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ABSTRACT 

The three point variable parameter Muskingum-

Cunge method envisaged by Ponce and Yevjevich is based on 

the concept of relating the physical diffusion with the 

numerical diffusion at every routing time level which is 

achieved by averaging the discharges and the wave 

celerities at both the inflow and outflow sections of the 

previous time level, and at the inflow section corres-

ponding to present time level. It has been found that 

this method is able to reproduce the St.Venant's solution 

for a given inflow hydrograph and for a given channel 

reach closely than the constant parameter Muskingum-

Cunge Method. Another variable parameter Muskingum 

flood routing method proposed by Perumal is based on the 

concept of linear variation of flow depth along the reach. 

Like variable parameter Muskingum-Cunge method, in this Method 

also, both the- parameters can be varied at every routing time level, but 

still adopting the linear form of solution. In this 

report the solutions of both these methods have been 

compared with the St.Vanant's routing solution for a given 

inflow hydrograph and the given channel reach. The results 

show that the variable parameter Muskingum method developed 

by Perumal performs better than the variable parameter 

Muskingum-Cunge method developed by Ponce and Yevjevich. 
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1.0 INTRODUCTION 

Numerous one dimensional flood routing models 

with varying complexities are available in literature. 

These models range from conventional Muskingum method 

to the model based on complete solution of St. Venant's 

equations which fully describe the one dimensional 

flow in channels and river reaches. Simplified hydrau-

lic models belong to the class of models derived by 

solving the continuity equation and the simplified 

momentum equation which is obtained by curtailing 

or approximating some of the terms present in the 

the momentum equation of the .St. Venant's equations, 

using the criterion of order of magnitude of these 

terms with reference to the bed slope. The convection-

diffusion equation, kinematic wave equation, and the 

variable parameter Muskingum method developed by 

Perumal (1987) are the examples of such simplified 

models. These sim plified models are non-linear in 

nature as the parameters involved in these models 

which characterise the flow phenomena vary with time 

and magnitude of flow. These simplified models are 

reduced to linear form by fixing the parameters about 

a reference discharge. Thus the parameters involved 

in the non-linear simplified models are kept constant 

in the case of linear models while simulating the 

flood wave movement.The linearised St. Venant's equa- 
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tion porposed by Harley (1967), the linearized convection-

diffusion equation of Hyami (1951), the Kalinin-Milyukov 

method (Kalinin-Milyukov,1958), the linear Kinematic wave 

equation, and its approximations proposed by Cunge (1969) 

and Koussis (1976) are examples of such models. 

It has been found that these linear and non-

linear simplified models are sufficient for planning pur-

poses, flood forecasting, preliminary design of hydraulic 

structures etc. Therefore attempting the solution of full 

St.Venant's equations for all purposes is a overkill of 

available computational facilities in the sense that infor-

mation at numerous locations along the routing reach are 

produced while they are required only at limited locations. 

Simplified models give the required information only at 

desired locations without involving much computations when 

compared with the solutions of full St. Venant's equations. 

Although the highly developed mathematical tools 

for the analysis of linear systems have rendered linear 

models attractive choices in flood hydrology (Koussis and 

Osborne, 1986), the adoption of complete linear models, 

wherein the parameters are kept constant for the entire 

event of flood wave movement, does not represent the real-

istic system. Ofcourse, the wide use of constant parameters 

simplified hydraulic models such as Kalinin-Milyukov, and 

Muskingum-Cunge methods in practice demonstrate that the 

accuracy of routing results is not severely affected. 

2 



However, this aspect has not been conclusively proved for 

all circumstances of flood wave movement. The constant para-

meters of these models are estimated based on the assumption 

that the flow variations take place around a reference dis-

charge. This limitation produces distortion, in the predicted 

outflow hydrograph when wide variations in the flow variable 

are considered. Keefer and McQuivey (1974) state that if 

the model is linearized about a high discharge, the low flows 

arrived too soon and are over damped and if it is linearized 

around a low discharge the peaks arrived late and are under 

damped. 

The most desirable way the non linearity in the 

flood routing process may be taken into account is to use 

such a model that remains linear at one time level, but the 

linear characteristics may change from one time level to 

another time level. Thus the parameters involved in the model-

ling vary from one time step to another time step jOst as 

the flow variable involved in the phenomena. This concept 

has been adopted by Ponce , Yevjevich (1978) & Koussis (1978) 

while they applied the Muskingum method based on the diffusion 

analogy principle. Whereas Ponce and Yevjevich (1978) consi-

dered the variation of both K and 0, the travel time and 

weighting parameter respectively of the Muskingum method, 

one time step to another, Koussis (1978) considered the varia-

tion of K only keeping U constant. Recently Perumal (1987) 

has developed a variable parameter Muskingum method with 

parameter K and 9 varying from one time level to another time level with 

the solution procedure remaining linear. 
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This report is concerned with the evaluation of 

the performance of some variable parameter simplified 

hydraulic models in reproducing the St. Venant's solutions. 

The models considered are the variable parameter Muskingum-

Cunge method (Ponce and Vevjevich, 1978) which is considered 

to be one of the best simplified model available to-date 

(Koussis and Osborne, 1986), and the variable parameter 

Muskingum method proposed by Perumal (1987). 
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2.0 REVIEW 

In this section, only those flood routing models 

which take into account the nonlinearity of the routing 

process by remaining in the linear solution domain at any 

time level, but varying the flow characteristics from one 

time level to another time level have been reviewed. It is 

well known that the routing process is nonlinear in nature 

and therefore flood routing models with variable coefficients 

can be expected to perform better. It has been shown by 

Keefer and McQuivey (1974) that if the inflow hydrograph 

into a channel reach is considered in several blocks with 

each block having its own reference or linearizing discharge 

then the convolution of these inflow blocks with the corre-

sponding unit hydrographs of the channel reach developed 

based on the reference discharge of each block yield routed 

hydrographs comparable well with the observed hydrograph, 

than that routed hydrograph obtained based on the con-

volution of the inflow hydrdgraph with the unit hydrograph 

corresponding to a single reference discharge for the entire 

inflow hydrograph. This envisages the need for adopting 

variable parameter routing models. 

Koussis (1978) developed a variable parameter 

Muskingum method based on the diffusion analogy principle, 

using the same concept as adopted by Cunge (1969), with 

constant weighting parameter 8 and varying travel time K. 

Koassis (1978) has found from hi,s experience that El is not 
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varying considerably with discharge, but K varies with 

discharge. Koussis varied the value of K at each time step 

by averaging the travel speed of the flood wave estimated 

at the upstream and downstream sections of the reach by 

introducing the correction in the rating curve at the 

respective sections using "Jones formula" (Henderson, 1966) 

as given below: 

=  Qn(1 1 
 

CSo bt 

in which, 

= the discharge at a section during unsteady 
flow 

Q • the normal discharge at the same section n corresponding to  the  flow  depth y observed 
during unsteady flow 

the travel speed corresponding to discharge 
Q at a section 

notation denoting time 

By iteratively solving equation (1), the travel speed at 

the upstream and downstream sections may be obtained corres-

ponding to each time level of the Muskingum method solution. 

Koussis (1978) estimated the outflow discharge Q, using the 

following expression obtained by assuming linear variation 

of inflow over the routing time interval At: 

Q2 = C1 I2 + C'I + C'Q 2 1 3 1 
  (2) 

Wherein the coefficients C1' C2 
and C3 are given as: 

C' = 1 — Ic (1 — 2) 
St 
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C = (1 -13) - S and 2 at 

C' 3 = 

e-At/K(1-8) Where p = 

Following the same approach of Cunge (1969),Kows.isis estimated 

the parameters a and K in terms of Channel and flow charac-

teristics by relating the numerical diffusion with the 

physical diffusion. The form of the parameters so estimated 

are given as: 

a = - At/K  

ln(2c1-1±11t/K  where A+1- At/K'  

A Qo  

and 

BS CLK -0 

Qo = Reference discharge. 

K =Ax/C 

The symbols B andAx represents respectively, the channel 

width and reach length. The estimation of discharge at the 

outflow section requires one more iteration procedure using 

equation (2) besides the iteration required for the correc-

tion of rating curve at downstream section for the estima-

tion of travel speed based on the loop rating curve. There-

fore it can be realized that although the Koussis procedure 

is physically based, it involves tedious iterative computa-

tions. 

Ponce and Yevjevich (1978) suggested a simple 

variable parameter method based on the Muskingum-Cunge 

procedure. Usually the routing time interval being fixed, 
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dQ 
dA 

I j,n 
in which Q = discharge; A = flow area; 

, 

and ox and So  are specified for each computational cell 

constituting of four grid points, as shown in figure (1), 

their method involves the determination of flood wave 

celerity and the unit width discharge, q for each computa-

tional cell. The values of cand q at grid point (j,n) are 

defined by: 

At 

O.  n? 
Ax 

Fig. 1- SPACE TIME DISCRETIZATION OF MUSKINGUM METHOD 

The following ways of determining c and q were investigated 

by.Ponce and Yevjevich for the computation of variables 

8 and K of Muskingum-Cunge method for each time level: 

directly by using a two point average of the values 

at grid points (j,n) and (j+1,n); 

directly by using a three point average of the 

values at grid points (j,n), (j+1,n) and (j, n+1) 

and 

by iteration, using a four point average calculation. 
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They concluded that three point and four point 

iterative schemes of varying c and q yield better results 

and both are comparable. In view of iterations involved 

in four point scheme, it may be considered that three point 

average procedure is desirable for use in practice.Besides, 

this method is also much simpler than the method suggested 

by Koussis (1978). Recently Koussis and Osborne (1986)have 

concluded that the four point iterative routing scheme does 

not offer any advantage over the three point scheme. This 

conclusion is in agreement with the findings of Ponce and 

Yevjevich (1978). However both Ponce and Yevjevich's(1978) 

and Koussis (1978) approaches for varying the parameters of 

the Muskingum method at each routing time level are arbit-

rary and not based on the methematics of the Muskingum 

method solution. 

Recently Perumal (1987) has presented a variable 

parameter simplified hydraulic method based on the approxi-

mation of the St. Venant's equations for routing floods, 

without considering lateral inflow, in channels having uni-

form rectangular cross-section and constant bed slope. 

The method was develope.dby assuming that the friction slope 

Sf 
is constant at any instant of time over the channel 

routing reach, and by adopting the concept that during 

unsteady flow there exists a one to one relationship, 

at any instant of time, between the stage at the middle of the 

routing reach & the discharge downstream of it. The form of tha,governing -equa-

tion for obtaining the solution is same as that of Mtslaingum method which is given 
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( ( 8 ) 

 ( 9 ) 

Y3 1 v3 + 2Y3 

I - Q = d dt K [Q + B 

in which, 

K = ox 

  

— ( [3 4 B 

as: 

and 

    

     

     

     

4 2 [ 1 - -9- F (1 _ 2ym )21  

 

 1 B + 2ym  

 

 (10) 

 

s0B, -4(  Ym  
B + 2ym 

) I vmAx 

 

where 

4 F2 1- -9 ( 1 -  2ym  )2 

B +2ym 
Q   ( 1 1 ) 

Cm _ 
 
ax 

S B[ 5  - 4 illn 1 
0 3 3 (B + 2ym) vm  

The symbols y3, v3  and 03  respectively denote the How depth, 

velocity and discharge at section (3) which is located downstream 

of the mid-section of the reach where the discharge during unsteady 

flow is uniquely related with the flow depth at mid-section of the 

reach, and Ym  and VM represent the flow depth and velocity at mid-

section of the reach during unsteady flow. F is the Froude number 

corresponding to flow at the mid-section of the reach. The definition 

sketch of the reach considered in this study is shown in fig. 2. For 

wide rectangular channels equations (9) and (10) reduce to: 
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STEADY STATE WATER SURFACE® 

SECTION CC) : CORRESPONDS TO THE INFLOW POINT 

SECTION ©-® : CORRESPONDS TO THE OUTfLOW.  POINT 

SECTION 0-0 CORRESPONDS TO THE POINT WHERE 
THE DISCHARGE Ge IS UNIQUELY RELATED 
WITH THE STAGE AT THE MIDSECTION 
OF THE REACH 

FIG.2- DEFINITION SKETCH OF THE REACH UNDER 
CONSIDERATION 
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Ax  
K = 5 v  v3  

1 1/2(1/2 -1)Gm + [  
Ia. [  3 

Gm  

e = - Q3 
S B (a v )A‘x 3 m 

...(13) 

when neglecting the terms G
m, Gr-a,  etc., 0 reduces to 

4 2 Q3  = 1 
...(14) 

It was shown that when the variables are fixed corresponding 

to a reference discharge value Q
o' 

Ax  
K 5 ...(15) v vm  

and 4  
Q0(1  - F2) 

0 . 1 _ ...(16) 2  
25 B(A v )Am 3 o 

The above expression for K and e were obtained by Dooge 

et al. (1982) based on linear St. Venant's solution 

approach, for the case of constant parameters Muskingum flood 

routing method. When the rectangular channel is not wide and after 

and 

2 250B v m)Ax 3  
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eliminating Gm  , Gm 
2, ....etc. K and 0 reduce to: 

 Ax 

5 4  
[3 3 ( 

Y3 

B Vi + 2y3  

2ym  
ymQ3[1 - F2 

  2 
(1 ) 

 
B + 2ym 

= 2  
1 

    

250[1 - 
Ym  

)] QmAx 

 

B + 2y 

The developed method employed equations (17) and 

(18) for routing floods in four different channel having 

prismatic rectangular cross-section with different constant bed slopes 

and Maludng's roughness cttfficients, and the results were carpared with 

the =responding St. Vextrt's solutions. three different solution appro-

aches were used for routing floods in each channel corresponding to a 

nNKh length 40 km. These approaches consist of considering the entire 

40 km. length as a single reach and obtaining the solution by varying 

9 and K; considering the entire 40 km. length as a single reach but obtain-

ing the solution by varying K and keeping 9 constant; and 

considering the 40 km reach consists of 8 equal sub-reaches 

and obtaining the solution by successively routing through 

these reaches by varying both 0 and K. It was found that 

the last solution approach was able to reproduce more closely 

the St. Venant's solution of both stage and discharge hydro-

graphs when compared with the other two approaches. 
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The study also brought out the theoretical reason 

for the reduced outflow in the beginning of the Muskingum 

solution and suggested the needed remedial measure to avoid 

it. Also it was shown using the developed theory that for 

Muskingum method the maximum value of 8 is 0.5 and its 

negative value is admissible. 

Cothparision of variable parameter Muskingum-

Cunge method of Ponce and Yevjevich (1978), and the variable 

parameter Muskingum method proposed by Perumal (1987) indicate, 

in general, that the latter is able to reproduce the stage 

hydrograph information also, which the former cannot do as 

part of the developed procedure. 
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3.0 PROBLEM DEFINITION 

It is required to compare the solutions of the 

variable parameter Muskingum-Cunge method developed by 

Ponce and Yevjevich (1978) and the variable parameterMusldngu 

method developed by Perumal (1987) with the St.Venant's 

solntions obtained for a given inflow hydrograph and the 

given rectangular channel reach with different bed slope and 

Manning's roughness coefficients. It is assumed that there 

exists no lateral inflow or outflow within the reach under 

study. 
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At + 2K(1 - e) 

Where, at is the routing period. In the 

C3 2K(1 - 9) - At    (22) 

Muskingum-Cunge 

4.0 METHODOLOGY 

The variable parameter Muskingum-Cunge method 

introduced by Ponce a-id Yevjevich (1978) and adopted 

herein for the comparison of its solution with the variable 

parameter Muskingum method developed by Perumal (1987) 

is -described below: 

4.1 Variable Parameter Muskingum-Cunge Method: 

The Muskingum method solution is given as: 

= a C1  I 1  + C2Im  + C3Qm m+1 m+ (19) 

whece 

QM+1 = outflow at time (m+1)At 

m+1 - inflow at time (m+1) 

= inflow at time mAt 

Qin = outflow at time mat 

The coefficients 01, C2  and C3  are gi&en as: 

Cl =Zit - 21<0   (20) 

At + 2K(1-0) 

C2 =  At + 21(9  
at + 2K(1-0) (21) 

versionithe parameters K and 9 are calculated as (Ponce and 

Yevjevich, 1978): 
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42! 
  (23) 

0 = 1 ( 1 -  Qo  
SoBC Ax 

 (24) 

in which,Ax = reach length;C = flood wave celerity; Q0  = 

reference discharge; So 
= channel bed slope; B = channel 

width. The above expression for & has been derived for 

wide rectangular channel cross section. 

4.1.1. Variable Parameters 

Usually,tt is fixed, and tx aad So  axe specified 

for each computational cell consisting of four grid points 

as shown in figure 3. 

m+1 

At 

Qm  

FIG.3 SPACE-TIME DISCRETIZATION OF MUSKINGUM 

METHOD 

The reference discharge Q0  and the wave celerity C 

required at time (m+1 )At are computed respectively by 

taking the three point average of Im, Im." and Qm  and 

17 
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dl 
I I 

_di as follows (Ponce and Yevjevich, 
dA 

and dQI 
m dA m+1 dA m 

1978): 

(20 I M-Fl 

 

(25) 

   

3 

  

dQ 
dAl m+1 

= di dQ 
TK TA- m+1 dA lm 

3 

.... (26) 

4.2 Variable Parameter Muskingum Metlacd Proposed by Peiamal. 

The theoretical basis behind this method is described else-

where (Penal. 1987). In this section only the procedure for the 

application of the method is described. 

4.2.1. Solution procedure: 

The initial parameter values for K and 9 viz., Ko  

and 90 were evaluated using equations (17) and (18) respec-

tively. Using these parameter values, the coefficients of 

the conventional Muskingum method were evaluated as: 

Cl 
 

-K s = 0
8 

 0 

K (1- eo) + At/2 
.... (27) 

C
2 = K e0  

Ko  (1 -90)+At/2 
.... (28) 
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C3 
Ko (1-90 ) -4t/2 

.... (29) 

 

K (1-9 ) + At/2 o 

Then the discharge Q2  at the outflow section 

denoted as section 2, corresponding to inflow 12 is deter-

mined using Muskingum equation as: 

Q2 = C112+ C2I1 + C301 .... (30) 

where, 

12 = inflow ordinate at the beginning of the current 

routing time level 

I1 = inflow ordinate at At time units ahead 

of the current routing time level 

outflow ordinate atat time units ahead 

of the current routing time level 

Knowing 12  and Q2  , the discharge at section (3) as depicted 

in figure (3) was evaluated as: 

03 = Q2 + % (12  -Q2), .... (31) 

Corresponding to this discharge, the normal depth at the 

middle of the reach was evaluated using Newton-Raphson 

method based on the normal depth discharge relationship as: 

43 . 85/35 12 5/3 
Ym  

- n ' .r1 
(84-217m

TT 
(32) 

)'
,7 

   

Then the discharge at the middle of the reach was evaluated as: 

Qm = (12 + 02)/2 .... (33) 
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Knowing Qm, ym, Q3  and F
2
, the new 8 was computed using 

equation (18) corresponding to Q2. The flow depth at section 

(3) was evaluated as: 

Y3  = ym
* (Q

3
_Q
m

% I 
7 i( 5 _ 3 4 ( Ym 

Qm  
3   

The velocity v3  at section (3) was computed as: 

1/3  Q3  
By3 

 (35) 

. Knowing v3  and y3  and the distance of routing reach Ax, 

the new travel time K was computed using equation (17). 

These revised K and 0 values were used for the 

next step of solution corresponding to the new input ordi- 

nae. These steps were repeated for the entire solution 

procedure, thus varying the values of K and G at every 

time step, but at the same time adopting the linear solution 

procedure. The flow depth at the outflow section corres-

ponding to the solution Q2  was computed as: 

Y2 = Ym (02-9M) /[5 - 4 Yin  
7 3 (B+2ym) 6

1ti] ....(36) 

The procedure described above correspond to the variable 

parameter Muskingum method developed by Perumal (1987). However, the 

stage hydrograph which can be developed using equation 36) 

has not been attempted herein as only the discharge can be computed by 

the variable parameter Muskingum-Cunge method for the purpose of comcarisol 
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5.0 APPLICATION 

The performance of the variable Parameter Muskingum- 

Cunge method (VPMC) proposed by Ponce and Yevjevich (1978), 

and the variable parameters Muskingum method proposed by 

Perumal were compared by reproducing the St.Venant's solu-

tions obtained by routing floods in a given rectangular 

channel for a given inflow hydrograph assuming the flow 

follows Manning's friction law, and there is no presence of 

lateral inflow or outlow in the channel. This section 

describes the test series adopted including inflow hydro-

graphs, channel geometry and flow resistance properties, 

and criteria adopted for comparing the performance of these 

two methods. 

5.1 Test Series: 

The test approach for comparing both methods under 

consideration is to use hypothetical inflow-outflow hydro-

graphs. Accordingly a hydrograph defined by a mathematical 

function is routed through the given channel for a specified 

distance using St.Venant's equation, which govern the one 

dimensional flow in open channels, and thus the 'observed' 

outflow hydrograph at the end of the specified distance 

is established. Now the same inflow hydrograph is 

routed in the same channel using each of the method for 

the same specified distance, and the resulting respective 

routed hydrographs are compared with the corresponding St. 

Venant's solution. The criteria for comparision based on 

the reproduction of various characteristics of outflow hydro- 
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graph are defined at section 5.2. The logic behind the 

use of hypothetical inflow-outflow hydrographs for 

verifying such methodologies has been already established 

(Kundzewicz, 1986). 

5.1.1 Inflow hydrographs: 

In order to get a better understanding on the 

performance of both the routing methods considered herein, 

it was decided to use the same inflow hydrograph for 

all the test runs. The hypothetical inflow hydrographs 

defined by a four parameter Pearson type-III distribution 

which is expressed by the following equation was adopted 

in this study: 

   

-t/tp) 
e (1-1) 

 

Q(t) = Qb  + (4 - 
P 

t (T-1) 
) ( E  ) .... (37) 

where, 

base flow = 100 m3/sec 

= peak flow = 1000 m3/sec 

time to peak = 10 hours 

= Skewness factor = 1.15 

This hydrograph was adopted by Weinmann (1977) 

based on the consideration of steepness of hydrograph 

and magnitude of initial flow. The same hydrograph was 

also used by Perumal (1987) for testing his variable para-

meter Muskingum method both for rectangular, and trapezoidal 

channel cross section reaches. The hydrograph based on 

equation (37) is shown in all the discharge hydrograph plots 
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presented in this report. 

5.1.2 Channel geometry and flow resistance properties: 

The rectangular channel with the width of.  50 m was 

used for all the test runs and the routing computations 

were tested for their performance on four different channel 

configurations which are characterised by the following bed 

slope and friction values as given in Table-1. 

TABLE -1 CHANNEL CONFIGURATIONS 

Channel Type Bed Slope Manning's n-value 

 0.0002 0.04 

 0.0002 0.02 

 0.002 0.04 

 0.002 0.02 

These configurations were earlier adopted by 

Weinmann (1977) possibly due to the reason that the first 

two configurations represent a worst case for which the 

approximate routing procedures are expected to perform poorly, 

and the last two configurations represent the best case for 

which they are expected to perform well. The same config-

urations were used also by Perumal (1987) in testing his 

variable parameter Muskingum method for rectangular and 

trapezoidal channel cross section reaches. 
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Four test runs as indicate in Table-2 were made 

for comparing the performance of both VPMC method, and the 

variable Parameter Muskingum Method proposed by Perumal in 

reproducing the corresponding test run solutions, of St 

Venant's equations. In all the runs, the routing time 

interval Lit was considered as 15 minutes in order to avoid 

any numerical error in the solutions using equations (19) 

and (30). The solutions were obtained by considering the 

single reach for all runs. 

'TABLE - 2 TEST RUN DETAILS 

Test 
Run No. 

Channel Reach 
type length in 

km. 

Bed 
slope 

Manning's 
n-value 

1 1 40 0.0002 0.04 

2 2 40 0.0002 0.02 

3 3 40 0.002 0.04 

4 4 40 0.002 0.02 

5.2 Comparison Criteria 

The following comparison criteria were adopted for 

checking the effeciency of both methods viz, the VPMC, and 

the Variable parameter Muskingum method proposed by Perumal 

in reproducing the St.Venant's solution for the given 

rectangular channel and the given inflow hydrograph: 
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5.2.1 The hydrograph fitting consideration_ 

The closeness with which the solutions of both 

routing methods, follows the true solution i.e. the St.Venant's 

solution, including the closeness of shape and size of 

hydrograph, can be measured using the criterion of variance 

explained by each of the method. The expression for variance 

explained in % is given as: 

Total variancae - Remaining variance  
Variance explained in % - ..(38) 

Mytal variance 

where, 

the total variance = (Qo. - 0 • )
2 

ira ca 
....(39) 

the remaining variance= 
N 

LX CO •  N i=, oi - ci )2  ....(40) 

Q . the ith discharge observation 

oi 
mean of the observed discharges 

Q  ci 
the ith discharge computed using the method under 

 
consideration 

the total number of discharge ordinates. 

5.2.2 Magnitude of flood peak consideration 

Relative error in peak discharge in % is given as: 

QPE 
( -Q pc po 

4p0  
x 100 (41) 

Where, 
c = the computaed peak outflow discharge by 

p 
the method under study 

the observed peak outflow discharge 
Po 
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5.2.3 Time of peak consideration: 

Error in time of peak discharge (hours) is given as: 

where, 

TPQE = t (Q ) - t (Q ) PC po ...(42) 

(Q ) 
PC 

(Q ) 
po 

time corresponding 

charge 

time corresponding 

discharge 

to computed peak dis-

to observed peak 

5.2.4 Conservation of mass consideration: 

The relative error in the flow volume in percentage 

of the total inflow volume is expressed as: 

Qci 1i EVOL = i=1 1=1 x 100 

13. 

the ith inflow discharge 

26 
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6.0 RESULTS AND DISCUSSION 

Table 3 presents the results of variance explained, 

relative errors in peak discharge, errors in time to peak 

discharges and the relative error in flow volume for all 

4 test runs made in this study for the purpose of comparing 

the performance of VPMC method proposed by Ponce and Yevjevict 

(1978) and variable parameter Muskingum 

Perumal (1987). Figures 4 to 7 show the 

the outflow hydrographs computed by these two routing methods 

and the respective St.Venant's solutions for test run Nos. 

1 to 4 respectively. It is seen from these plots that the 

performance of the variable parameter Muskingum method pro-

posed by Perumal is better able to reproduce the St.Venant's 

solutions when compared with the VPMC method proposed by 

Ponce and Yevjevich (1976). 

It is seen from Table 3 that the variance explained 

by Perumal's method is always greater than that by VPMC 

method. The variance explained by the Perumal's method for 

run Nos. 2-4 was more than 99%, and for run No.1,itwes97.28%.The 

corresponding gehieforrunno. 1 of VPMC method was87.21% only. 

The conservation of mass is maintained well by 

the Perumal's method as seen from Table 3. In all the runs 

the volume difference created west:10.51 %. But compara-

tively in the case of VMPC method the conservation of mass 

was not satisfied. The volume computed by this method was 

always more than the total inflow volume supplied. The 
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conservation of mass by this method was poor in the case 

of test run No.1, with the computed volume exceeding the 

total inflow volume by about 16%. 

It can be seen from table-3 thattlnerroducden-  of 

peak flows and time to peak by both models are comparable 

with the observed values. 

The overall poor performance of the VPMC method 

over the Perumal's method may be attributed to the reason 

that the variation in the parameters from one time level 

to another time level is achieved in a rational manner in 

the latter case while it is not so in the former case. The 

approach of averaging the wave celerities and the reference 

discharges by theformer method as given by equations (25) 

and (26) is arbitrary. 

An added advantage of Perumal's method is that it 

can also produce stage hydrograph as part of the developed 

procedure. This aspect is important for flood forecasting 

purposes. 

However both these method do not perform well for 

run No. 1 i.e. when the bed slope is very small and channel 

roughness is high. But the performance of Perumal's method 

is better than the VPMC method in this case. 

But when the bed slope increases and bed roughness 

decreases, both methods reproduce the St. Venant's solutions 

closely, with the performance of variable parameter Muskingum 

method proposed by Perumal (1987) being better than that 

of Ponce and Yevjevich (1978) always. 
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7.0 CONCLUSIONS 

It is concluded from this comparative study of 

variable parameter Muskingum-Cunge method proposed by Ponce 

and Yevjevich (1978) and the variable parameter Muskingum 

method proposed by Perumal (1987) that the latter is able 

to reporduce the St. Venant's solution hydrograph more 

Closely than the former, especially with regard to the 

characteristics of overall reproduction of the hydrograph 

and the conservation of mass. 
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