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1.0 Introduction 

A mathematical groundwater flow model has been described here 

to find the exchange of flow between a partially penetrating river 

and a homogeneous infinite aquifer. The model takes into account 

the changes in river stage ,and effect of pumping well. Given the 

values of aquifer parameters, the tranemieeivity and the storage 

coefficient, the saturated thickness below the river bed, 

saturated thickness far away from the river, the perimeter of the 

river , the model Lau predict the exchange flow rate 

between the aquifer and the river reaches consequent to passage of 

a singitror-teveral —Successive floods and pumping by several 

wells. 

2.0 Statement of the Problem 

A schematic section of a partially penetrating river in a 

homogeneous and isotropic aquifer of infinite areal extent is 

shown in Fig.1, The aquifer is initially at rest condition. Due to 

passage of a flood, the river stages change with time. The changes 

are identical over a long reach of the river. Some wells also 

start withdrawing water from the aquifer. It is required to find 

the recharge from the river to the aquifer and the flow from the 

aquifer to the river after the recession of the flood. 

FIG.1 - A PARTIALLY PENETRATING RIVER 

Lecture delivered by Dr.G.C.Mishra, Scientist 'F', NIH, Roorkee.  



3.0 Analysis 

The following assumptions are made for the analysis: 

hie flow in the aquifer is in horizontal direction and 

two dimensional Boussinesq's equation governs the flow 

in the aquifer. 

The time parameter is discrete. Within each time 

step,the river stage, and the exchange flow rate  

between the river and the aquifer are separate constants 

but they very from step to step. 

iiri-tr-Tire exchange of flow between the river and the aquifer 

is linearly proportional to the difference in the 

potentials at the river boundary and in the aquifer 

below the river bed. 

iv) Since the governing differential equation is linear the 

method of superposition and proportionality are valid. 

The differential equation which governs the flow in the 

aquifer is 

0
2s 0

2s 1 Os 
Tat

...(1)  

0x • ay 

where 

s = drawdown in the piezometric sOrface, T = transmissivity of the 

aquifer, and 1 = storage coefficient of the aquifer. 

The aquifer being initially at rest condition, the 

initial condition to be satisfied is : 

s(x,0) = 0 

The boundary conditions to be satisfied are: 

s( ,t) = 0, and at the river aquifer interface exchange of 

flow takes place which depends on the potential difference 

between the river and the aquifer 

Let the time parameter be discretised by uniform time steps. 

Each time step may be 1 hour, one day or two weeks. It is assumed 

that the exchange flow rate within a time step is constant but it 

varies from step to step.Also it is assumed that pumping rate at a 

well is constant within a time step but varies from step to step. 
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the stream is divided into a number at reaches.• The stream 

stage•Tn -a —reach within a time step 15 also assumed to be constant 

but the stage in a reach varies with time step. 

Let us consider the r
th reach. The flow from the aquifer to 

the rth reach is given by 

0
r
(n) = P.(a (n)-Sr

(n)) (2) 
r r 

in which Pr 
is the reach transmissivity c

r
(n) stage of the 

streaM—F4aEll measured from a high datum, Sr 
 (n) is the depth to 

piezometric surface measured from the same high datum. The reach 

transmissivity.is  given by 

0.5w + e 
Fr 

(3) 
r e(0.5e+4b) 

in which w is the wetted perimeter ,e is the thickness of the 

aquifer below the river bed ,b is the width of the river at the 

water surface, L
r 
is the reach length.a

r
(n) is th,?. stream stage 

which is known from observation of the stage. 

At any time S
r(n) is given by 

Sr(n) = sr(n) + So 
(4) 

in which s
r
(n) is the drawdown measured from the initially rest 

water table position. So 
is the depth to the piezometric surface 

below the stream when the stream and the aquifer were at rest 

condition. 

s
r(n) is given by 

s
r
(n) = q (2.-)6 (n-2,-1) 

p=1 2-1 
rp 

I) 
E U (r)6 (n-r+1) 

P=I r=1 P 
 re:" 

(5) 

q (r) is the pumping rate at the pthwell during time step There 

are P number of wells, 0r)  is the flow to the p
th reach during 

time step and there are R number of reaches which are 

hydraulically connected with the aquifer and are receiving water 

from the aquifer. The discrete pumping kernel is g:ven by 
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=-transmissiVity per unit time step , 

(n) (6) 

(3 = T/Ø , 

= storage coefficient , 

-r = distance between the p
th 

rp 
E1(x)= exponential integral 

W 

f ! du 

pumping well aid the r
th reach, 

E1
(x)+1n x = ao+a1 x+a2x +a Y

3+a4x
4
+a5x

5+c(x) (7) 

Ic(x)1 <2 X 10
-7 

ao = 
-.57721 566 a, = .o5519 968 

a .99999 193  a4  = .00976 004 

a2 = -.24991 055 
a5 = .00107 857 

6 (n) 
rr 

i 

=--- t erf1a / (4 (0(n-T ))
1/2  )1erf1b / (4 (0(n-T ))

1 2  )1dT 
epab ' 0 (8) 

Y 2 
2  erf(Y) - Jr e-v  dv - — o 

6-  
rp 

r2 r2 

J  ) CE 
rp)_E  rp / 

2-in1 --1'40n 1 40(n-1) 

rp = distance of the rth reach from the 
th reach. 

Equation (2) now can be written as: 

(n) =  r Co (n)-15 + E qp rp 
(n-1,41) 

r _ r -0 
P=1  r=1  
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+ 7 0
r-1

(r.)6r,r-1
(n-r+1) ( 11) 

1-1 

P n 
F F (.1 ( )6 (n-i 1))1 

0 rp 
P=I 

0 (r) are unknown for all p and all r value. 

Splitting the temporal summation into two parts, one part 

containing the summation up to (n-1)th  time step and the other part 

containing the n
th 

term , 

P n 
-0(n)+ Z 0 (n)6 (1)= 6r

(n)-(S.o
+ V q 6 (n-r+1) 

Pr r 
pc 1 

rp =1 =1 
p rp 

p r 

R n-I 
+ 2 2 0 (r)o (n-y+1) ) (10) 

P rp 
p=1  r=1  

th th th 
r + (r-l) Let the reach, (r 1) reach and reach be 

hydraulically connected,and no exchange of flow takes place 

through other reaches. Hence, 

1 (n) I 45 (1) 3 +0 (n)cS 
 6r,r+1 

(1) 
0r rr 

rr r+ 1 
(1) + 0r-1(n)6r• r-1 

(n)-6
r,r-1(1) r-1 

-= 
P n 

(n)-ISo+ 
q
p rp
(r.)6 (n-r41) 

r 
P=1  r=1  

n-1 
0
r(r)6rr(n-7+1)  

1-71 

+ y 0r
- fl ow  r,r+1 

n-1 

(9) 

Writing the equation for the (r-1)
th reach 
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0 r 4(5 (I) 1 n (11)", (I) 4 ) (1) 
r-I 2 t I r -I,r r-1,r+1 

P n 
= r (n) - fS. v v q (y)6

r-1,p
(n-y+1) r-1 0 

p=1 y=1 

n-1 
E r(r)6r-1,r(n-y+1) 

r=1 

n-1 
E 0 (T)6r-1,r-1 (n-y+1) r=1  r- 

 

n-1 
+ 5r-1 r-I 

 

(11) 

  

Similarly the equation for the (r+1)th  reach is 

 

0
r+1 

rr+-1
+ 

6 r+1,r+1(1) ] + 0r
(n)6

r+1,r(1) + 0 (n)e,
r 1,r-1(1) r-1 

P n 
= or+1(n) - (SC) + 7 V q (r)6

r+1,p
(n-y+1) 

P=1  Y=1 P  

n-1 
E 0 (y)6

r+1,r
(n-y+1) 

n-1 

r
r+1

(y)6
r+1,r+1 (n-y+1) 

n-1 
E (rio (n-r+1) -1 r+1,r-1 

r=1  
(13) 

From equation 11,12,13 the three unknown 0r-1(n), 0r
(n), 

can be solved simultaneously in succession starting r+1 

n-1 
from the first time step. For n=1 the terms E O

r  (r)6, 
 (n-r. 1)=0. 

y=1 

Thus the flow contributed to each reach can be estimated. 
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