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RESERVOIR SIZING - LINEAR PROGRAMMING 

1.0 INTRODUCTION 
A reservoir is constructed to change the temporal and spatial availability of water of a stream. 

Since the natural flow in a stream varies in quantity with time and it seldom follows the demand 
pattern, it is essential to store the water when the availability is more than the requirements and 

release it from storage when the situation reverse. 

The objective of this chapter is to present a few simple Linear Programming based 
formulations to determine the optimal size of a reservoir given inflows, demands and other relevant 
data. It is assumed that the reader is familiar with the basic concepts of LP. After understanding this 
chapter, the reader would be able to apply the LP technique to the reservoir sizing problems. 

2.0 LINEAR PROGRAMMING TECHNIQUES FOR RESERVOIR SIZING 
Let us consider a situation in which a reservoir is to be constructed at a particular site. 

Monthly inflow data for past n months is available. The projected demand of water during a critical 
year is known along with its distributions among each month. The losses from the reservoir are 
neglected for the time being. The problem is to find out the minimum capacity of reservoir which will 
supply the required quantity of water without failure. Let X be the annual water demand from the 

reservoir and ai, i = 1,2  12 be its fractions for different months. Hence the demand in a 

particular month will be ai  X. Let Ii  be the inflow to the reservoir during the ith  month and Ri  be the 

water actually released from the reservoir. 

Representing by Si  the storage content of the reservoir at the beginning of month i, the 

continuity equation is: 

Si  + - = Si+1 i=1,...n ...(1) 

This equation has to be satisfied for each of the n months and hence we shall have n such 
equations which will be constraints in the formulation. The value of Si  is given as input. 

It is also required that the amount of water actually released from the reservoir must be more 
than or equal to the amount demanded. This can be mathematically expressed as 

ai  X i = 1 , n ...(2) 

Since this condition also must hold for each month, there will be n such constraints. 

If the capacity of the required reservoir is C then in any month, from physical point of view, 
the storage content of the reservoir must be equal to or less than this value. Hence 

C Si i = 1,2....n (3) 
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Moreover, the storage Si  capacity C and release Ri  can take only positive values. This 
completes the problem formulation. The problem is quite easy to solve particularly due to availability 
of standard package programs. 

3.0 LINEAR DECISION RULE FOR RESERVOIR DESIGN 

The Linear Decision Rule (LDR) for reservoir design was proposed by Revelle, Joeres and 
Kirkby (1969). The simplest form of LDR is 

R = S - b ...(4) 

where R is the release during a period of reservoir operation (say a month), S is the storage at the 
end of the previous period and b is a decision parameter chosen to optimize some criterion function. 
This rule is to be interpreted as an aid to the reservoir operator's judgement in selecting a release 
commitment to be honored under normal conditions. In exceptional cases, however, the actual release 
during the time period might have to differ from the commitment R. For example, the optimal value 
of the decision parameter b might be negative, so that commitments might be made to release more 
than was in storage at the beginning of the time period. Under normal circumstances, this 
commitment might be perfectly feasible, but the it may become infeasible in the event of insufficient 
inflow during the period. 

The LDR is intuitively appealing in its structure and can be easily applied in practice. 
However, a linear decision rule might not be the best rule for any given system. A power rule, a 
fractional rule, or some combination thereof with different rules for each period might yield a better 
value of the criterion function. But such rules frequently lead to unwieldy problems that are 
exceedingly difficult to solve. Formulations utilizing the linear decision rule have been examined for 
mathematical tractability and have been found in many cases to lead to linear programming problems. 

The linear decision rules can be applied in two frameworks : (1) the deterministic framework 
where the magnitude of each input in a sequence is specified in advance, either from historic records 
or from synthetic generation based on the statistical properties of the streamflow process, and (2) the 
stochastic framework where the magnitudes of reservoir inputs are treated as random variables 
unknown in advance. 

3..1 Reservoir Design - Deterministic Approach 

A dam is to be built to provide a regulated outflow for irrigation, waste dilution, water 
supply, and other uses and to provide pools for recreation and flood control. The intent of the dam 
builder is to provide a dependable supply for the downstream users. At the beginning of each time 
period, he will make a commitment to release a total volume of exactly Ri  during the ith time period, 
as far as reasonably possible. The downstream users can consider this release commitment in 
planning their activities for the time period. 
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The projected requirements of the downstream users are expressed by minimum acceptable 

releases M1  to be supplied in period i. To prevent excessive channel erosion, flooding and other 
damage that would occur if the release were too large, the release during period i should not exceed 
the volume f. Another set of requirements is imposed by the other uses of the reservoir. For 
hydropower generation, recreational and esthetic purposes, it is desirable to maintain the storage in 

the reservoir above a lower limit Smin  during all time periods. An additional requirement imposed 
by flood control considerations is that a freeboard of at least vi  be available at the end of each period 

for storing floods that might occur in the next period. 

The problem is to find an operating policy (a guideline for the release R.;  ) that causes the 

requirements to be satisfied while minimizing the size, and hence the cost, of the dam required. 

Let a sufficiently long time-series of monthly inputs is available. It is required to find twelve 
linear decision rule parameters, one for each month of the year, that minimize the reservoir capacity 
required to meet the specified performance characteristics with the postulated input sequence. The 

linear decision rule is 

Rt  = St_i  - —(5) 

where, Rt  release during the month t of operation, St  storage at the end of the month t of 

operation, and bt  is the linear decision rule parameter for the ith month of the year. These are to 

be determined by the linear decision rule. The continuity equation for the reservoir is 

St  = St_ t  - Rt  + It —(6) 

where It  is the expected reservoir input in the month t of operation. All variables are expressed in 
volumetric units. Substitution of the linear decision rule into the continuity equation yields 

St  = b1  + It —(7) 

Substituting a similar equation for St.1  into the decision rule yields the following expression 

for the release during period t : 

Rt = 1:11-1 - —(8) 

The engineering specifications on release commitments and storage utilization can be 
expressed mathematically by treating them as limitations on the range of decisions acceptable at each 
point in time at which decisions are to be made. The constraints take the following form : 

The freeboard C - St  at the end of period t must be greater than Vi. 
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C - St Vt (t = 1,...n) (9) 

where Vt  is the flood storage capacity required at the end of the ith month of the year and C is the 
reservoir capacity, to be determined. In the deterministic sense this is equivalent to saying that the 
decision at the beginning of time period t should not lead to insufficient freeboard at the end of t, 
given the extremes of the hydrologic record. The longer the record in general the more severe the 
observed extremes and the lower the probability of violating the constraints in practice. 

The storage at the end of period t must be greater than or equal to the minimum storage 
required. 

St Strut, (t = ...(10) 

In terms of the decision to be made at the beginning of period t, the constraint limits the 
control function to those linear rules which lead to storages exceeding Stntn, given the extremes of the 
hydrologic record. The longer the record the smaller the likelihood of observing a worse extreme 
and hence violating the constraint. 

The release in period t must exceed M, the minimum release for the ith month. 

12, Mi (t = 1 ..... n ) ...(11) 

The release in period t must be less than ft  which is the maximum allowable release in the ith 
month of the year. 

Rt fi (t = 1,...,n) ...(12) 

These last two constraints further limit the range of decision rules which can be considered. 
Substitution of equations 7 and 8 into 9 to 12 yields 

C - I); Vt  + It  
1)1 S.t. - It  
14_1  - Is4 t  - 
bt_ t  - bt  5 ft  - It_ t  (t = 1,2,...,n) 

The variables M, f, V, and b are indexed by a parameter i = 1, ..., 12 because their values 
in the ith month are the same from year to year. The variables!, R, and S, however, do not follow 
a regular cyclic pattern and therefore are indexed by the parameter t = 1 ..... n where n is the number 
of periods for which data are available. The correspondence between i and t is, i = t(mod 12). 

This problem has a number of constraints; if twenty years of monthly data are considered, 
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there will be 960 constraints. A noteworthy property is that each constraint appears in the same form 
twenty times, except for a different stipulation on the right-hand side. Of each constraint's twenty 
appearances then, one occurrence should be more restrictive than any other. Only this dominant 

constraint need be retained. 

In the final constraint set, the term Smm  is set equal to some fraction of the total capacity and 

the term So, the initial storage, is some different and larger fraction of the capacity 

Sum, = am. C 

So  = ao  C (ao a 1 ) 

The constraint set now becomes 

C - bi max ( 11+12n) V1 

amC - bi  5 min ( 1 + 12n 

14.1  - 131 - min (c1+12) 

tin bt MI - min (r12+12n ) 
aoC - 1)1 MI  

- bi - max ( +12„) 

biz bt - max ( 112.+12n) 
ao  C - bi f1  

(i= 2,...,12) 

The total number of constraints is now 50 rather than n*8 encountered earlier. The number 
of unknowns is 13. The objective is to minimize the size of the reservoir. 

Minimize C 

The problem is finding the smallest reservoir that will deliver flows in the specified range 
over the entire record under the added constraint of a linear decision rule. The results of solution will 
be the required reservoir capacity and the twelve decision parameters constituting the decision rule 

for management of the reservoir. 

The above constraints ensure that the release and storage requirements would be met if this 
optimal linear decision rule were applied to the postulated input sequence. In practice, however, 
future reservoir inflows are not known with certainty, so there is no absolute assurance that this policy 
will yield the desired releases and storages in the future. On the contrary one may estimate that in 
each month i there is a probability of 2/21 that the input will lie outside the 20-year recorded range 
of inputs. Consequently in the absence of any information to the contrary one might expect that in 
each future month the probability of violating some of the constraints also would be 2/21. 
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These observations indicate two shortcomings of the deterministic formulation. First the 
deterministic formulation yields no explicit statement of the reliability with which the reservoir will 
meet the specified performance objectives in the fixture. Second the reservoir's reliability is fixed by 
the specific postulated input sequence and is not under the direct control of the designer. Chance-
constrained programming can be used to eliminate these deficiencies in the deterministic formulation 
of the reservoir management problem. 

sx. 

3.2 Reservoir Design - Chance-constrained Formulation 
The above problem will now be presented in the stochastic environment. Here, the flows in 

particular periods are not specified and are known only with some probability. Thus the total 
discharge in the ith month of the year is treated as a random variable Xi  having the cumulative 
probability distribution function 

Fxi(r) = P[ Xi 1] 

In addition the constraints are now expressed as limitations on the allowable risk of violating 
the performance requirements. 

Although formally identical to the deterministic formulation, the probabilistic representation 
of the flood freeboard requirement has several advantages. Most important the chance-constrained 
formulation comes squarely to grips with the impossibility of absolutely ensuring the specific 
performance of a reservoir fed by random inputs. In a way, this formulation attaches a statement of 
reliability to the mathematical representation of each performance requirement. Moreover, the level 
of reliability at which each requirement is satisfied is under the direct control of the designer. 

A related advantage of the probabilistic formulation is that it clarifies the operational 
significance of the decision rule. In the deterministic formulation, one might interpret the linear 
decision rule as a specification of the actual reservoir outflow during the next month. In practice, 
however, this interpretation may lead to confusion when it is recognized that excessively large or 
small inflows during a month may make it physically impossible to release a specified volume. Vie 
probabilistic formulation on the other hand emphasizes that the linear decision rule is merely aniid 
to the operator's judgement in deciding how much to release during a month. If the rule is followvi, 
the release commitment will be compatible with the reservoir performance requirements with a 
specified degree of reliability. When a conflict does arise, however, the operator has the ability to 
adjust the actual release in the light of the specific conditions of the case. 

Finally the chance-constramed formulation of the performance requirements seems to permit 
more direct economic interpretation of the constraints than the deterministic formulation. For 
example, it might be asked if there would be any advantage in changing the flood control performance 
requirement. The form of this requirement suggests that the specified freeboard Vi  is based on 

hydrologic analysis of a standard design flood and that more detailed physical and economic data on 
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the relation between flood damages and the flood freeboard are not readily available. Thus the 
designer cannot immediately interpret the marginal costs that the deterministic formulation would 
associate with changes in the freeboard specification Vi. In the probabilistic formulation, on the other 
hand, the marginal costs are associated with changes in the reliability with which the specified 
freeboard is made available and hence with changes in the reliability of protection against the design 
flood. The economic consequences of changes in the reliability appear clearer than those of changes 
in the freeboard specification. 

The fundamentals of the linear decision rules have been in the above. The LDR has been the 
subject of intense debates. It has been modified, extended and criticised by a number of investigators. 
For further details, the reader may refer to the text by Loucks et. al. (1981). 
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