a basic variable in a given equation if it appears with a unit coefficient 
in that equation and zeros in all other equations. Those variables which are not basic are called 
nonbasic variables. By applying the elementary row operations, a given variable can be made a basic 
variable. 

A system of equations given by 

- 3x3  - 2x4  - 4x5  = 6 ...(24) 
x2  - 2x3  + x4  - 3x5  = 2 

represents a canonical system. This system is very useful to obtain the optimal solution, and forms 
a basis for the simplex method ,to find out an optimal solution of an optimi7ation problem. 

The solution obtained from a canonical system by setting the nonbasic variables equal to zero 
and solving for the basic variables is called a basic solution. A basic feasible solution is a basic 
solution in which the values of the basic variables are nonnegative. The basic feasible solution satisfies 
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all constraints. A basic feasible solution which provides minimum (or maximum) value of the 
objective function is called an optimum solution. The feasible region and constraints are shown in Fig. 
1. It may be noted that the feasible region of a properly formed LP problem is a convex set. A set 
is a convex set if it is not possible to find two points such that not all points on the line joining them 
belong to the set. 

xi  

Fig. 1 A Definition Sketch of Feasible Region and Constraints 

8.0 GRAPHICAL SOLUTION 
The graphical method is a simple way to solve LP problems. This method is also very useful 

in conceptual understanding of the solution technique. However, it can be used to solve the LP 
problems involving at most two decision variables only. In the following, a LP problem having two 
decision variables will be discussed. 

8.1 Illustrative Example 1 

Max Z = 2 x/  + x2  
subject to: 

...(26) 

2x1  - x2 5 8 ...(27) 

X1 ± X2 5 10 ...(28) 

X2 5 7 ...(29) 

X1, X2 >o ...(30) 
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In Fig. 2, the constraints are plotted against the coordinate axes ; and 12. To plot the first 
constraint, 2; - x2  5 8, we plot a straight line 2x1  - x2  = 8. Similarly, we plot lines; + 12  = 10, 
and x2  = 7 to mark second and third constraints. The nonnegativity constraints are plotted as the 
axes themselves. The feasible region can be easily delineated, and is shown in Fig. 2 by the bounded 
pentagon region formed by the hatched lines of each constraints including nonnegativity. Now we start 
with an arbitrary value of objective function, say 6 and plot the line 2x + x2  = 6. Since it is a 
maximization problem, the objective function line is shifted forward as far as possible while ensuring 
that at least one point lies in the feasible region. It can be seen that the farthest point up to which we 
can go is the point (6, 4). Hence, this is the optimum point at which the objective function becomes 
maximum. Thus, the optimal solution of the problem is; = 6 and 12  = 4, and the optimal value 

of the objective function is 16. 
12 

Fig. 2 Graphical Solution of Illustrative Example 1 

8.2 Importance of Corner Points 
A closer inspection of Fig. 2 shows that the optimum point will always be a corner point. 

Further, if a constraint passing through this corner point is parallel to the objective function, all the 
points falling on this constraint (or objective function) will have the same (optimum) value of the 
objective function. In this case, the problem will have infinite solutions. Such linear programming 
problems are said to have alternative or multiple optimal solutions. Some important properties of the 

corner points are described below: 

o If there is only one optimal solution to a LP problem, it must be a feasible extreme point. If 
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there are multiple optimal solutions, at least two must be adjacent feasible extreme points. 
In every problem, there are only a finite number of feasible extreme points. 
If a feasible extreme point is better than all its adjacent feasible points, then it is better than 
all other feasible extreme points. This property holds good if the feasible region is convex. 
Based on this property, one need not enumerate all the extreme points, and the status of one 
extreme point can be ascertained to determine whether optimal solution has been arrived at 
or not. 

In some problems the feasible region may not be a closed convex polygon, and hence itinay 
be possible to increase the objective function value continuously and still be inside this region. tuch 
type of problems are termed as having unbounded solution, and no finite optimum could be achieved 
in such cases. 

9.0 SIMPLEX METHOD 
The graphical method of solving a LP problem is suitable only for problems involving two 

or less decision variables. As the size of the problem increases, this method cannot be used, and a 
method called Simplex Method is used to obtain an optimal solution. 

In case of any formulated optimization problem, one of the three cases may arise. These three 
cases are: (i) m = n, (ii) m > n, and (ii) in < n. If the number of decision variables n is equal to 
the number of constraint equations m, the problem has a unique solution, if it exists, and it is said 
that there can be no optimization in this case. If m > n, then there would be m-n redundant equations 
which could be eliminated. If m-n equations are not redundant, it has a solution only in least square 
sense. The case m < n corresponds to an undetermined set of linear equations which, if they have 
a solution, will have an infinite number of solutions. The problem of linear programming is to find 
one of these solutions which satisfies our constraints and yield the optimum value of the objective 
function. In case of m < n, we can set (n-m) variables equal to zero and solve the m equations for 
m variables. These solutions will be basic solutions as (n-m) variables which have been set equal to 
zero represent nonbasic variables. However, there will be °Cm  such solutions. 

If in a particular problem, the number of decision variables, n = 20, and the number of 
constraints, m = 10, then the number of possible basic solutions will be 20C10  = 20!/[(20-10)HOU 
= 184756. Hence to solve this problem, 184756 solutions will be required to be obtained and 
compared. This is formidable task even with the help of a fast digital computer. 

A very efficient method was developed by Dantzig which is called the Simplex Method. The 
simplex method is an efficient iterative procedure for solving linear programming problems expressed 
in standard form. In addition to the standard form, the simplex method requires that the constraint 
equations be expressed as a canonical system from which a basic feasible solution can be readily 
obtained. The simplex method begins with this basic feasible solution. Once a basic feasible solution 
is available, attempt is made to improve it till the optimal solution is not obtained. 
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The equatiOns containing only the slack variables can be automatically considered as canonical 

system and these slack variables as basic variables. However, in many cases, it is observed that 

finding a canonical system with a basic feasible solution is not an easy task. One way to obtain a basic 

feasible solution is to arbitrarily choose the basic variables and use a technique like Gauss Elimination 

to get the solution. Another approach, but systematic, of getting a canonical system with a basic 

feasible solution is the use of artificial variables. The artificial variables are added in those equation 

in which no basic variables appear by inspection. An auxiliary objective function is formed which is 

equal to the sum of artificial variables. This method is called two phase simplex as we have two 

objective functions. The first phase aims at minimization of the auxiliary objective function. If as a 

result of this phase, this function can not be made zero then the problem is infeasible and the 

algorithm is terminated. If the auxiliary objective unction is zero, then the optimization of the main 

function is taken up. 

9.1 Computational Steps of the Simplex Method 

The computational steps of the simplex method in tableau form are as follows: 

Express the problem in a standard form. 

Start with an initial basic feasible solution in canonical form and set up the initial tableau. 

Use the inner product rule to find the relative profit (or cost) coefficients (Ci). The inner 

product rule states that the relative profit (or cost) coefficient of the variable x3  (C1) is 

obtained by subtracting the product of the row matrix consisting of profit (or cost) coefficients 

(C1) of basic variables and the column matrix consisting of transformation coefficients (au) 

corresponding to x3  in the canonical system from the actual profit (or cost) coefficient 

corresponding to the variable xi. If all the relative profit coefficients are negative or zero, the 

current basic feasible solution is optimal for a maximization problem. Otherwise, select the 

nonbasic variable with the most positive Ci  value (highest value) to enter the basis. For a 

minimization problem, all Ci  should be positive or zero at the optimal point. In this case, the 

nonbasic variable with the most negative Cti  value (lowest value) is selected to enter the basis. 

The decision is arbitrary in case of a tie. Let this variable be xr. The value of the objective 

function can be also computed by multiplying the row matrix consisting of profit (or cost) 

coefficients of basic variables and the column matrix consisting of right-hand side constants. 

Apply the minimum ratio rule to determine the basic variable to leave the basis. The 

minimum ratio rule is that for this variable (xr), take (b1/a1) ratio for-each constraint row i 

(for those constraints only which have +ve air  values), and the minimum ratio determines the 

row in which the basie variable will have unit coefficient. The corresponding variable from 

this row (which was a basic variable) will leave the basis. The constraint row corresponding 

to the entering basic variable is known as pivot equation and the element located at the 

intersection of the entering column and pivoting row is known as the pivot element. 

Perform the pivot operation to get the new tableau in canonical form, and a new basic feasible 

solution is obtained from this form. 

Go to step 03 and repeated the steps until an optimal solution is found. 
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If during the simplex iterations, the value of one or more basic variables become zero, it is 

termed as a degenerate solution. In such an event, there is no assurance that the solution will improve 

further. Sometimes, the degeneracy is temporary, and the solution improves after a few iterations. 

The Simplex method, when used for a large problem requires considerable computer time and 

storage. Some techniques have been developed which require lesser time and storage. Among these 

techniques, the Revised Simplex method is the most popular in which the time and storage is saved 

by manipulating only selected entries of the Simplex Tableau. 

9.2 Illustrative Example 2 
The problem illustrated under section 8 (Example 1; Eqs. 26-30) is again solved here using 

the simplex method to demonstrate the step by step procedure of this method. Writing this problem 

in the canonical form by introducing slack variables, x3, x4  and xs,: 

Max Z = 2 x1  + x2  

subject to: 

...(31) 

2x1  - x2  + x3 = 8 ...(32) 

x i  + x2 +x4 =, 10 ...(33) 

x2 +x5 = 7 ...(34) 

x i , x2, x3, x4, xs  0 ...(35) 

In this problem, the values of n and m are 5 and 3, respectively. Hence, there will be three 

basic variables which could he chosen arbitrarily. In this case, the variables x3, x4  and x5  can be 

considered to he basic variables, and thus the problem is in the canonical form. This finishes Step 0, 

let us go to Step 0. The initial basic feasible solution will be x1  = 0, x2  = 0, x3  = 8, x4  = 10 and 

xs  = 7. The initial Simplex Tableau is formed as follows: 

Tableau 1 

Cj  2 1 0 0 0 

RI-IS 

C. 

xi  . X2 X3 X1 X5  

2 -1 1 0 0 8 

1 1 0 1 0 10 

0 

2 

1 

1 

0 

0 

0 

0 

1 

0 

7 

Z = 0 

Here, one should notice that the contents below the dotted line are not the part of the initial 

Simplex Tableau. The bottom row separated by the dotted line shows the value of the relative profit 

or cost coefficients corresponding to the variable xj  (Ci  ). It is computed as stated in Step 0. Since, 

two values of relative profit coefficients are not either negative or zero, this is not the optimal 
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solution. We have to improve the basic feasible solution. For this, we see that the value of relative 

profit coefficient is maximum for xi  variable, thus xi  will enter the basis. This finishes the Step ED. 

Now moving to Step 0, since row 1 gives the minimum (hi/air) ratio, the variable x3  will leave the 

basis. Thus, the row 1 is the pivot row and the number 2 in this row is the pivot element. This 

finishes Step 0. 

Coming to Step 0, all the coefficients in the pivot row are divided by the pivot element, and 

it, is eliminated from all rows except row I. To make the coefficient of xi  unity, row 1 is divided by 

2. To eliminate xi  from the second row, the row I is multiplied by -1/2 and is added to the second 

row. In row 3, already xi  variable is not appearing. After performing these operations, a new Simplex 

Tableau is formed as follows: 

Tableau 2 

g i 1 o o o 
RHS 

X i  x2  x3  x 4 X - ' 3 

1 -1/2 1/2 0 0 4 

0 3/2 -112 1 0 6 

0 1 0 0 1 7 

Ci  0 7 -1 0 0 Z = 8 

This new table shows the constraints in canonical form, and thus the improved basic feasible solution 

is x i  = 4, x, = 0. x3  = 0, x4  = 6 and x5  = 7. This finishes Step 0, and now we move to Step M. 

Again, from the Table 2, it is clear that this solution is not an optimal solution because all C1  are 

not either negative or zero. Thus, we again repeat the process. A close inspection of Tableau 2 shows 

that variable x, will enter the basis and variable x4  will leave the basis. Therefore, a new tableau is 

again formed with row 2 as the pivot row and the number 3/2 in this row as the pivot element. The 

new tableau is shown below: 

Tableau 3 

Ci  2 1 0 0 0 

RHS 

CI  

x i  x2  x3  X4 X5 

1 0 1/3 1/3 0 6 

0 I -1/3 2/3 0 4 

0 

0 

0 

0 

1/3 

-1/3 

-2/3 

-4/3 

1 

0 

3 

Z = 16 

Tableau 3 shows that all relative profit coefficients are either negative or zero. Thus the 
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optimal point has been reached and the computations are terminated. The optimal value of the 

objective function is 16 and the optimal solution is x1  = 6, x2  = 4, x3  = 0, x4  = 0 and xs  = 3. 

9.3 Interpreting Simplex Tableau 

The final simplex tableau, besides giving information about the optimal solution, also contains 

other useful information. From the simplex tableau given above, one can readily determine that the 

values of basic variables are x1  = 6 & x2  = 4 and the value of the objective function is 16. The value 

of non-basic decision variables at the optimum point is zero except x5. The values of optimum slack 

variables are ignored because they do not affect the decision to be taken. However, if a slack variable 

is a basic variable at optimal stage, the corresponding constraint is nonbinding and the corresponding 

resource is abundant. Otherwise, the constraint is binding and the resource is scarce. Note the RI-IS 

coefficients can be viewed as resource constraints, especially the 5 type constraints. 

The simplex tableau also contains information about the per unit worth of a resource, which 

is also known as its shadow price. This information is useful while fixing priorities about allocation 

of funds for various resources. The shadow price of a non-binding resources is zero while it is non-

zero for a binding constraint. The per-unit worth of a resources is given by avab,, i= I, 2,...., in. - 

Any change in the availability of the resource corresponding to the binding constraints will change 

the optimum solution. The value of per-unit worth of a resource can be obtained from the final 

tableau in the objective function row under the starting basic feasible variables. In the example above, 

the per-unit worth of resources for the constraints no. I, 2, and 3 are 1/3, 4/3, and 0, respectively. 

This implies that an increase of availability of resource I by one unit will lead to increase in objective 

function value by 1/3 units. 

10.0 DUALITY IN LP 

Associated with every LP problem (termed as the primal problem), there exists another 

problem known as the dual problem. The dual problem is formulated by transposing the rows and 

columns of the primal problem including the right-hand side and the objective function, reversing the 

inequalities and maximizing instead of minimizing. 

Consider the following problem (Primal problem): 

Min Z = CT  x ...(36) 

Subject to: 

Ax b ...(37) 

x 0 ...(38) 

Then the problem 
Max Z' = bT y ...(39) 

Subject to: 

AT  y C .. (40) 
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y 0 ...(41) 

is termed as the Dual problem. Here y is a column vector (m x 1). To write a dual problem, it is 

necessary to write the primal problem in a particular way. In a minimization problem, all the 

constraints must be written in form and all the constraints of a maximization problem must be 

written in 5 form. For example, let the primal be: 

Min z = xi  + x2 ...(42) 

ST xi  + 2x, 5 ...(43) 

2x1  + x, 4 —(44) 

xi , x2 0 ...(45) 

then the dual is 

Max zi  = 5y1  +4y2 ...(46) 

ST y l  + 2y2 I ...(47) 

2y1  + y2  5 I ...(48) 

Yt• Y2 ° ...(49) 

10.1 Relationship Between Primal and Dual Problems 

Some interesting relations exist between a primal problem and its dual. They are: 

I. The dual of the dual is the primal. 

If primal is a minimization problem then dual is a maximization problem. 

If dual has a finite solution, then primal also has a finite solution. 

For each variable in primal, there exists a constraint in the dual and vice versa. 

If any variable in the primal is unrestricted in sign, then the corresponding constraint in the 

dual is an equality constraint and vice-versa. 

If the primal has unbounded solution, the dual has either unbounded solution or is infeasible. 

In the final solution (if it exists), if any constraint in the primal problem is satisfied as 

equality, the corresponding dual variable will have a value greater than zero, and vice versa. 

The dual variables, y. are also termed as simpleR multipliers. Lagrange multipliers, shadow 

prices, marginal costs Or opportunity costs. If a constraint is viewed as a resources constraint, the dual 

variable gives the marginal value of relaxing the constraint. It shows the change in the objective 

function per unit change in the RHS at the optimum, all other things remaining same. Further, if the 

problem contains large number of constraints, it is more efficient to solve the dual since, in general, 

an additional constraint requires more computational effort than an additional variable. The solution 

procedure for a dual problem is on the similar lines as for a primal. However, in the case of primal 

simplex, feasibility is maintained throughout while the dual simplex starts with an infeasible solution 

while maintaining optimality. 
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The dual problem of cost minimization may be viewed as a product maximization problem. 

Where the product is maximized by varying the y variables, the imputed cost of each constraint. 
These implicit values are the shadow prices of constraints. They define the marginal value of the 

contribution of each constraint to objective function, say how much more output can be obtained by 
relaxing a constraint by one unit. If price of a resource is less than its shadow price, it is desirable 

to buy that resource and expand the production. The value of slack variable at optimum solution 
indicates cost, in terms of lowering the output, of using any activity which is not included in the 

optimum solution. 

11.0 POST OPTIMALITY ANALYSIS 
Many times it is necessary to study the variation in the optimal solution resulting from the 

variations in the various parameters such as the cost coefficients, technological constants, or due to 

addition/deletion of variables or constraints etc. The study of the change in optimal solution due to 

these changes is known as the post optimality analysis. The following type of parameter changes affect 
the optimal solution: 

Changes in the RHS constants of constraint equations. 

Changes in the objective function coefficients. 
Changes in the coefficients in the constraints. 

Addition of new variables. 

Addition of new constraints. 

Due to these changes, the optimal solution may change in the following ways: 

The optimal solution remains unchanged. 

The basic variables remain the same, but their values change. 
The basic variables as well as their values change. 

In most of the cases, it is not necessary to solve the problem from the beginning, and the final 

simplex tableau can be used to get the requisite answer. 

12.0 IMPORTANT CLASS OF LP PROBLEMS 
Many day-to-day linear programming engineering problems have some unique features which 

allow the use of special techniques for solution. Some of these are briefly discussed below: 

12.1 Transportation Problem 
The objective of a transportation problem is minimization of the cost of transporting a certain 

commodity from a number of origins to a number of destinations. This problem can also be 

formulated as a regular LP problem and solved using the simplex method. However, its special 

structure allows a more efficient and convenient procedure for its solution. 
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12.2 Network Flow Problems 

A network is a configuration which consists of nodes joined by directed arcs. Each arc can 

support a flow. Associated with each arc are three parameters: a lower bound on the flow, an upper 

bound on the flow, and a cost value which represents the expense to be incurred in moving one unit 

of flow along the arc. A circulation is a set of flows in the network which preserves conservation of 

flow at each node. This means the total flow into a node must equal the total flow out of the node. 

The objective of a network flow optimization algorithm is to generate a circulation in the 

network which minimizes the total system cost (defined as the sum of the flow in each arc times the 

arc expense) subject to the capacity restrictions on the flow in each arc. Thus, problems can be 

written as: 

Minimize 1.3  C1 x1 ...(50) 

ST xi  < ui ...(51) 

Xin = Xout ...(52) 

where, xi  = flow in arc i, C = cost value for arc i, 1 = lower bound on arc i, u = upper bound 

on arc i, xin  = sum of flows into node], and ;int  = sum of flows out of node]. 

The out-of-kilter algorithm (OKA) is a general method for generating the optimum circulation 

in a capacitated cost network. To accomplish this, the OKA begins with any circulation, then 

maintaining a circulation in the network, it changes flows in an attempt to achieve the objective 

without violating any of the continuity and limit constraints. The OKA establishes a pricing system 

which assigns a price to each node. 

12.3 Computer Codes for LP Problems 
Now-a-days. very efficient computer packages are available for solution of LP problems 

which make the use of this technique very attractive. Other topics of interest in linear programming 

include the transportation problem and the assignment problem. For more on the linear programming 

and other optimization techniques, readers may refer Rao(1979) and.Taha(1976). 
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