TRAINING COURSE

ON

RESERVOIR OPERATION

(UNDER WORLD BANK AIDED HYDROLOGY PROJECT)

Module 12

Economic and Financial Analysis

of

Hydropower Projects

BY

U C Chaube, UOR

NATIONAL INSTITUTE OF HYDROLOGY ROORKEE - 247 667, INDIA

ECONOMIC AND FINANCIAL ANALYSIS OF HYDROPOWER PROJECTS

1.0 INTRODUCTION

A project is justified from a national economic view point if it has positive net economic benefits, provided that the services of such a project are considered of high enough priority for implementation compared with the use of valuable resources for other purposes. The results of an economic analysis do not, however provide sufficient information on financial viability during the course of each project's actual construction and operation. The main differences between financial and economic analysis of a hydropower project are highlighted in Table 1.

Item	Economic analysis	Financial analysis
Focus	Net returns to Society	Net returns to equity capital or to private group or individual.
Purpose	To justify investment on basis of appropriate economic criteria (B/C ratio, annual cost, internal rate of return)	To determine the needs for financing the project and handling the flow of costs, revenues and subsidies during operation.
Period	Period of analysis based on project life, economic life	Period for capital recovery based on terms of financing. Usually it is less than period of economic analysis.
Discount rate	Opportunity cost of capital, social time preference rate	Marginal cost of money, market borrowing rate. It depends on type of financing e.g. bank loan, general bonds, credit rating of sponsor.
Inflation	Effect of inflation on increase in cost & benefit is not considered	Effect of inflation on prices is considered on a year by year basis.
Equivalence	Weighing and discounting technique are used to obtain annual equivalent value of costs and benefits over period of analysis	Analysis carried out on year to year basis considering inflation, price and interest rate variations.
Prices	May require 'Shadow prices' (e.g. monopoly in markets, external effects, overvalued currency, unemployment factor)	It is assumed that markets are perfect or that administered prices have compensated for imperfection.
Taxes	Part of total societal benefits	Cost of production.
Subsidies	Part of total societal costs	Source of revenues.
Loans	A transfer payment; transfer a claim to resource flow	Increase capital resources available.
Interest or loan repayment	A transfer gayment	A financial cost; decreases capital resources available.
Benefits	Hydropower benefits are based on cost of alternative (with similar capacity and annual energy)	Revenue of hydropower project is based on actual sale contracts. Dependable capacity is an important issue.

Table 1: A Comparison of Economic and Financial Analysis

Training Course on Reservoir Operation

NIH, Roorkee

2

2.0 ECONOMIC ANALYSIS OF SMALL HYDRO PROJECTS

Following features affect the economic and financial feasibility of small hydro-electric projects:

- \Rightarrow In general, it has high installation cost per kW,
- ⇒ Other purposes (irrigation, flood control etc.) are not combined with small hydro project,
- ⇒ Generally, it is considered non-essential project,
- ⇒ It has little or non peaking capacity and generally it is run-of-river type,
- ⇒ It has less transmission cost due to proximity to load consumption centre.

Small hydro project's economic evaluation is based on benefit/cost ratio. Benefits of small hydro are :

- ⇒ Sale of capacity and energy accruing out of firm capacity and energy in the project.
- Savings accruing in costs of fossil fuel and oil in thermal power plants due to displacement by hydro generation.
- Savings accruing on account of energy losses in transmission from central station up to the area being served by the proposed hydrostation.

In economic evaluation, present value or annual equivalent value of all the benefits accruing over the life time of the project is considered.

The power being sold has an energy value and a capacity value. If project has capacity to meet energy requirements during the peak load requirement of the purchaser, the energy generated has a capacity value. The capacity value is determined by calculating the cost savings of the purchaser by not constructing or postponing other generation plants to meet peak power requirements. The energy value of the project (if capacity value is absent in the project) is the cost of energy produced from an alternative project.

The cost of a small hydro project consists of :

- (a) Operation cost (labour, water),
- (b) Maintenance cost (labour, repair, lubricants, consumables),
- (c) Replacement cost (plant equipment) (sinking fund),
- (d) Taxes, and
- (e) Insurance.

As load factor increases, the O & M costs increase due to more wear on the machines. Other costs are fixed regardless of load factor and have a decreasing cost per kilowatt hour generated as the load factor increases.

In economic analysis, uncertainty lies in estimation of life of project components, cost of project, escalation rates and value of energy at a future date. Therefore, sensitivity analysis is an important part of economic evaluation.

2.1 Economic Analysis of Hydropower As A Component of Power System

Scope of power development is governed by the increase in the regional demand. We have to plan for extension of the system capacity such that the lowest annual cost of energy is obtained. Hydro plants, steam plants, gas plants, nuclear plants are alternative units of increment. Choice of an alternative for inclusion in energy system will depend upon cost comparison of energy system with and without the alternative.

When hydropower is a component of multipurpose river valley project, it is necessary to have an estimate of power benefits. In such case, hydropower benefit is measured in terms of the cost of power from alternative source most likely to be used in the absence of multipurpose project. The alternative project could be a single purpose hydropower project or a plant using other fuel. The cost of alternative should be based on entire energy system design.

Value of firm hydro	=	Cost of alternative source Cost of capacity + Cost of annual energy generation - transmission cost and losses
Value of secondary hydro	=	additional cost of alternative source for such generation
Indirect benefits	:	due to additional economic activity in the region
Intangible benefits	:	comfort and convenience due to power and conservation of non-renewable resources

A storage type hydroplant helps in regulated releases in downstream. Benefits due to regulated releases should also be included as benefits of hydro project.

Steps:

- (1) Project the power capacity requirements for different years.
- (2) Work out the most economic sequence of various projects (Thermal, Hydro, Nuclear etc. including the multipurpose hydropower) project that will meet the capacity requirement in different years. Call it sequence A.
- Work out the most economic sequence of various projects without including the multipurpose project. Call it sequence B. In order to find the most economic sequences in step (2) and step (3), one may have to investigate some dozen alternative sequences.
- (4) Find the total annual cost figures of both the sequences.

NIH, Roorkee

- (i) Interest + depreciation on all plants with exception of multipurpose project,
- O & M cost of all plants completed during period of analysis + variable O & M cost on the remainder of system completed before period of analysis,
- (iii) Annual cost of fuel for the entire system.
- Note: The sequence with the hydropower component of multipurpose project (sequence A) should not include any cost of hydropower. The sequence without the hydrocomponent of multipurpose project (sequence B) should include all system costs. The annual costs will differ from year to year.
- (5) Find the difference in annual cost of the two sequences.
- (6) Calculate present worth of the difference in annual costs. This is the benefit of the hydrocomponent of the multipurpose project.
- (7) To find benefit-cost ratio of hydro component, cost of hydro component will have to be evaluated. This will be equal to separable cost of hydro component (power plant, turbines, penstock) + allocated cost (dam spillway etc).

3.0 GOVERNMENT OR INDUSTRIAL SPONSOR - SALE TO REGIONAL UTILITY

In this example, the hydroelectric plant whose parameters are indicated in Table 1 is considered to produce all its energy for sale to a regional electric utility. The annual costs of \$176,389 in Table 1 are composed to \$148,167 in fixed costs for capital recovery over a 20-year period and \$28,222 in variable costs for operation and maintenance. These components are based on the charges of Table 2 applying to a public sponsor or a private sponsor having equivalent borrowing terms and tax concessions. As shown by Table 2, the costs for a private sponsor not having these advantages would be much higher.

Table 3 assumes that the variable costs (which are subject to inflation) increase at 7% per year and that the selling price for energy starts at 2 cents/kwh and escalates at 8.5% per year. For each year except the first, the total revenue exceeds the total costs and the net revenue (or "profit") is positive. In this example applying to a public project, the favourable financial results are obvious. In an example where unfavourable results persist for a number of years before net revenues are achieved, the overall financial results may be examined in terms of present value. The computations are shown in the last two columns of Table 3.

The present values shown in the last column of Table 3 were obtained using a discount rate of 7%. It may be desirable to carry out the computation of net present value with higher discount rates, in order to recognize two problems in the estimates : (1) the uncertainties of the future net revenues, when inflation is included ; and (2) the lower values of these escalated future net revenues in terms of constant dollars.

1.50 mW
0.15 mW
\$800 per kW
\$1,200.000
\$1,411,100
0.62
8,146,800 kWh
\$176,389 (12.5% of investment cost)

Table 1: Parameters for a Typical Small Hydroelectric Site

Table 2: Annual Costs as a Percentage of Investment

Cost Component	Private Project	Public Project
Cost of money	 Fixed Charges 14.00 	7.00
Amortization	1.00	2.50
Property taxes	5.00	(not applicable)
Replacements	0.50	0.50
Insurance	0.50	0.50
Total fixed charges	21.00%	10.50%
Supplies and services	Operating Costs 0.40	0.40
Maintenance	0.90	0.90
Salaries	0.45	0.45
Office expenses	0.15	0.15
Miscellaneous	0.10	0.10
Total operating costs Total annual cost	2.00% 23.00%	2.00% 12.50%

Note: This table is based on a 20-year period of financing. Amortization is based on a sinking fund with interest at the cost of money.

Training Course on Reservoir Operation 12 - 5

\$1,598,925			Net present value =	Net pre			6428.	
147,988	0.258	573,595	830,973	0.102	257,378	109,211	148,167	
142,296	0.276	515,566	765,799	0.094	250,233	102,066	148,167	
134,835	0.295	457,068	700,624	0.086	243,556	95,389	148,167	
130,959	0.316	414,428	651,744	0.080	237,316	89,149	148,167	
i22,772	0.338	363,232	594,716	0.073	231,484	83,317	148,167	
. 115,768	0.362	319,802	545,835	0.067	226,033	77,865	148,167	
110,255	0.388	284,162	505,101	0.062	220,939	72,772	148,167	
102,751	0.414	248,190	464,368	0.057	216,178	68,011	148,167	
101,10	0.444	220,051	431,780	0.053	211,729	63,562	148,167	
91,020	0.475	191,622	399,193	0.049	207,571	59,404	148,167	
82,764	0.508	162,922	366,606	0.045	203,684	55,517	148,167	
72,878	0.544	133,967	334,019	0.041	200,052	51,885	148,167	
65,719	0.582	112,920	309,578	0.038	196,658	48,491	148,167	
57,100	0.623	91,654	285,138	0.035	193,484	45,317	148,167	
46,738	0.666	70,177	260,698	0.032	190,521	42,354	148,167	
40,338	0.712	56,654	244,404	0.030	187,750	39,583	148,167	-
26,520	0.762	34,803	219,964	0.027	185,161	36,994	148,167	
17,079	0.816	20,930	203,670	0.025	182,740	34,573	148,167	
6,021	0.873	6,897	187,376	0.023	180,479	32,312	148,167	
\$(12,579)	0.935	\$(13,453)	\$162,936	0.020	\$176,389	\$28,222	\$148,167	
Value	Factor ^d	INCL REVEILUE	Revenue	kWh ^c		Costs ^b	Costs ^a	Year

2 F しょう Table 3. Comparison

Training Course on Reservoir Operation

NIH, Roorkee

Economic and Financial Analysis of Hydropower Projects

e

^dPresent value factors for 7% interest rate.

^cPrice escalation at 8.5%