NATIONAL INSTITUTE OF HYDROLOGY
ROORKEE
WORKSHOP
on
GROUND WATER MODELLING - TYSON-WEBER MODEL
(18 - 22 Nov.1985)

LECTURE 3 II
TOPIC : COMPUTER PROGR/MiMING ViaX=-11/780
BY 3 1. SHRI S.K.Jain
5. MRS. DEEPA KaRuWaDE
D,LTE AND
TIME : 19,11.85 - 1145 aolle - 1,00 Pl

19-11.85 * 2-30 PII\‘}. feered 4.15 Pol\‘l.

II-1

FORTRAN PROGRAVMING

1.0 - INTRODUCTION

A computer programme is a set of instructions given
To a computer to perform the desired computations. The
languages which are used to write computer programmes are
known as progremming languages. Nowadays, a number of prog-
ramning languages are available to a user. Some of thew ares
FORTRAN (FORmula TRANslation), COBOL (COmmon Business Orineted
Language), BASIC (Beginners Allpurpose Symbolic Instruction
Code), ALGOL (ALGOrithmic Language), PASCAL etc. In this
course, thediscussion will be limited to FORTRAN language
only. This language was developed by IBu corporation in
1956 and is the most popular and widely used programing
language,

A computer programme written in a programming language
is called a source programme. To run a source program on a
computer, it 1s necessary to translate it into machine language
80 that it can be understood by the computer. This translation
is done by another program called ‘compiler'. The compiler
checks whether the grammer of the language has been correctly
followed or not. If not, it gives diagnostic error messages,
oOtherwise it translates the source progrem into object
Programme.

Nowadays,; a large number of versions of FORTRAN are

available. The version which is being discussed here has

L o st RN &

-
—
i

N

been developed for VAX-11/760 uachine and is called VAX-11

FORTRAN,

L.l FORTRAN Charecter Set
The following set of character cen be used in a FORTRAN

programiie: The letters A through Z snd a through Z .

S The numerals O through

3e Special characters: (blank),
LG A
=i iy :/5 (9)9 a3 ? 9
’ s 3y <5 Dy #y & , comma, underline

<4

Other printing characters can occur in a Program as Holleuith
‘characters,

2.0 FORTRAN Constents

(3]

J
o0

Fortran constants are of following main typcs

b

Integer constants and Real constant

Intcger constants, also called fixed peint constants,
arc whole nuuberst they do not have any fractional parts. They
may have either a + or - sign. By default, + sign is assumed.
The value of an integer constant must be within the range
~2147483648 to +2147463647,

Real constants, also called floating point nuwibe
are the nuabers which have a decimal paints.,

& real constant can be written as

~ as a real nunber

= as a real number followed by & decimal exponent

= as an integer constant followed by a decimal

exponent.

ET=3

A minus si_n must appedr befuie 2 nepative real constant. i
plus sign is assumcd by default.

The real cinstants can be further classified in several
Sub-classes. A RBEAL¥® 4 constant occupies four bytes of VAX-11
storage., Typicelly its degree of precision is sceven decinial
digits. The mognitude of a REAL* 4 constant cannst be greater
Tthan 1.7E38 znd it connct be less than 0.29E-38 approx. A
REAL®8 constant is also called a double precision constant.

On VaX-11l, two types of REAL*8 constants are available: D-
floating and G-floating. Both these occupy & bytes of VAX-11
storage. A D-floating nunber has = degree of precision of

16 decimal digits and it must lie within the range 0.29D-38
to 1.7D38 approx. A G-floating constant has a degrec of
brecision of 15 di,its and its magnitude must lie within the
range 0.56D-308 to 0Q.9D308 approximately.

Other types of constants which can be put in this
category are REAL %16, COMPLEX*8 etc.

A logical eonstent specifies a logical value which can be
edther true or false. Only following two logicel cinstants
are pernissible:

» TRUE.

« FALSE,

3.0. VARIABLES
A variable is a Syubelic name assccieted with a storage

location. The value currently stored in that location is the

1I-4

value of that varigble. Similsr to the constants, variables
are alsc classified inte data type based on wiich, the storage

requiraients and the precision of the variazbles are deternined.

In FORTRAN, by default, all the variable nanes beginning
with I, J, K, L, ¥ or N are assuied to be integer varisbles.
Variables whose nanie begins with any sther letter are assuned
To be real variebles. Thus AREA, VOLUME, TEMP are real variabe
les while LENGIH, ITIM, NAME arec integer variables. 4 varia
name can have a naximum length of 31 charecters but cannct
begin with a numeral,

4.0 FORMAT OF 4 FORTRAN STATEMENT
be

A Fortran program can/fed to a computer typically either
through punched cards or interactive terminals. Since the

computer cards used earlier were 80 columns wide the convention

of writing a progrer wee designed to suit then. The same is
followed now. In a Fortran stotement, first five columns,

Ar Ed.i0r Stetewent.aun . iy)
xR ¢o Umndlo TS eB ;8“?%&185%8@%ﬁe continuation of the

statement, coluuns 7 to 72 are used to write a statement and
3~80 columns are for comments. The letter 'C' or '% in the
first column indicates that statement to be comment and is
ignored by compiler. The statewents having character 'D' in
the first column are compiled only when Debug qualifier is
used. A statement number can be any integer number in the
range 1 - 99999 ., Decimal point and other letters are not
permitted in the statement field, The statenents need not be

in seguence and no two stataients can have same nunber.

If & stetement can not be completed in 7-72 columnns, it
can be continued in the next line by putting a continuation
mark in the 6th column of next card. Columns 73-80 are
reserved for comments or sequence numbers of the program

and are ignored by the compiler.

5.0 FORTRAN EXPRESSION

An expression consists of combination of single
and multiple variables and/or constants with one or more
operators. Operators specify the computations to be
performed using the values of variables to yield a single
value. Expressions can be classified as arithmatic,
character and logical expressions.

Arithmatic expressions are formed with arithmatic
elements arithmatic operators. Following five operators

are used in Fortran

Operator Function
+ Addition
L] Subtraction
/ Division
* Multiplication
*% Exponentiation

The last three operators are called binary
operators because they use two arithmatic elements. The

Tirst two operators can be used both as unary and binary

DL &

operators. While evaluating an arithmatic expression,

exponentiation operator gets first precedence, * and /

get second precedence and + and - get the third. When two

or more operators of equal precedence appear, they are
evaluated in left-to-right order. The exception ig
exponentiation which is evaluated from right to left.
Thus X * * * %k 7 is‘evaluated as X ¥ * (y * * 7).
The required order of evaluation is forced in = program
by using parenthesis. The part of an expression which
1ls enclosed in a parenthesis is evaluated first and then

the resulcing value is used for further computations.
&

Dt Rational Expression

A rational expression consists of two arithmatic
expressions or two character cxpressions scparated by a
rational operator which tests for a relationship between

two expressions. The rational operators are

Operator Meaning
oLl o Less than
+LE. Less than or equal to
+EQ. Equal to
NE, Not equal to
+GT. Greater than
«GE, Greater then or
equal to

Besides these, following logical expressions are

II-7

used to perform logical operations
Operator Use Interpretation

cAND, A. AND.B The expression is true
if and only if both

A and B are true.

OR. A.OR,.B The expression is true
if either A or B or
both are true

LNOT' LNOT oA The expression is true
if, and only if, A is
false
6.0 ASSIGNMENT STATREYENT

The erithmatic assignment statement assigns the
value of the expression on the right of the equal sign
to the numeric variable or array element on the left of
the equal sign. It has the form

vV = e
wherc Vv 1s a numerical variable

¢ 1s arithmatic expression

The equal sign means ' is replaced by' , For
example statement

I = I+ 1
leans that the current value of I is replaced by the
previous value plus one. In = valid arithmatic
statement, the entity on the left hand sign must always

be an unsigned varicble.

11-8

7.0 CONTROL STATEMENT

In a program, the stateients are executed in the
Sequence in which they occur. This order can be changed
by use of control stetements. The control statenents are

discussed here briefly.

T oad GO TO Statements
These statauents transfer the control wlthin a program
winlt. There are following three types of GO TO stateuents.

a) Unconditional GO TO stateuent for example GO
TO 100

b) Computed GO TO statement for example
%0 TO (10, 15, 50, 100), I

c) Assigned GO TO statement for exampl e
GO TO 5, (150, 190)

2 IF Stateuents

The IF statement conditionally transfers the

(651

control or executes a statement or block of statements. The
three type of IF statements are as follows:

T+251 Arithmatic IF This statement transfers control to
one of three statements depending upon the velue of
arithnatic expression. It has the form.

If (e) 21, 82, 83

where e is an arithmatic expression. The control is
transferred to stateinent number Sly, S2 end S3 if the value
of the expression is less than 0, equal to O, or greater

than zero respectively.

7T.2.2 Logical IF statement

This statement conditionally executes a fortran
statement in the following form.

IF(e) st
where e is g logical expression

ST is a valid executable fortran statement except
a DO statewent, an END DO statement, an END statement and

another IF statement.

7.2.3 Block IF statement

Block IF statement conclitionally exccutes blocks of
statements. The stateanents used to contruct block are IF
THEN , ELSE IF THEN s ELSE and END IF., The END IR stateuent

terminates the block IR construct,

T DO statement
The DO statement is used to control the iterative
processing where the nuibers are iteratively executed a
specified nunber of tiries. It has the form
DO 8t v = e, e2 [,e3]
where st is the label of &n executable statement which is
the terminal statement of the BO Loop.
vV 1s an integer or real variable called the DO
index or control variable. el, e2, e3 arec arithnatic
expressions and are called initial, terminal and

increment parameters Bespectively o If increment

parameter is omitted, its default value ane is taken,

However, it cannitt be 2ero.

The rules about the syntax and resting of DO loops
valid for VAX-11l FORTRAN can be referred to in VAX-1

FORTRAN Language Refercnce Manual.

T4 CALL stateament
The CALL stateuent executes a subgoutine or other
external procedure. It can also specify an ergument list
for the subroutine. The example of a call statcment 1is
CALL ADD (x, ¥, 1.0, MATR)
where ADD is the name of the subroutine to be célled and

X, Y, 1.0, MATR are the argunents.

7.5 REIURN statenent
The RETURN statement transfers the comtrcl from a

subprogram to the program which has called i1t.

T oD PAUSE statement

This statement tenporarily suspends the program
cxecution, displays a message on the terminal and awalts
for the replye It has the form

PAUSE [disp]

where display is a character constant or a decimial

digit stringof one to five digits. By default, the message
' FORTRAN PAUSE' appears on the screen. The coumand

CONTINUE' can be given to resume the execution, STOP to
terminate the execution or DEBUG to do debugging.

T+6 STOP statement

The progran execution is stopped upon encountering
a STOP statement.

Te7 END statement

The END stateuent signifies the end of a progrem
unit. It must be the last source line of ¢ program Unit.
8.0 Specification stateuents

The specification statements are non ecxecutable
statetnients that are used to allccate and initialize
variables and arrays etc. The inportant specification

statements arec briefly described herec.

The DIMENSION stateuent defines the nunber of
dinensions in a subscripted variable or array and the
meximun nuiiber of elesents in each dimension.

The IMPLICIT stateanent oversides the implicit data
type of syubclic names.,

The COMMON statecuent defines are or aore contigusus

areas of storage. This area can be stared by nore than
viie program units in which the conmon declaration occurs.,
The DALA statement is used +o assign initisl wvalues to
variables, «r'rays, and array elaients etc. before the
execution of program.

The PARAMETEIt statement assigns & symbolic name to
& constant.,

Other statements available in this category .

II-12

include EQUIVALENCE, SAVE, EXTERNAL , INTRINSIC, PROGRAL
and BLOCK DATA.
9.0 SUBPROGRAMMES

These are programme units which can be involved
from another programme unit. The subprogremmes can be

cf following three types:

a) Statement functiocn subprogremmes,

b) Function subprograriics

c) Subroutine subprogrammes

Besides these, a number of subprogrammes are also
supplied with the language by the suppliers and can be
called in 2 similar manner.

A statement function is computing procedure
defined by & single stotement. It has the form of an
assigment stataaent . The statenent function nust appear
in the samc¢ prograame unit in which it has to be used.
The following is an example of @ valid statuent functicn:

AREs (RAD) = 3,14 * RAD * * 2

A function subprograanie is a program unit consisting
0f a FUNCTION statement followed by & sries of statements.
A function subprogramme returns a single value to thc
calling program and this value is assigned to the nane
of the function.

A subroutine subprogramme consists of a SUBROUTINE

statement followed by a series of statanengs which define

IT7-13

the computaticns to be performed.

A CALL statement is used to transfer cuntrul to the
subruutine, Upon encountering a REIURN statenent, the
control is returned tc the calling programme unit. When
the contrel is transferred to the subroutine, the values
of the actual argunent are assoclated with the corresponding
during erguinents. ENTRY stateuwents can be used to specify

multiple entry points to a subroutine.

10.0 INPUT/OUTPUT statcuents

These stateuents are used to obtain input data from
a device and to supply the output data.

The input statanents are used tv read input data from
a fil or a terminal. Two stateaents, ACCEPT aond READ are
used for this purpose. The ACCEPT statcuent is used to
read the data from an interactive terminal and the READ
statenent can be used to read the data froem a file.

The statenents TYPE, WRITE and PRINT are used for
outputting the data. By default, TYPE statemaent displays the
data on an interactive termingl, WRITE statencnt writes
the data 1n a file and PRINT statement sends the data for
printing on a printer.

FORMAT statements are asscciated with I/0

statements and are used to specify the format in which

II-14

the data transfer is to take place.
format free I/0 stotement czn be us

data type.

statenent is not being discussed

FORTRAN Language Reference Manual.

can he obtalne:

Alternatively &

ed in which the

L from VAX-11

II-15

INTRODUCT ION

The VAX series is DIGITAL's family of 32-bit mini-
computer systems. The newest member of the family is VAX-11/780.
Like its companion processor, the VAX-11/780 was designed to
meet the nceds of many users with large data bases and increased
processing needs, VAX systgms are high performance multi-
programming computer systems which implement a 32-bit archi-
tecture, efficient paging memory management, and virtual
memory operating system (VMS) to provide excellent applications

performance and essentially unlimited program auadress .space,

This system is ideally suitcd for a wide variety of
applications including real time, batch, time sharing, commer—

cial and program development.

The instruction set of processor (KA 780) includes
floating point, fixed point decimal arithmetic and character
string instructions. The software system supports programming
languages that take advantage of these instructions to produce

extremely efficient code,

The VAX/VMS virtual memory operating system provides
a multiuser, multi-language programming environment on the
VAX hardware. The floating point instructions and‘VAX-ll
FORTRAN are ideal for real time and scientific computational .
environments, The processor executos variable length

instructions in native mode and non privileged PDP~11

instructions in compatibility mode,

II-16

Symbol used and the function of some control keys of VAX-11/780
terminals: -

<RET>

<ESC>

$

CTRL/C

CTRL/Y

CTRL/Z

CTIRL/U

CTRL/R

CTRL/I

CTRL/S

CTRL/Q

Press the RETURN key. It transmits the current line
to the system for processing.

Press the DELETE or RUBOUT key, It deletes the last
character at the terminal screen,

Press the ESCAPE or ALTMODE key,
DCL (Digital Command Language) prompt.

Hold down the CTRL key and press the character &
It is used mostly to interrupt the system during
program execution,

Hold down the CTRL key and press the character Y,
It interrupts the command OT program exccution. It
mostly functions as CTRL/C,

Hold down the CTRL key and press the character Z,
It terminates a file input from the terminal,

Hold down the CTRL key and press the character 1515
It deletes the current line,

Hold down the CTRL key and press the character Re It
reprints the current line,

Hold down the CTRL key and press the character Ie
Its function is same as TAB key.,

Hold down the CTRL key and press the character 5
It suspends terminal output, '

Hold down the CTRL key and press the character @4
It restarts the terminal output that was Suspended
via CTRL/S.

Type a blank.

1

The NIH VAX-11/780 computer system configuration 18
as follows:-
[1] HARDWARE:
1) VAX-11/780 cpy with floatind point accelerator.
ii) Two RNO3 removabple disc drives having 67 M byte
formatted capacity.
111) Two TE 16, 45 1PS, 800/1600 BpI tape drives.

iv) Two ADM-3A terminals.

v) One VT 100 terminal.
vi) LA=-120 console subsystert.
vii) LA-120 Line printeT.
viii) Tektronix 4027 Graphic terminal.
ix) Calcomp Model-31 ColorT graphics system.
x) VI-109 terminal.
xi) One RX~-11l £loppy drive.
[2] SOETWARE:X
'T‘VAX/V\S operating system version 3.2
1i) MACRO assembler.
111) VAX-1l FORTRAN=TT
jv) PLOT-10 IGL.
| v) SSP (Scientific guproutine packages)
vi) COBOL~T4
vii) HEC ProgramsS.
viii) BASICwPLUS—TWO

ix) SORT/MERGE routines .

x) Runoff routines.

II-18

USING VAX~11/780:

To communicate with the VAX/VHS operating system a
terminal connected to the computer is used in NIH Computer
Centre. You tell the operating system what to dog by typing a
command on terminals keyboard. The system responds by
executing your command. If the system can not interprot what
you type, it displays an error message at the terminal.,

When the command has been successfully executed, you type

another.

LOGGING IN:

To begin a session at the terminal, you must log in.
Logging in consists of getting the systems attention and
identifying yourself as an authorised user, Before logging in
to the system, the uscrs must have the accounts which is
given by the system manager. He will also give USER NAME

and PASS WORD, The USER NAME identifies a user to the system,
The sequence of LOG IN is as follows: -

i) Switch on the terminal.
ii) Press <RET> or CTRL/Y.
1ii) The system responds by prompting for the user name,
iv) Type your USER NAME and press <RET>.
v) The system prompts for user Password,
vi) Type your PASSWORD. It will not be echoed on the
terminal,

vii) If the PASSWORD is correct, system prompts with

WELCOME message.

II-19

viii) Now system is ready to accept and valid DCL

command,

The log in sequence looks like this:-
<RET> or CTRL/Y

USER NAME : DAVID <RET>

PASSWORD : DCOD <RET>

WELCOME TO VAX/VMS VERSION 3.2.

$

ENTERING COMMANDS :

You can type the commands using upper or lower case

letters or a combination of both el s

$ show time <RET> is a valid command, It displays the current

date and time as follows -
1- MAY-~ 1985 11:50:49
OR
$ SHOW TIME <RET>

OR

$ Show Time SBET> serves the same purpose.

HELP COMMAND:

The HELP command assists the user by displaying command -
Specific information, The HELP command is a useful inter-
active reference tool for the user not having convenient
access to reference manual €.9. to know about the PRINT

command, use the HELP command as

$ HELP PRINT <RET>

I1I-20

Some information is displayed on the terminal which includes
a synopsis of what the PRINT command does and the qualifiers

of the command along with their defaul+t value.

LOGGING QUT:

After finishing the work, the user must give the LOG ouT

command as follows:-—

$ LOG OUT <RET>

and the user should wait until he receives the appropriate
messages

Shutting off the terminal does not causes you to LOG ouT,
If a user shuts a terminal without logging off Preperly,
another user may be able +o turn the terminal on later and

use your account.

SOME DEFINITIONS :

le. FILE : -

A file is the basic wnit of storage for VAX/VMS,
All user information is stored in files, usually on auxiliary
storage media such as tapes, disks etc, Actually a file is
a collection of logically related data stored on disks or
tapes, A complete file Sspecification contains all the
information the system needs to know and identify a file.

A complete file Specification has the format .

Device: [Directory Name] file name. File type: version

eage Z E
DRAL: [DAVID] A FOR: 1

Ir-21

2. DEVICE :-—
It identizies the physical device on which a file is

stored. Some device names are:

NAME DEVICE
DRA RMO3 disk on controller Ay unit O

DRAL RMO3 disk on controller A, unit 1
MTA LTE16 magentic tape on controller A, unit O,
MTAL TE16 magnetic tape on controller He unit 1.
TTA Terminal on controller Ly unit O,

ITAS Terminal on controller A, unit 1,

Note:~ Everytime when a device name is specified as Colon(:)

must follow it e.g. DR4Os, MTAl:, TTAS: etc.

3¢ FILE NAME;:—

The file name is a set of One to nine alphanumeric
characters.,
File Type -~ A file type can be upto 3 alphanumeric characters
and must be preceded by a period. However; the file type
usually describes Specifically the kind of data in the file and
the systen recognizes several default file types used for

special purposes as follows:

File Type Use

DAT Data file

EXE Executable program image (after linking)
FOR Input source file for FORTRAN compiler
LIS Output listing from a compiler

MAR Input source file for MACRO compiler

Eile Tyoe Use
OBJ Object moiule output from a compiler,
JOU Journal file which is created if interruption occurs

during the use of EDT eéditor.

4. VERSION NUMEER:-

The version nunmber distinguishes a file from its other
Copiese It is comnected to the file type by Semicolon (;)
Whenever a user edits a file, its version number is auto-
matically increased.

The system always takes the file with the highest
version number as the default file. Tt can be overriden
by explicitly specifying version number €ege If in a directory
the files are A. DAT; 1y, A« DAT; 2, A, DAT; 3 and if
$ PRINT % A. DAT <RET>
comriand is given then the file 4. DAL; 3 will bé printed.
Here to print a file 4, DAT; 1, the command is

$ PRINT % A, DAT; 1 <RETS

Use of Wild Card Character:—

4 wild caerd character (*) can be used within a
directory name, a file hame, version noe. or a file types
It can be used to match any number of characters including
the null string e.g.
$ PRINT ¥ *, DAT; * <RET)
will print all the !DAT' files in the direetory. Similarly
$ PRINT ¥ 4, % ; * <RET>

will print all the files in the directory whose file name

field-is A}

II-23

Abbriviating Commands & -

IWhile‘typing the commands 5r qualifiers always
there is no need to type the full words. In many cases only
one or two characters act as full commandss Here it is
necessary that the user must type atleast the minimunm number
of characters necessary to make the command unique. e.g. the
SET, SEARCH and SHOW commands all begin with the letters 'St
S50 to make these commands unique, you must type SET, SE4
and SH respectively. Also RUN is the onlyycommand which
starts from the character 'R'; so to abbriviate RUN command

can be R or HY.

Error Messages:

If a user enters a command . incorrectly, the systen
displays an errcr hessage and prompts for a command line

as 1f no command had been entered.

Creating and Running a Simple FORTRAN Programs

The method for creating and running a very simple

FORTRAN Program (4) is as follows: -

i) Login as described earlier.
ii) Create the file 4. FR using the editor as follows:
$ EDIT P 4. FOR <RETS

100 ACCEPT 10, 4BS <RET >

200 10 FORMAT (545) <RET>

300 PRINT 20 <RET>

400 20 FORMAT (f'PROGRAM LS WORKING') <RET>
500 STOP <RET>

600 END <ESC)>

* E_<RET>

1I-24

Now the file has been created. There may be some syntax

errors in this Program. Such errors can be checked by compiling

the program so give the command as

iii)

g7)

v)

$ FORTRAN ¥ A <HETS

If there is no error than after few seconds $ sign
appears on the screen otherwise the errors are dis=
played on the screen. After successiul completion of
the program the object file (A.0BJ in this case) is
created. The object file is necessary before a linker

is useds The method of using the linker is as follows:

$ LINK A <RET>

If the linking is done successfully then $§ sign appears
on the screen, otherwise the error is displayed on the

Screens To run the program the command is

RUN B A <RET>

After successful ruming of the program a $ sign
appears on the screen, After which the results can be
checked for the correctness. New user can give another
commands. This sequence can be explained using the
flowchart shown here.

After running the executable image (A.EXE in this

case) is created.

Now each time when the brogran is run there is no

need of compiling and linking it again if A.EXE is

in directory., Only the RUN command is required.

Debugging a FORTRAN Prograus

e

s i

The VAX/VMS operating system has a debugger with the help
of which debugging can be done interactively,Wthile using the
debugger, the program must be compiled with /DEBUG and i

NWPTIMIZE quaelifiers as follows:

$ FORTRAN/DERUG/. N®PTIMIZE % 4 <RETS

These qualifiers make the later use of the debugger program
possible with this FORTRAN Program.When the compilation is

complete use the /DEBUG qualifier to link the object module.

$ LINK/DEBUG ¥ A <RET>

Now when the RUN command is used to execute the program image
A+EXE, the debugger takes control and the debugging commands
can be used to stop the execution of the progran at a parti-

cular statement and examine and nodify a variable.

IMPORTANT VAX/VMS COMMANDS

The VAX/VMS commend language provides time sharing terminal
users with an extensive set of commands for (a) interactive
program development (b) device and data file menipulation
(c) interactive and batch program execution and cuntrol.
‘General format of a command is

[$] Command - nane [Qualifiers] [Pareameter-1]...[Parameter—n]

Where Dollar sign [$] is must for all command procedure
and it is not requiréd for interactive mode because in this
mode the system prompts $ sign. Brackets ([and]) are used to

surround optionalvalues. The qualifier is usec to modify

LI-26

the default action of a command, 4 plus sign (+) indicates cop-
caténatibn,mof files or parameters. 4 hyphen (=) mnay be used for
continuation on the next lines.

For “the convenience of the user, important commands are listed

and_described below: -

le ALLQCATE
FornatsALLOCATE device = name [:] [Logical - name i

The ALLOCATE commeand provicdes exclusive access to a device
and optionally establishes a logical name for the device.
Once a device has been allocated, other users can not access
the device until the user specifically deallocates it or log
out-is dones Co Lo

$ ALLOCATE DRAL:

= Di {-h.l a J*—ILL Ol\; _"‘LT E\:\J
The ALLOCATE comnend allccates a specific RMO3 disk drive,

unit 1 on controller A,

Notes= Donrt try to allocate either users disk or system

disk

2, APPEND

Fermate

$ APPEND ANpUt~file=Spec, suse.. s output=~fil e~Spec.

The APPEND command adds the contents of one Or more specified

input files to the end of a specified output file. e.g,

$ APEEND TEST.DAT NEWEST (DAT

The APPEND command appends the contents of the file TEST ,DAT
from the defeult disk and directory into the file “NEWTEST ,DAT.,

1I-27

$ APPEND/NEW/LOG *,TXT MEMO, SUM

The APPEND command appends all files with types of TXT to a
file named MEMO,SUM, The LOG qualifier request a display of

the specification of each input file .appended.

3. ASSIGN

Format:

ASSIGN device-name [:] logical-name [:]

The ASSIGN command equates a logical name to a physical
device name, to a complete file specification or to another
logical name ang pPlaces the equivalence nare string in the
pProcess, group or systenm logical name table. EeLe

$ ASSIGN DRAI: [CHARLES] CHARLIE

$ TYPE CHARLIE,DAT

The ASSIGN command associates the logical name CHARLIE with
the directory name CHARLES on the disk DRAl. Subsequent
references to the logical name CHARLIE results in the
correspondence between the logical name CHARLIE and the disk

and directory specified.

4., CONTINUE

Format:

CONTINUE

Fhe CONTINUE command resumes execution of a DCL command,
a program or a command brocedure that was interrupted by
Pressing CTRL./Y or CTRL/C, The CONTINUE command can also

Serve as the target command of an IF or ON command in a command

B ok g R

II1-28

Procedure or following a lapel that is the target of a GO TO
comnmands eege
$ RUN _MYPRG
LIRL /Y
3 LHOW TIME
1-MAY 1985 14:02:59
$ CONTINUE

5. COPY

Format:

Cory input—filu-spec,.....output—filenspecg

The COPY command Creates a new file from one or more existing
files. The COPY commend cans (1) COPY one file +to ancther

file (i) concatenates more than one file into a single out

put file (iii) COPY a group cof files to another group of files.,
Belle

The COPY commsnd copies the contents of the file TEST.DAT

from default disk and directory into a file named NEW TEST,DAT,

$ COPY *.com [RAJ o DATA]

The COPY command Ccoples the highest versions of files in the

current default directory with a file type of COM to the

subdirectory RAJ . DATA,

$ MOUNT MTBI: TAFE

$ COPY TiPE: *,%; %

The COPY command uses the logical name TAPE for the input

file specifications, requesting that all files on the tape be

copied to the current default disk and directorys. All the files

copied retain their file name and file types.

6. CREATE

Format:

CREATE file-spec

The CREATE command crcates a sequentiel disk file from records
that follow the command in the input stream or create a
directory file. e.g.

$ CREATE A ,DAT

Input line one ooee

Inpu‘t lll’le WD e tots o

CTRL/Z

$

After th. CREATE command is issued from the terminal, the
system reads input lines into the sequential file A.DAT until
Cﬂﬂthmmhmt%'meimmm

$ CREATE SHAR..COM

$ DECK

$ FORTRAN SHAR

$ LINK SHAR

$ RUN SHAR

$ EOD

$ SHAR

This batch job eXample illustrates using the CREATE command

to create a command procedure from data in the input stream.

II-30

The DECK conuands is required so that subsequent lines that __ .

begin with a dollar sign are not executed as commands, but
are accepted as input records. Then the procedure is exXecuted
with the (Execute Procedure) command,

$ CREATE/DINECTORY DRALl: [SHAR]

The CREATE command Creates a directory named SHAR on the
device DRAL. Creating a directory requires privilege. Where
as creating a subdirectory Tequires no privilege oo

$ CREATE/DIR DRAL: [DASON.FROG] .

7e DEALLOCATE

Format:

DEALLOCATE [device~nanme L2]]

The DEALLOCATE command returns a device that was reserved

for private use to the POCl of available devices in the system,
[y =

$ ALLOCATE MTB1:T, °E

- MTB1 : ALLOCATED
$ DEALLOCATE TAPE

8+ DEASSICN

Format:

DEASSIGN [logical-name [:]]

The DEASSIGN commanc cancels logical assignments made with
the ASSIGN, DEFINE, ALLOCATE or MOUNT COMManNdSe e Ze

$ ASSIGN A.TMP ¥ SYS $_OUTEUT

L]
L
L]
©
-
L

$ DEASSIGN ¥ SvS # _OUTPUT

I1-31

9+ DERII®

Format:

DEBUG

The DEBUG command invokes the VAX~11 Symbolic Debugger after
program execution is interrupted by CTRL/C or CTRL /Y. The
program image being interrupted must contain the debugger,
i.e. the image was linked with the /DEBUG qualifier and /or
run with the /DEBUG qualifier e.g.

$ EORTRAN/DEBUG/NOCPTIMIZE SUER

$ LINK/ DEBUG SUBR

$ RUN _SUBR
DEBUG version 1,2 10 March 198%

DEBUG~1- INITIAL, language is FORTRAN, scope and Module
set to 'SUBR!,
DBG > GO
ENTER NAME
ENTER NAME : wuncontrolable loop
ENTER NAME s .
CIRL /Y
$ DEBUG

QBG >

49092

10. DECK
Format:
DECK

The DECK command marks the beginning of an input stream for

II-32

a comwaud or program. It ic required in command procedures
when the first non blank. character i any data record in the
input, stream is a dollar sign ($). e.g.

$ FORTRAN A

$ LINK A

$ RUN A

$ DECK

Input line.one

. Input. line -two

$ input line -

$ EOD

$ PRINT SUMMARY ,DAT

11l. DEEINE
Format:

DEFINE logical-name equivalence-name

. The DEFINE. command creates.a logical table entry and assigns

an equivalance name string-to the specified logical name.

$ DEFINL PROCESS-NAME LIBRA

$ RUN _WAKE

12 DELELS)
Format:
DELETE/qualifier file-=spec/queue~-name/symbol-name

The DELETE. command deletes one or more:files from a mass

storage disk volume.:

B T T E ! e A e L - e \ bae. ps

ol s RS Sk g & s L ohE SNEtE. ot

24| ! . o BT

LI-33

Qualifier: /ENTRY with this qualifier deletes one or more
entries from a printer or batch Jjob queue.
/BEFORE The files created before the date specified
in this qualifier are deleted.
/AFTER The files created after the date specifies

in this gualifier are celeted.

$ DELETE _%,COM; */BEFORE = 01-JUN/LOG
The command deletes all version of all files with types com

that were either created or updated before June 1 this year.

13. DIFFERENCES

Format:

. ~vmille=5pec |compare-file-spec]
The DIFFERENCES command compares the contents of two disk
files and creaves a listing of the records that do not matche.

$ DIFFERENCES/IGNORE = (COMMENTS SPACING) ~ COPY,COM

14, DIRECTORY

Format:

DIRECTORY [f£ile-SpPeCsesss]

The DIRECTORY command provides a lists of files or information
about a file or group of files.

$ D TCTORY

$ DIRECTORY LOGIN.COM

15, DISMOUNT
Format:

DISMOUNT device-name [:]

1I1-34

The DISMOUNT command releases a volume previously accessed
with a MOUNT command. Example.

$ MOUNT MTAQ: PAYVOL TAPE

$ DISMOUNT _TAPE

164 EDIT

Format:

EDIT/editor file-spec

The EDIT command invokes one of the VAX/VMS editor.

editor = S0OS

= SLP
= EIT
17. EOD
Format:
EOD

Signals the end of a data stream in interactive mode.
$ RUN PRG

data

$ EOD

18+ FORTRAN

Formats:

FORTRAN file-spec.

The FORTRAN command invokes the VAX-11l FORTRAN compiler to

complete one or more source programs

Examples

II-35

$ FORTI AN A+B/LIST, C+D/LIT = ALL/OBJECI = ALL

For the first compnilation, the FORTRAN command

the files AJFOR and B.FOR to produce an object modele named
AJOBJ and a listing file named B.LIS. For second compilation
object module ALL.OBJ and a listing file named ALL.LIS are

producedes

19« HELP
Formats
HELP [keyword [keyword]se.. |
The HELP command displays on the terminal information avail-
able in the system HELP files.
Examples
$ HELP ASSIGN
Information on ASSIGN command will displaye.

$ HELP ASSIGN PARAMETERS

Information on ASSIGN commaend parameters will display.

20. INITTALIZE

Format:

INITIALIZE device-name [:] volume-label

The INITIALIZE command formats and writes a label en a mass
storage volume.

Examples:

$ ALLOCATE MT:3:

- MTBL : ALLOCATED
$ INITIALIZE MTIBl: SOURCE

$ MOUNT MTBL: SOURCE

7« MOUNT~I1~MOUNTED,SOURCE mounted on - MTBl:

II-36

$_COPY * FOR MIB1

$_DIRECTORY MIBEL:

file detail will be displayed.

o

$_DISMOUNT MIB1:
The volume (Tape or Disk) must be physically mounted before

giving the command INITIALIZE and MOUNT,

21, JOB
Formats
$ JOB User-name
The JOB command identifies the beginning of a batch job
submitted through a system card reader,
Example:
$_JOB RAJ

$_ RASSWORD RAJ

3 _ON WARING THEN EXIT

$ FORTRAN_SYS § INPUT: AVERAGE

Fortran source Deck

-
L]
L]

$_LINK AVERAGE
$_RUN AVERAGE

data records .-for program average

LN

$ PRINT AVERAGE

$ EOJ

1I=-37

22, LIBRARY

Format:

LIBRARY /fqualifier library [file-spec,....s]. The LIBRARY
command creates or modifies an object module library or a
macro library or inserts, replaces or lists modulues,
macros or global syimliol names in a library.

Example:

$ LIBRARY/CREATE TESTL.IB ERRNMSG, STARTUP

e — e

The LIBRARY command creates an object module library named
TESTLIB. OBJ and places the modules ERRLSG. OBJ and STRATUP.
OBJ in the library.
Qualifier
JCREATE -~ create the object modules library
/INSERT - insert the modules in the library

/LIST - output written to a file specified.

23, LINK
Format: .
The LINK/qualifier file spec.,
The LINK command involves the VAX-11 linker to link one
or more object modules into a program image and defines
execution characteristics of the image,
Qualifiexr
/DEBUG ~ involes symbolic debuggen
/MAP/FULL - request full map of the image and
MAP type of file created.
/RSX 11 ~ Involves the RSX-11 M task builder to

build a RSX-~11l M image

11-38

$ LINK/NAP/FULL DRACO, CYGNUS, LYRA
$_LINK/RSX1l AVERAGE
24, LoGgOUT

Format:

LOoG OUT

The LOGOUT command terminates an interactive terminal
session,

Example:

$ LOG

logged out at 10-March-1985 15:15:15.15

25, MACRO

Format:

MACRO/qualifier file-spec,,...

The MACRO command involves the VAX~-11 MACRO assembler to
assemble one or more assembly language source programs,

If qualifier/RSX 11 is specified, the MACRO command involes
the MACRO-11 assembler, all other qualifier apply to both
the VAX~11 and the MACRO~11 assembler,

Examples

3 MACRO ROUT

If this command is executed in a batch_job, the assembler

also creates a listing file named ROUT,LIS.

26. MAIL
Format:
MAIL file-spec,

Sends a message to another user or a group of users,

Example:

§ MAIL

MAIL > READ

message
MAIL > SEND
TO : SYMGR

SUBJECT : SYSTEM TROUBLE

MESSAGE : 'TYTC 5 (LA 120) IS NOT WORKING!
PROCESSING MAIL

NO ERRORS

~ DONE -

2%. MOUNT

Format:

MOUNT device-name,..... [volume-label,..] [logical-name[:]]

The MOUNT command makes as volume and the files or data
it contains available for processing by system commands
Or user programs,

Example:

$ MOUNT MTAO: MATHO6 ‘~TAPE

7# MOUNT - I — MOUNTED' MATH 06 MOUNTED ON - MTA ¢:

28, PASSWORD

Format:

PASSWORD password

1I-40

The PASSWORD command specifies the password associated with

the user name specified on a JOB card for a batch job submitted
through the system card reader.

Example:

$ JOB SHASTRI

$_PASSWORD RAVI

$ EOJ

29+ PRINT

Formats '
PRINT/qualifier file-spec.
The PRINT command queues one or more files for printing on
a default system printer or on a specified deviﬁe,
Qualifier/COPIES - No. of copies to be printed.
/HEADER - output block header at beginning of
each file,
/DELETE - immediately remove the file from your
directory and delete it after printing.
Example:

3 PRINT/COPIES=3/HEADER ABPHA ,TXT /NO IDENTIFY,

3@. PURGE
Format:
PURGE file-spec,
not
The PURGE command deletes all butgﬁhe highest numbered version

or versions of a specified file or files,

Example:

4 PURGE *,COM

§ PURGE AVERAGE .FOR /KEEP=2

1I-41

The PURCE command deletes 111 but the two highest numbered

versions of the file AVERAGE.FOR.

31. RENAME

Format:

RENAME input-file-spec output-file-spec,

The RENAME command changes the directory name, file hame,
file type or file version of an existing disk file,
Examples

3 RENAME AVERAGE.OBJ GINGER _OBJ

32. RUN

Format:

RUN file-spec,

The RUN command places an image into execution in the process.
The file type is assumed to be . EXE.

Example:

$_RUN LIBR/A

33. SET

Format:

SET option/qualifier device-name.,
where the options are
[NO] CONTROL-Y
DEFAULT

MAGTAPE

PROTECTION

QUEUE

TERMINAL

[NO] VERIFY

1I-42

The qualifier depend upon tie options and its characteristics
the different qualifiers are .

/SPEED - speed of device,

/FOREIGN - Mass storage volume as foreign

/DENSITY - Density of Magnetic tape

/PRIORITY~ Priority of the process

JENTRY =~ Entry of the process in a particular gueue

/WIDTH - Width of the terminal

/PAGE ~— Page length

/QUOTA
Exampte:
24 $ SET __ .[NO] CONTROL-Y
ii) $ SET DEFAULT DRAL:
iid) $_SET MAGTAPE MTB1:/DENSITY =1600
iv) $ SET PROTECTION =(GROUP=RWED,WORLD=R)
v) $ SET QUEUE SYS $ BATCH/ENTRY=211/HOLD/NAME=TEST,
vi) $ SET TERMINAL /WIDTH=132/SPEED=9600/PAGE=66 TTC2
vii) $ SET VERIFY
34, SHOW
Formats

SHOW option/qualifier
options

[DAY] TIME

DEFAULT

DEVICES

MAG TAPE

PRINTER

PROTECTION

TERMINAL

QUEUE

SYSTEM

The SHOW command displays information about the current
status of the process, the system or devices in the system.
Examples:

5 $ SHOW DAYTIME

10-MARCHE=1985%
5.4:) 4 SHOW DEF,ULT

DRG1l: [ALPHA]
4 SET DRFAULT DRA @3 [RAJ.SYS]

4 SHOW DEFAULT

D4 ¢ :[RAJ.SYS]
iii) $ SHOW MAGTAPE MTA (s

MT/AQs UNKNOWN, DENSITY =8(¢,FORMAT=NORMAL~-11 ODD PARITY
iv) $ SHOW PRINTER LPAQ:

LPAG: LP11l, WIDTH=132, PAGE=64, NOCR,FF, LOWERCASE
DEVICE spooled to DRAQ:
v) ¢ SHOW PROTECTION

SYSTEM=RWED ,OWNER=RWED ,GRCUP=RE , WORKD=NO ACCESS.
vi) $ SHOW QUEUE/DEVICES

%*DEVICE QUEUE " LPAQ:!'' FORMS =0 GENPRT GFLAG
#*DEVICE QUEUE " LPB(: " FORMS=(GEN PRT GLAG
35, SORT
Formats:

SORT/qualifier input-file-spec. output-file-spec.

I1I-44

The SORT command invokes the SCRT utility program to recoxrds
in a file into a defined sequence and to create a new file of
the recordered records,

$ SORT/RSX11 CUSTOMER.FIL/FORWAT=(FIXED,80) ALPHA,SRT/KEY=(1,20)

The SERT command requests a default alpha numeric sort on the
records in the file CUSTOMER., FIL, The SORT program sorts the
records based on the contents of the first 20 character in
each record and writes the sorted list into the output file
ALPHA .SRT.,

36. SUBMIT

Format:

SUBMIT file—=SpCCacess

The SUBMIT command enters a command procedure in the batch

job queue.

Example:

i) $ SUBMIT AVERAGE |
Job 112, entered on queue SYS $ BATCH.

ii) $ SUBMIT/NAME = BA24/HOLD TEST ALL

Job 467 entered on qucue SYS $ BATCH
The SUBMIT command enters the procedure TEST ALL.QOM for
processing as a batch job but in a HOID stgatus., The Job
will not be released until the SET QUEUE/RELEASE command
is issued, The/NAME parameter requets that the batch joh
be identified as BATCH:24.
37+ TYPE
Format:

TYPE filO‘—SpEC * 380 90

I1I-45

The TYPE command displays the contents of a file or group
of files on the current output device.
Example:

$ TYPE COMMON,DAT

38. UNLOCK

Format:

UNLOCK file-=speCeaes..

The UNLOCK command makes accessible a file that becane

in accessible as a result of being improperly closed.

Example:

$ TYPE TEST FILE,.QUT

7> TYPE-E-OPEN IN, error opening DRALl: [MALCOLM] TEST FILE
OUT, 3 as input

~ SYSTEM-W~-FILEZ LOCKED, file is decaccessed locked.

$_UNLOCK TESTFILE :,0UT

TYPE TESTFILE .OUT

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046

