
NATIONAL INSTITUTE OF HYDROLOGY
ROORKEE

WORKSHOP
on

GROUND WATER MODELLING - TYSON-WEBER MODEL
(18 - 22 Nov.1985)

LECTURE II

TOPIC
COMPUTER PROGRAMMING VAX-11/780

BY I. SHRI S.K.Jain
2. MRS. DEEPA KraliWiDE

DATE AND
TIME 19.11.85 11.45 A.M. - 1.00 P.N.

19.11.85 - 2.30 P.M. - 4.15 P.M.

FORTRAN ?Roc-4404,1mq

1.0 INTRODUCTION

A computer programme is a set of instructions given

to a computer to perform the desired computations. The

languages which are Used to write computer programmes are

known as programming languages. Nowadays, a number of prog-

ramming languages are available to a user. Some of them are:

FORTRAN (FORmula TRANslation), COBOL (Common Business Orineted

Language), BASIC (Beginners Allpurpose Symbolic Instruction

Code), ALGOL (ALGOrithmic Language), PASCAL etc. In this

course, thediscussion will be limited to FORTRAN language

only. This language was developed by IBivi corporation in

1956 and is the most popular and widely used programing

language.

A computer programme written in a programming language

is called a source programme. To run a source program on a

computer, it is necessary to translate it into machine language

so that it can be understood by the computer. This translation

is done by another program called 'compiler'. The compiler

checks whether the grammer of the language has been correctly

followed or not. If not, it gives diagnostic error messages,

otherwise it translates the source program into object

programme.

Nowadays, a large number of versions of FORTRAN are

available. The version which is being discussed here has

11-2

been developed for VAX-11/7L0 machine and is called VAX-11

FORTRAN.

1.1 FORTRAN Character Set

The following set of character can be used in a FORTRAN

programme: The letters A through Z. and a through Z a

2. The numerals 0 tJ-Irough 9.

3. Special characters:

=9 + 9 / 7,(9

7 9 ° 9 <9 >9 /9

(blank),

11 1
'p 9

& comma, underline

Other printinb characters can occur in a program as holleuith

characters.

2.0 FORTRAN Constants

Fortran constants are of following main types:

Integer constants and Real constants

Integer constants, also called fixed point constants,

arc whole numbers, they do not have any fractional parts. They

may have either a + or - sign. By default, + sign is assumed.

The value of an integer constant must be within the range

-2147483648 to +21474E53647.

Real constants, also called floating point numbers,

are the numbers which have a decimal points.

A real constant can be written as
as a real number

as a real number followed by a decimal exponent
as an integer constant followed by a decimal
exponent.

II-3

A minus si,n must appear befole a negative real cunstant. A

plus sign is assumed by default.'

The real constants can be further classified in several

sub-classes. A REAL* 4 constant occupies four bytes of VAX-11

storage. Typically its degree of precision is seven decimal

digits. The magnitude of a REAL*4 constant cannot be greater
than 1.7E38 and it cannot be less than 0.29E-38 approx.
REAL*8 constant is also called a double precision constant.

On VAX-11, two typos of REAL*8 constants are available: ID-

floating and G-floating. Both these occupy 8 bytes of Via-11

storage. A ID-floating number has a degree of precision of

16 decimal digits and it must lie within the range 0.29D38 •

to 1.7D38 approx. A G-floating constant has a degreu of

precision of 15 dibits and its magnitude must lie within the

range 0.56D-308 to 0.9D308 approximately.

Other. types. of .constants which can be put in this
category are REAL *16, cONPLEX*8 etc.

A logical constant specifies a logical value which can. be

either true.or false. Only following two logical constants

are permissible:

, TRUE.

. FALSE.

3.0. VARIABLES

A variable is a symbolic nape associated with a storage

location. The value currently stored in that location is the

II-4

value of that variable. Similar to the constants, variables

are also classified into data typo based on which, the storage

requirements and the)recision of the variables are determined.

In FORTRAN, by default, all the variable names beginning

with I, J, K1 1,9 M or N are assumed to be integer variables.

Variables whose name begins with any other letter are assumed

t.J be real variables. Thus AREA, VOLUME, TEMP are real variab-

leo while LENGTH, ITEM, NAME are integer variables. A variable

name can have a maximum length of 31 characters but cannot

begin with a numeral.

4.0 FORMAT OF A FORTRAN STATEAENT
be

A Fortran program can/fed to a computer typically either .

through punched cards or interactive terminals. Since the

computer cards used earlier were 80 columns wide the convention

of writing a program as designed to suit them. The same is

followed no,'. In a Fortran statement, first five columns,

LaXthrgOTERdiEofisWt89Rhie.SeEfie continuation of the

statement, columns 7 to 72 are used to write a statement and

73-80 columns are for comments. The letter 'C.' or '*° in the

first column indicates that statement to be comment and is

ignored by compiler. The statements having character 'D' in

the first column are compiled Only when Debug qualifier is

uSed. A statement number can be any integer number in the

range 1 - 99999 . Decimal point and other letters are not

permitted in the statement field. The statements need not be

in sequence and no two statements can have same number.

If a statement can not be completed in 7-72 columns, it

can be continued in the next line by putting. a continuation

mark in the 6th column of next card. Columns 73-80 are

reserved for comments or sequence numbers of the program

and are ignored by the compiler.

5.0 FORTRAN EXPRESSION

An expression consists of combination of single

and multiple variables and/or constants with one or more

operators. Operators specify the computations to be

performed using the values of variables to yield a single

value. Expressions can be classified as arithmetic,

character and logical expressions.

Arithmatic expressions are formed with arithmetic

elements arithmetic operators. Following five operators

are used in Fortran

Operator Function

Addition

Subtraction

Division

Multiplication

** Exponentiation

The last three operators are called binary

operators because they use two arithmetic elements. The

first two operators can be used both as unary and binary

•

II- 6

operators. While evaluating an arithmetic expression,

exponentiation operator gets first precedence, *- and /

get seCond precedence and and - get the third. When two

or more operators of equal precedence appear, they are

evaluated in left-to-right order. The exception is

exponentiation which is evaluated from right to left.

Thus X * * * * Z is evaluated as X * * (Y * * Z).

The required order of evaluation is forced in a program

by using parenthesis. The part of an expression which

is enclosed in a parenthesis is evaluated first and then

the resulting value is used for further computations.

5.1 Rational Expression

A rational expression consists of two arithmetic

expressions or two character expressions separated by a

rational operator which tests for a relationship between

two expressions, The rational operators are 04

Operator Meaning

.Ll. Less `than

.LE. Less than or equal to

.EQ. Equal to

NE. Not equal to

GT. Greater than

.GE. Greater than or

equal to

Besides these, following logical expressions are

II-7

used to perform logical operations

Operator Use Interpretation

.AND. A. AND.B The expression is true

if and only if both

A and B are true.

.OR. A.OR.B The expression is true
if eithur A or B or
both are true

.NOT. .NOT.A The expression is. true
if, and only if, A is
false

6.0 ASBIGNEviENT STATECENT

The arithmatic assignment Statement assigns the

value of the expression on the right of the equal sign

to the numeric variable or array element on the left of

the equal sign. It has the form

V = e

where v is a numerical variable

o is arithmatic expression

The Equal sign means ° is replaced by' For

example statement

I = I + 1

means that the current value of I is replaced by the

previous value plus one. In a valid arithmatic

statement, the entity on the left hand sign must always

be an unsigned variable.

7.0 CONTROL SIATENIENT

In a program, the statements are executed in the

sequence in which they occur. This order can be changed

by use of control statements. The control statements are

discussed here briefly.

7.1 GO TO Statements

Those statements transfer the control within a program

unit. There are following three types of GO TO statements,

Unconditional GO TO statement for example GO
TO 100

Computed GO TO statement for example

GO TO (10, 152 502 100), I

Assigned GO TO statement for example

GO TO 5, (150, 190)

7.2 IF Statements

The IF statements conditionally transfers the

control or executes a statement or block of statements. The

three type of IF statements are as follows:

7.2.1 Arithmetic IF This statement transfers control to

one of three statements depending upon the value of

arithmetic expression. It has the form.

If (e) 312 322 83

where e is an arithmetic expression. The contrcl is

transferred to statement number 812 82 and 33 if the value

of the expression is less than 02 equal to 09 or greater

than zero respectively.

7.2.2 Logical IF Ftateaent

This statement conditionally executes a fortran

statement in the following form.

IF(e) p-)

where e is a logical expression

st is a valid executable fortran 'statement except

a DO statement, an END DO statement, an END statement and

another IF statement.

7.2.3 Block IF statement

Block IF statement conditionally executes blocks of

statements. The statementS used to contruct block are IF

THEN , ELSE IF THEN 9 ELSE and END IF, The END IF statement

terminates the block IF construct.

7.3 DO statement

The DO statement is used to control the iterative

processing where the numbers are iteratively executed

specified number of times. It has the form

DO St v = el, e2 [,e3j

where st is the label of an executable statement which is

the terminal statonent of the DO lu,.p

v is an integer or real variable called the DO

index or control variable. el, e2, e3 are arithmetic

expressions and are called initial, terminal and

increment parameters respectively . If increment

11-10

parameter is omitted, its default value an° is taken,

However, it cannot be zero'.

The rules about the syntax and resting of DO loops

valid for VAX-11 FORTRAN can be referred to in VAX-1

FORTRAN Language Reference Manual.

7.4 CALL statement

The CALL statement executes a subroutine or other

external procedure. It can also specify an argument list

for the subroutine. The example of a call statement is

CALL ADD (x, Y7 1.0, MATR)

where ADD is the name of the subroutine to be called and

X,Y, 1.0, MATR are the arguments.

7.5 RETURN statement

The RETURN statement transfers the cnntrcl from a

subprogram to the program which has called it.

7.5 PAUSE statement

This statement temporarily suspends the program

execution, displays a message on the terminal and awaits

for the reply. It has the form

PAUSE [disp]

where display is a character constant or a decimial

digit stringof one to five digits. By default, the message

'FORTRAN PAUSE' appears on the screen. The command

CONTINUE' can be given to resume the execution, STOP to

terminate the execution or DEBUG to do debugging.

7.6 STOP statement

The program execution is stopped upon encountering

a STOP statement.

7.7 END statement

The END statement signifies the and of a program

unit. It must be the last source line of a program unit.

8.0 Specification statements

The specification statements are non executable

statements that are used to allocate and initialize

variables and arrays etc. The important specification

statements are briefly described hero.

The DACENSION statement defines the number of

dimensions in a subscripted variable or array and the

maximum number of elements in each dimension.

The IlliPLICI1 statement ovorsides the implicit data

type of symbolic names.

The CW4ON statement defines are or more contiguous

areas of storage. This area can be stared by more than

one program units in which the common declaration occurs.

The DMA statement is used to assign initial values to

variables, .arrays, and array elements etc. before the

execution of program.

The PAFtAMETEkt statement assigns a symbolic name to

a constant.

Other statements available in this category .

11-12

include EQUIVALENCE, SAVE, EXTERNAL, INTRINSIC, PROGRAM -

and BLOCK DATA.

9.0 SUBPROGRAMM

These are programme units which can be involved

from another programme unit. The subprogrammes can be

of following three types:

Statement function subprograMmes,

Function subprogrammes

Subroutine subprogrammes

Besides these, a number of subprogrammes are also

supplied with the language by the suppliers and can be

cnlled in a similar manner.

A statement function is computing procedure

defined by a single statement. It has the form of an

assigmcnt statement . The statement function must appear

in the same programme unit in which it has to be used.

The following is an example of a valid statment function:

AREA (RAD) = 3.14 * RAD * * 2

A function subprogralme is a program unit consisting

of a FUNCTION statement followed by a sries of statements.

A function subprogramme returns a single value to the

calling program and this value is assigned to the name

of the function.

A subroutine subprogram° consists of a SUBROUTINE

statement followed by a series of statements which define

IT-13

the computations to be perfaimed.

A CALL statement is used to transfer control to the

subroutine. Upon encountering a RETURN statement, the

control is returned to the calling programme unit. When

the control is transferred t- the subroutine., the values

of the actual argument are associated with the corresponding

during arguments. ENTRY statements can be used to specify

multiple entry points to a subroutine.

10.0 INPUT/OU1PUT statements

These statements are used to obtain input data from

a device and to supply the output data.

The input statements are used to read input data from

a ill or a terminal. Two statements, ACCEPT and READ are

used for this purpose. The ACCEPT statement is used to

read the data from an interactive terminal and the READ

Statement can be used to read the data from a file.

The statements TYPE, WRITE and PRINT are used for

outputting the data. By default, TYPE statement diSplays the

data on an interactive terminal, WRITE statement writes

the data In a file and PRINT statement sends the data for

printing on a printer.

FORKAT statements are associated with I/O

statements and are used to specify the format in which

11-14

the data transfer is te, take place. hiternatively

format free I/0 statement can be uaod in which the

fcrmat Ji data depends dn data type. The FORIgill

statement is n,_.t being discussed here in further

details. The details can be ubto.ined frum Via-11

FORTRAN language Reference 1,1;:nual.

11-15

INTRODUCIION

. The VAX series is DIGITALts family of 32—bit mini—

computer systems. The newest member of the family is VAX-11/780..

Like its companion processor, the VAX-11/780 was designed to

meet the needs of many users with large data bases and increased

processing needs. VAX systems are high performance multi—

programming computer systems which implement a 32.—bit archi—

tecture, efficient paging memory management, and virtual

memory operating system (VMS) to provide excellent applications

performance and essentially unlimited program address,space.

This system is ideally suited for a wide variety of

applications including real time, batch, time sharing, commer—

cial and program development.

The instruction set of processor (KA 780) includes

floating point, fixed point decimal arithmetic and character

string instructions The software system supports programming

languages that take advantage of these instructions to produce

extremely efficient code.

The VAX/VMS virtual memory operating system provides

a multiuser, multi—language programming environment on the

VAX hardware, The floating point instructions and VAX-11

FORTRAN are ideal for real time and scientific computational

environments. The processor executes variable length

instructions in native mode and non privileged PDP-11

instructions in compatibility mode.

11-16

Symbol used and the function of some control keys of VAX-11/780 terminals:—

<RET>
Press the RETURN key. It transmits the current line
to the system for processing.

 — Press the DELETE or RUBOUT key. It deletes the last
character at the terminal screen.

<ESC> — Press the ESCAPE or ALTMODE key.

DCL (Digital Command Language) prompt.

CTRL/C — Hold down the CTRL key and press the character C.

It is used mostly to interrupt the system during
program execution.

Hold down the CTRL key and press the character Y.

It interrupts the command or program execution. It
mostly functions as CTRL/C.

CTRL/Z — Hold down the CTRL key and press the character Z.

It terminates a file input from the terminal.

CTRL/U — Hold down the CTRL key and press the character U.
It deletes the current line.

CTRL/R — Hold down the CTRL key and press the character Rr It
reprints the current line.

CTRL/I — Hold down the CTRL key and press the character I.
Its function is same as TAB key.

CTRL/S — Hold down the CTRL key and press the character S.
It suspends terminal output.

CTRL/Q — Hold down the CTRL key and press the character Q.

It restarts the terminal output that was suspended
via CTRL/S.

— Type a blank.

CTRL/Y —

The NIB VAX-11/780 computer system configuration is

as follows:—

[1] HARPILMI: VAX-11/780 CPU with floating point accelerator.

Two RM03 removable disc drives having 67 M byte

formatted capacity.
Two TE 16, 45 IPS, 800/1600 BPI tape drives.

Two ADM-3A terminals.

One VI 100 terminal.

LA-120 console subsystem.

LA-120 Line printer.

Tektronix 4027 Graphic terminal.

Calcomp Model-31 Color graphics system.

VT-105 terminal.

One RX-11 floppy drive.

—ITVAX/VMS operating system version 3.2 [2] SOFTWARE:

MACRO assembler.

VAX-11 FORTRAN-77.

PLOT-10 IGL.
SSP (Scientific Subroutine Packages)

COBOL-74

HEC Programs.

BASIC—PLUS—TWO

SORT/MERGE routines.

Runoff routines.

11-18

USING VAX-11/780:

To communicate with the VAX/VMS operating system a

terminal connected to the computer is used in NIH Computer

Centre. You tell the operating system what to do;by typing a

command on terminals keyboard. The system responds by

executing your command. If the system can not interpret what

you type, it displays an error message at the terminal.

When the command has been successfully executed, you type

another.

LOGGING IN:

To begin a session at the terminal, you must log in.

Logging in consists of getting the systems attention and

identifying yourself as an authorised user. Before logging in

to the system, the users must have the accounts which is

given by the system manager. He will also give USER NAME

and PASS WORD. The USER NAME identifies a user to the system.

The sequence of LOG IN is as follows:—

Switch on the terminal.

Press <RET> or CTRL/Y.

The system responds by prompting for the user name.

Type your USER NAME and press <RET>,

The system prompts for user Password.

Type your PASSWORD. It will not be echoed on the

terminal.

If the PASSWORD is correct, system prompts with

WELCOME message.

11-19

viii) Now system is ready to accept and valid DCL

command.

The log in sequence looks like this:—

<RET> or CTRL/Y

USER NAME : DAVID <RET>

PASSWORD : DCOD <RET>

WELCOME TO VAX/VMS VERSION 3.2.

4

ENTERING COMMANDS:

You can type the commands using upper or lower case

letters or a combination of both e.g.

$ show time <RET> is a valid command. It displays the current

date and time as follows

1— MAY— 1985 11:50:49

OR

4 SHOW TIME <RET>
OR

$ Show Time <RET> serves the same purpose.

HELP COMMAND:

The HELP command assists the user by displaying command

specific information. The HELP command is a useful inter—

active reference tool for the user not having convenient

access to reference manual e.g. to know about the PRINT

command, use the HELP command as

4 HELP PRINT <RET>

Some information is displayed on the terminal which includes

a synopsis of what the PRINT command does and the qualifiers

of the command along with their default value.

LOGGING OUT:

After finishing the work, the user must give the LOG OUT

command as follows:-

$ LOG OUT <RET>

and the user should wait until he receives the appropriate

message.

Shutting off the terminal does not causes you to LOG OUT.

If a user shuts a terminal without logging off properly,

another user may be able to turn the terminal on later and

use your account.

SOME DEFINITIONS:

1. FILE : -

A file is the basic unit of storage for VAX/VMS.

All user information is stored in files, usually on auxiliary

storage media such as tapes, disks etc. Actually a file is

a collection of logically related data stored on disks or

tapes. A complete file specification contains all the

information the system needs to know and identify a file.

A complete file specification has the format :

Device: [Directory Name] file name. File type: version

e.g.
DRAL: [DAVID] A.FOR: 1

11-21

2. DEVICE

It identifies the physical device on which a file is

stored. Some device names are:

NAME DEVICE

DRA RK03 disk on controller A, unit 0

DRA1 RM03 disk on controller A, unit 1

MTA TE16 magentic tape on controller A, unit O.
MTA1 TE16 magnetic tape on controller A, unit 1.
TTA Terminal on controller A, unit O.

TTA5 Terminal on controller A, unit 1.

Note:— Every-time when a device name is specified as Colon(:)

must follow it e.g. DRAO:, MTA1:, TTA5: etc.

3. FILE NAME:—

The file name is a set of one to nine alphanumeric
characters.

File Type — A file type can be upto 3 alphanumeric characters

and must be preceded by a period. However, the file type

usually describes specifically the kind of data in the file and

the system recognizes several default file types used for

special purposes as follows:

File Type Use
DAT Data file

EXE Executable program Image (after linking)
FOR Input source file for FORTRAN compiler

LIS Output listing from a compiler

MAR Input source file for MACRO compiler

11-22

File Tye

OBJ Object malule output from a compiler.

JOU Journal file which is created if interruption occurs

during the use of EDT editor.

4. VERSION NUMBER:-

The version number distinguishes a file from its other

copies. It is connected to the file type by Semicolon (;)

Whenever a user edits a file, its version number is auto-

mationlly increased.

The system always takes the file with the highest

version number as the default file. It can be overriden

by explicitly specifying version number e.g. If in a directory

the files are A. DAT; 1, A. DAT; 2, A. DAT; 3 and if

4 PRINT A. DAT <RET>

command is given then the file A. DAT.; 3 will be printed.

Here to print a file A. DAT; 1, the command is

$ PRINT A. DAT; 1 <RET>

Use of Wild Card Character:-

IL wild card character (*) can be used within a

directory name, a file name, version no. or a file type.

It can be used to match any number of Characters including

the null string e.g.

$ PRINT *. DAT; * <RET>

will print all the 'DAT; files in the directory. Similarly

$ PRINT)6 A. * * <RET>

will print all the files in the directory whose file name

field is A.

11-23

Abbriviating Commands:-

While'typing the commands or qualifiers always

there is no need to type the full words. In many cases only

one or two characters act as full commands. Here it is

necessary that the user must type atleast the minimum number

of characters necessary to make the command unique. e.g. the

SET, SEARCH and SHOW commands all begin with the letters IS'.
So to make these commands unique, you must type SET. SEA

and SH respectively. Also RUN is the only Command which

starts from the character I RI, so to abbriviate RUN command
can be R or RU.

Error Messages:

If a user Enters a command Incorrectly, the system

displays an error message and prompts for a command line

as if no command had been Entered.

Creating and Running a Simple FORTRAN Program:

The method for creating and running a very simple

FORTRAN Program (A) is as follows:-

Login as described earlier.

Create the file A. FCR using the editor as follows:

$ EDIT)5 A. FOR <RET>

100 ACCEPT 10, ALES <RET >

200 10 FORMAT (5A5) <RET>

300 PRINT 20 <RET>

400 20 FORMAT ("PROGRAM IS WORKING") <RET>
500 STOP <RET>

600 END <ESC>

E <RET>

11-24

Now the file has been created. There may be some syntax

errors in this Program. Such errors can be checked by compiling

the program so give the command as

iii). 4 FORTRAN_ A <RET>

If there is no error than after few seconds $ sign

appears on the screen otherwise the errors are dis-

played on the screen. After successful completion of

the program the object file (A. OBJ in this case) is

created. The object file is necessary before a linker

is used. The method of using the linker is as follows:

iv) $ LINK A <RET>

If the linking is done successfully then $ sign appears

on the screen, otherwise the error is displayed on the

screen. To run the program the command is

RUN)3 A <RET>

After successful running of the program a $ sign

appears on the screen. After which the results can be

checked for the correctness. Now user can give another

commands. This sequence can be explained using the

flowchart shown here.

After running the executable image (A.EXE in this .

case) is created.

Now each time when the program is run there is no

need of compiling and linking it again if A.EXE is

in directory. Only the RUN command is required.

11-25

p_Lbuzaz. FORTRAN Program:

The VAX/VMS operating system has a debugger with the help

of which debugging can be done interactively;While using the

debugger, the program must be compiled with /DEBUG and /

NCOPTIM1ZE qualifiers as follows:

$ FORTRAN/DEBUG/. NGDPTIMIZE A <RET>

These qualifiers make the later use of the debugger program

possible with this FORMAN Program.When the compilation is

complete use the /DEBUG qualifier to link the object module.

4 LINK/DEBUG)5 A <RET>
Now when the RUN command is used to execute the program image

A.EXE, the debugger takes control and the debugging commands

can be used to stop the execution of the program at a parti-

cular statement and examine and modify a variable.

DIPORTANT VAX/VMS COPEANDS

The VAX/VMS command language provides time sharing terminal

users with an extensive set of commands for (a) interactive

program development (b) device and data file manipulation

(c) interactive and batch program execution and cc.ntrol.

'General format of a command is

[$] Command - name [Qualifiers] [Parameter-1]...[Parameter-n]

Where Dollar sign [$] is must for all command procedure

and it is not required for interactive mode because in this

mode the system prompts $ sign. Brackets ([and]) are used to

surround optionalvalues. The qualifier is used to modify

11-26

the default "lotion of a command. A plus sign (+) indicates con-

catanatiOn_of files or parameters. A hyphen (-) may be used for

continuation on the next line.

For -the convenience of the user, important commands are listed

and, described below:-

1.... ALLOCATE.

Format-tALLOCATE device - name [:.] [Logical - name [:33

The ALLOCATE command provides exclusive access to a device

and eptionplly establishes a logical name for the device.

Once a device has been allocated, other users can not access

the device-until the user specifically deallocates it or log

out-is done. e.g.

$ ALLOCATE DRAl;

- DRA1 : ;ALLOCATED

The ALLOCATE command allocates a specific RM03 disk drive,

unit 1 on controllai A.

Note:- Don't try to allocate either users disk or system

disk

2. APPEND

.Format:

$ APPEND input-file-spec, output-file-spec.

The APPEND _command adds the contents of one or more specified

input files- to the end of a specified output file. e.g.

$ APPEND TEST.DAT NEITEST.DAT

The APPEND command appends the contents of the file TEST.DAT

from the default disk and directory Into the file 3:NF1TEST.DAT.

11-27

$ APPEND/NEW/LOG *.TXT MEMO.SUM

The APPEND command appends all files with types of TXT to a

file named MEMO.SUM. The LOG qualifier request a display of

the specification of each input.file,appended.

3. ASSIGN

Format:

ASSIGN device-name [:] logical.-name [

The ASSIGN command equates a logical name to a physical

device name, to a complete file specification or to another

logical name and places the equivalence name string in the

process, group or system logical name table. e.g.

$ ASSIGN DRAl: [CHARLES] CHARLIE

$ TYPE CHARLIE.DAT

The ASSIGN command associates the logical name CHARLIE with

the directory name CHARLES on the disk DRAl. Subsequent

references to the logical name CHARLIE results in the

correspondence between the logical name CHARLIE and the disk

and directory specified.

4. CONTINUE

Format:

CONTINUE

The CONTINUE command resumes execution of a DCL command,

a program or a command procedure that was interrupted by

Pressing cuiL/Y or CTRL/C. The CONTINUE command can also

serve as the target command of an IF or ON command in a command

I
I.

II-28

procedure or following a label that is the target of a GO TO
command. e.g.

4 RUN MYPRO
47BL/Y

.:HOW TIME

1—MAY 1985 14:02:59

$ CONTINUE

5. COPY

Format:

COPY input—file—spec v output—fil&-spec.

The COPY command creates a new file from one or more existing

files. The COPY command can: (i) COPY one file to another

file (j) concatenate more than one file into a single out

put file (iii) COPY a group of files to another group of files.
e.g.

4 COPY TEST.DAT .,,NE:ITEST.DAT

The COPY command copies the contents of the file TEST.DAT

from default disk and directory into a file named NEW TEST.DAT.

$ COPY ,*.COM fRAJ.DATA1

The. COPY command copies the highest versions of files in the

current default directory with a file type of COM to the

subdirectory RAJ.DATA.

4 MOUNT_ MT B1: TAPE
$ COPY TAPE:

The COPY command uses the logical name TAPE for the input

11-29

file specifications, requesting that all files on the tape be

copied to the current default disk and directory. All the files

copied retain their file name and file types.

6. CREATE

Format:

CREATE file-spec

The CREATE command creates a sequential disk file from records

that follow the command in the input stream or create a

directory file. e.g.

$ CREATE A.DAT

Input line one

Input line two

CTRL/Z

After th CREATE command is issued from the terminal, the

system reads input lines into the sequential file A.DAT until

CTRL/Z terminates the input.

$ CREATE SHAft.COM

4 DECK

$ FORTRAN SHAR

$ LINK SEAR

$ RUN SEAR

$ EOD

$ SEAR

This batch job example illustrates using the CREATE command ,

to create a command procedure from data in the input stream.

11-30

The DECK commands is required so that subsequent lines that

begin with a dollar sign are not executed as commands, but

are accepted as input records. Then the procedure is executed
with the (Execute Procedure) command.
4 CREATECORY DRAl: [SHAH.]

The CREATE command creates a directory named SHAR on the

device DRAT. Creating a directory requires privilege. Where

$ CREATE/DIR DRA1:[DASON.PROGJ.

as creating a subdirectory requires no privilege e.g.

7. DEALLOCATE

Format:

DEALLOCATE [device-name H.]

The DEALLOCATE command returns a device that was reserved

for private use to the pool of available devices in the system,
e.g.

4 ALLOCATE MT131:T2_2E
- MTB1 : ALLOCATED

$ DEALLOCATE TAPE

8. DEASSIGN

Format:

DEASSIGN [logical-name :37

The DEASSIGN command cancels logical assignments made with

$ ASSIGN

the ASSIGN, DEFINE, ALLOCATE

•
A..TMPI_SiS__122Ly

or MOUNT commands.e.g.

• ••

SYS OILS

DEPT)."

Format:

DEBUG

The DEBUG command invokes the VAX-11 Symbolic Debugger after

program execution is interrupted by CTRL/C or CTRL.PY. The

program image being interrupted must contain the debugger,

i.e. the image was linked with the /DEBUG qualifier and /or

run with the /DEBUG qualifier e.g.

FORTRAN/DEBUG/NOOPTIMEZE SUER

$ LINK/ DEBUG SUBR

4 RUN SUER

X DEBUG version 1.2 10 March 1985

X DEBUG-1- INITIAL, language is FORTRAN, scope and Module

set to 'SUER'.

DBG > 94?

ENTER NAME :

ENTER NAME : uncontrolable loop

ENTER NAME :

CIRL/Y

4 DEBUG

DBG >
•

DECK

Format:

DECK

The DELK command marks the beginning of an input stream for

11-32

a commaad or program. It. ib required in - command procedures

when the first non blank .character ih any data record in the

input stream is a dollar- sign ($). e.g.

$ FORTRAN A

$ LINK A

$ RUN A

$ DECK

Input line.-one

Input_line-two

$ input lino -

$ PRINT SUMMARY.DAT

DEFINE'

Format:

DEFINE logical-name equivalence-name

.The DEFINE command creates_a logical table entry and assigns

an equivalence name string-to the specified logical name.

$ DEFINL PROCESS-NAME LIBRA

$ RUN WAKE

DELETE'

Format:-

DELFTEiqualifier file-spec/queue-name/symbol-name

The DETETE. command deletes-one -or more-files from a mass

storage disk volume.-

rt.

11-33

Qualifier: /ENTRY with this qualifier deletes one or more

entries from a printer 01 batch job queue.

/BEFORE The files created before the date specified

in this qualifier are deleted.

/AFTER The files created after the date specifies

in this qualifier are deleted.

4 DELETE *.C(JM: */BEFORE = 01-JUN/LOG

The command deletes all version of all files with types corn

that were either created or updated before June 1 this year.

13. DIFFERENCES

Format:
.,_,,,fife-spec [compare-file-spec]

The DIFFERENCES command compares the contents of two disk

files and cxeaes a listing of the records that do not match.

4 DIFFT:17272E3 IGNORE =_LCLOMHENTS SPACING) COPY.COM

14, DIRECTORY

Format:

DIRECTORY [file-spec,....]

The DIRECTORY command provides a lists of files or information

about a file or groupS of files.

$ Dl. 2CTORY

$ DIRECTORY LOGIN.COM

15. DISMOUNT

Format:

DISMOUNT device-name [:]

11-34

The DISMOUNT command releases a volume previously accessed

with a MOUNT command. Example.

$ MOUNT MTAO: PAYVOL TAPE

4 DISMOUNT TAPE

EDIT

Format:

4 EDIT/editor file-spec

The EDIT command Invokes one of the VAX/VMS editor.

editor = SOS

= 512

=EDT

EOD

Format:

EOD

Signals the end of a data stream in interactive mode.

$ RUN PRG

data

EOD

FORTRAN

Format:

FORTRAN file-spec.

The FORTRAN command invokes the VAX-11 FORTRAN compiler to

complete one or more source program.

Example:

11-35

FORTIXN At.B.JAIST, C+D/LIAT . ALL/OBJECT = ALL

For the first coEoilation, the FORTRAN command

the files A.FOR and B.FOR to produce an object module named

A.OBJ and a listing file named B.LIS. For second compilation

object module ALL.OBJ and a listing file named ALL.LIS are

produced.

HELP

Format:

HELP [keyword [keyword]....)

The HELP command displays on the terminal information avail-

able in the system HELP files.

Example:

$ HELP ASSIGN

Information an ASSIGN command will display.

$ HELP ASSIGN PARAMETERS

Information on ASSIGN command parameters will display.

INITIALIZE

Format:

INITIALIZE device-name [:j volume-label

The INITIALIZE command formats and writes a label sn a mass

storage volume.

Example:

$ ALLOCATE MTil:

- MTB1 : ALLOCATED

$ INITIALIZE MTB1: SOURCE

$ MOUNT MTB1: SOURCE

MOUNT-I-MOUNTED,SOURCE mounted on - MTB1:

11-36

$ COPY * FOR ATB1

$ DIRECTORY Min:

file detail will be displayed.

$ DISMOUNT ATB1:

The volume (Tape or Disk) must be physically mounted before

giving the command INITIALIZE and MOUNT.

21. JOB

Format:

$ JOB User—name

The JOB command identifies the beginning of a batch job

submitted through a system card reader,

Example:

$ JOB RAJ

L PASSWORD RAJ

3 ON WARING THEN EXIT
$ FORTRAN SYS Q INPUT: AVERAGE

Fortran sourte Deck

•

$ LINK AVERAGE

$ RUN AVERAGE

data records :for program average

•
4 PRINT AVERAGE
$ EOJ

11-37

LIBRARY

Format:

LIBRARY/qualifier library [file—spec,] The LIBRARY

command creates or modifies an object module library or a

macro library or inserts, replaces or lists modulues,

macros or global sym3o1 names in a library.

Example:

3 LIBRARY/CREATE TE.STLIB ERRMSG STARTUP

The LIBRARY command creates an object module library named

TESTLIB. OBJ and places the modules ERRLSG. OBJ and STRATUP.

OBJ in the library.

Qualifier

/CREATE — create the object madules library

/INSERT — insert the modules in the library

/LIST — output written to a file specified.

LINK

Format:

The LINK/qualifier file spec.

The LINK command involves the VAX-11 linker to link one

or more object modules into a program image and defines

execution characteristics of the image.

Qualifier

/DEBUG — involes symbolic debuggen

/MAP/FULL — request full map of the image and

MAP type of file created.

/RSX 11 — Involves the RSX-11 M task builder to

build a RSX-11 M image

II-38

$ LINK/YAP/FULL DRAW, CYGNUS, LYRA

$ LINK/RSX11 AVERAGE

24. LOGOUT

Format:

LOGOUT

The LOGOUT command terminates an interactive terminal

session.

Example:

$ LOG

logged out at 10—March-1985 15:15:15.15

25. MACRO

Format:

MACRO/qualifier file—spec,....

The MACRO command involves the VAX-11 MACRO assembler to

assemble one or more assembly language source programs.

If qualifier/RSX 11 is specified, the MACRO command involes

the MACRO-11 assembler, all other qualifier apply to both

the VAX-11 and the MACRO-11 assembler.

Example:

3 MACRO ROUT

If this command is executed in a batch job! the assembler

also creates a listing file named ROUT.LIS.

26. MAIL

Format:

MAIL file—spec.

Sends a massage to another user or a group of users.

11-39

Example:

$ MAIL

MAIL > READ

message

MAIL > SEND

TO : SYMGR

SUBJECT : SYSTEM TROUBLE

MESSAGE : ITTC 5 (LA 120) IS NOT WORKING'

PROCESSING MAIL

NO ERRORS

— DONE ,

27. MOUNT

Format:

MOUNT device—name, [logical—name[:]]

The MOLINE command makes as volume and the files or data

it contains available for processing by system commands

or user programs.

Example:

$ MOUNTMTAO: MATH06 '—TAPE

MJUNT — I — MOUNTED MATH 06 MOUNTED ON — MTA (1):

2?. PASSWORD

Format:

PASSWORD password

11-40

The PASSWORD command specifies the password associated with

the user name specified on a JOB card for a batch job submitted

through the system card reader.

Example:

$ JOB SHASTRI

$ PASSWORD RAVI

EOJ

29. PRINT

Format:

PRINT/qualifier file—spec.

The PRINT command queues one or more files for printing on

a default system printer or on a specified devife,

Qualifier/COPIES — No. of copies to be printed.

/HEADER — output block header at beginning of

each file,

/DELETE — immediately remove the file from your

directory and delete it after printing.

Example:

$ PRINT/COPIES=3/HEADER APPHA.TXT/NO IDENTIFY.

3Q. PURGE

Format:

PURGE file—spec.
not

The PURGE command deletes all but he highest numbered version

or versions of a specified file or files.

Example: .

$ PURGE *.(OM

3 PURGE AVERAGE.FOR/KEEP=2

11-41

The PURCE command deletes 111 but the two highest numbered

versions of the file AVERAGE.FOR.

RENAME

Format:

RENAME input—file—spec output—file—spec.

The RENAME command changes the directory name, file name,

file type or file version of an existing disk file.

Example:

$ RENAME AVERAGE.OBJ GINGER OBJ

RUN

Format:

RUN file—spec.

The RUN command places an image into execution in the process.

The file type is assumed to be . EXE.

Example:

$ RUN LIBRA

SET

Format:

SET option/qualifier device—name,

where the options are

[NO] OONTROL—Y

DEFAULT

MAGTAPE

PROTECTION

QUEUE

TERMINAL

[NO] VERIFY

11-42

The qualifier depend upon the options and its characteristics

the different qualifiers are

/SPEED - speed of device.

/FOREIGN - Mass storage volume as foreign

/DENSITY - Density of Magnetic tape

/PRIORITY- Priority of the process

/ENTRY - Entry of the process in a particular queue

/WIDTH - -Width of the terminal

/PAGE - Page length

/QUOTA

Example:

S SET ,FNO1 CONTROL-'f

LSET DEFAULT DRAl:

$ SET MAGTAPE MTB1:/DENSITY =1600

4 SET PROTECTION =(GROUP=RWED,WORLD=R)

LLET QUEUE SYS 3 BATCH/ENTRY=211/HOLD/NA1VE=TEST.

$ SET TEAMINAL/WIDTH=132/5PEED=9600/PAGE=66 TTC2

$ SET VERIFY

34. SHOW

Format:

SHOW option/qualifier

options

[DAY] TIME

DEFAULT

DEVICES

MAG TAPE

PRINTER

11-43

PROTECTION

TERMINAL

QUEUE

SYSTEM

The SHOW command displays information about the current

status of the process, the system or devices in the system.

Examples:

i) 3 SHOW DAYTIME
10—MARCH-1985

ii) $ SHOW DEFAULT

DRG1: [ALPHA]

3 SET DRFAULT DRA 0:[RAJ.SYS1
4 SHOW DEFAULT

DRL (f :[RAJ.SYS]

iii) $ SHOW MAGTAPE MTAI:

MT* UNKNOWN, DENSITY =80$,FORMAT=NORMAL-11 ODD PARITY

iv) $ SHOW PRINTER LPAch:

LP/4: LP11, WIDTH=1321 PAGE=641 NOCR,FF, LOWERCASE

DEVICE spooled to DRAO:

v) $ SHOW PROTECTION

SYSTEM=RWED,OWNER=RWED,GRCUP=RE, WORED=NO ACCESS.

vi) $ SHOW QUEUE/DEVICES

DEVICE QUEUE " LP" FORMS =0 GENPRT GFLAG

*DEVICE QUEUE " LPI30: 11 FORMS=0 GEN PRT (SLAG

35. SORT

Format:

SORT/qualifier input—file—spec. output—file—spec.

11-44

•

The SORT command invokes the SORT utility program to records

in a file into a defined sequence and to create a new file of

the recordercd records.

SORT /risx 11 CUSTOKIER.FIL/F0RMAT=SFIXED,80) ALPHA ,SRT/KEY=(1.200

The SORT command requests a default alpha numeric sort on the

records in the file CUSTOMER. FIL. The SORT program sorts the

records based on the contents of the first 20 character in

each record and writes the sorted list into the output file

ALPHA.SRT.

36. SUBMIT

Format:

SUBMIT file—spec

The SUBMIT command enters a command procedure in the batch

job queue.

Example:

3 SUBMIT AVERAGE

Job 112, entered on queue SYS 3 BATCH.

$ SUBMIT/NAME = BA24/HOLD TEST ALL

Job 467 entered on queue S'S BATCH

The SUBMIT command enters the procedure TEST ALL.COM for

processing as a batch job but in a HOLD status. The Job

will not be released until the SET QUEUE/RELEASE command

is issued. The/NAME parameter requets that the batch job

be identified as BATCH:24.

37. TYPE

Format:

TYPE file—spec„,....

The TYPE command displays the contents of a file or group

of files on the current output device.

Example:

$ TYPE COMMON.DAT

38. UNLOCK

Format:

UNLOCK file—spec

The UNLOCK command makes accessible a file that became

in accessible as a result of being improperly closed.

Example:

LIYPE TEST FILE OUT

TYPE—E—OPEN IN, error opening DRAl:[MALCOLM] TEST FILE

OUT, 3 as input

— SYSTEM—W—FILEZ LOCKED, file is deaccessed locked.

$ UNLOCK TESTFILE :.our
1 TYPE TESTFILE .OUT

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046

