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COMPUTER BASED MODELS

Groundwater hydrology is a quantitative science and

mathematics is one of its principal dialects. It will

be unwise to ignore the powerful tools of the groundwater

trade that rest on an understanding of mathenatics. The

mathematical

methods upon which classical studies of

groundwater flow are based were borrowed by the early

researchers from areas of applied mathematics originally

developed for the treatment of problems of heat flow,

electricity and magnetism. With the advent of the digital

computer, many of the important recent advances in the

analysis of groundwater system have been based on much

different mathematical approaches generally known as

numerical methods.

To fully define a transient boundary value problem for

subsurface flow, one needs to know

i) the
ii) the
iaa the

the
iv) the

V) the

size and shape of the region of flow,
equation of flow within the region,

boundary conditions around the boundaries of
region,

initial conditions in the region,

spatial distribution of the hydrogeologie °

parameters that control the flow, and

vi) a mathematical method of solution,
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If the boundary - value problem is - for a steady - state

syst m, requirement (iv) is removed,

Consicer the simple groundwater flow problem

illustrated in Figure 1.

xxaM/‘/‘WW%/YWF/Vyf/‘/% AR D
gy AL >

The region ABCD contains a homogeneous, isotropic porous

medium of hydraulic conductivity Klv The boundaries AB and CD
are impermeable, The hydraulic heads on AD and BC are

hl and h2 respectively. Assuming steady flow and setting

h1 = 100m and h, = Om, the hydraulic head at point 'E' will
be 50m. Apparertly the implicit use of properties (i), (iii)
and (v) have been made and the solution has been arrived

at by inspection., If it is required to know the distribution
of hydraulic head in a complex flow domain that has been
shown in Figure 2, the equation of. flow and a mathematical

method of solution are needed,

TR L e
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The method of solution can be categorized into five

approaches :

il Solution by inspection

2, Solution by gre hical techniques

54 Solution by analog model

4., Solution by analytical mathematical technique
Do Solution by numerical mathematical technique

Tractable mathematical solution to boundary wvalue
problems can be obtaincd provided the medium is homogeneous
and the boundary conditions. are idealized, The following
two boundary vd ue problems have been discussed as examplies:
consider a confined aguifer bounded by a fully penctrating
straight river reach on one side and extending to infinity on
the other side. The aguifer is of uniform thickness and is
homogeneous (Fig, N
Let the river - adx ifer system is initially at rest condition
i.e. the water level in the river and the water table position

in the aquifer at all places are same,
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Let the river stage attains a new position instanta-
neously, and let the dravdown in the river stage is o. Let
the river stage after attaining the new position remains
uncharged indefinitely. For such an idcalized flow domain

the governing differmtial eguation is

38 _ 9 9% vena(1)

ot T‘ngi

in which

s = drawdown measurcd from the datum codnciding with the
initial water table position,

T = transmissivity,

storagc coefficient.

The solution to the lincar partial differential equation for
the initial condition s(x,0) = o, and boundary conditions

s(o,t) = ¢ is given by

V4pt

S(i,t) = [ 1= ert (Eo) ] ()
5 2
where erf (Y) = T%Lm éY e™% dz

and B = %¥

The flow at any secction is given by the expression

Ot = = Vﬁggﬁ_ o md e | B
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If the boundary condition changes with time, solution for
drawdown and flow for the variable boundary eondition can be

arrived making usc ol equation 2 and 3 as follows

Let K(t) = 1 — erf (V’E.}GE.E)& o---a(4)
i
8 (b)) = [ 2ola) e oy enis 4 ((5)
o) 0z
¢ _salz)
S v = ‘ Ogolz I G S ) 6
(x,t) {J 2 [ rf ( e Jdz.(6)
and
£
QlE,t) =2 = 90(z) e U2 ke o)
g O Vrg(t-2)
At t=0
) < b b
i __7._' o AT, r v
W e
At o gl ViSO

fRug =%
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Let us consider a 2nd example in which a prescribed
flow rate is the boundary condition at one end and at other

end a fixed head boundary condition exists.

T ey
D | ) 2
v l
e e S v ~
Assuming that the Dupuit Forchheimer ¢ assumptions are wvalid,

the two dimensional problem in X,¥ plane can be regarded as a
one dimensional flow problem. The governing differential
equation will be
.Q?,h_ I oh
o ot
3%2

This equation is to be solved subject to the boundary conditions

-KD g.:};% (O,'t) = %

h (w,t) = 0O,
and the initial condition

~h(x,0) = o.

The solution is given

by
aV4npt x g E~u2

(Glover,1977)
B = o rape) 4 & au



which simplifiecs to

%
aV4npt , x SR ; =
h = &b e ey SCa ) V—‘ﬂ: R e = 1 ) f rre—
D KD (v4n;t [ A (V4ﬂt)]

X 1

o
yage ¥
The flow rate at any section is given by

b'd .

The error function can be evaluated using the following
rational approximation (Abramowitz: and Stegun’, 19591 .

&
5 +e(x)

3 4 L5
erf(x) = 1 - (alt+a2t2+a3t ra tiragt)e
p=.3275911, a,=.254829592
a,=-.284496736 a,=1.421413741

a =-1,453152027 a5=1.06l405429
4
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In case of linear system the timec parameter can be conven-
iently discretised and within each time step the imput to the
system ean be assumed to be constant but it can vary from time
step to timestep. Knowing the response of the system for a unit
puls excitation, solution to the boundary wvalue problem can be
conveniently obtained. The problem becomes simple when the flow
domain is homogneous. This method is recognised as discrete
kernel method and tractable solutions for may complex boundary
value problem have been obtained by this approach., The method
of solution to flow in an aquifer by diserete kernel approach
when a group of wells arc operating has been explained herc.

Let a confined aquifer which is homogeneous and
isotropic be initially at rest condition, Let a unit
impulse quantity is withdrawn at t = 0, from a fully
penetrating well of very small diameter, The drawdown
at a distance r at time + is known as unit impulse

kernal and is given by

2
= /4rt ‘
k (t) = Engﬁﬁ;J:~= 2R = T/ e et LY

in which T = transmissivity and

$ = storage coefficient.

3
When a unit quantity of water (say 1 m~) is
withdrawn in the lst unit time period (one unit time

periocd may be 1 hour, 4 hours, one day, one week ete. i,
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. th .
expression for drawdown at the end of m unit time
period can be derived making use of equation 1 and it
is given by

2
AT T R

1
E)r ( 1'1’1) = é‘ m-m,_,,z o 2z 3

Where ar(m) is known as discrete kernal for drawdown.
Discrete kernal is nothing but the response of a linear
8ystem whéu a unit pulse excitation is given to a system

during the first unit time period,.

2
Substituti =
ubstituting u e ey
2
dz = ce—ef . du

in equation 2, ér(m) is found to be
7 r2 9

where El(X) 1s an exponential integral defined as

oo - Y
— e
By (X) = £ S dy.

Fer any positive integer wvalues of m, Or(m) can be
evaluated using equation 3, The transmissivity term
appearing in equation 3 should have the dimension of
(length)2 per 'unit time period. The exXpo.ential
iutegral appearing in equation (3) can be evaluated

in the following manner :
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The exponential integral E1(X) for 0 £ X < 1 can be

evaluated using the expression

4

g XJ s lor; X = & # 2 ¢ 2 3
By < = 1 X+a, 2, a3 X~ + a, X°

5
t a5 X 4+ g (X)

| (x) | < 2 x 107

Where,

dy = =~ 37721 566

8y = .99999 193

8 = = ,24991 055
=  .05519 968

a

4 = .00976 004

ag = .00107 857

X X2 + a X + a
X e El ( X ) = —u=t9,a-.-‘_..r.._;...wmr_._ﬂ.._g
SRS b,
Where,
4, = 2.334733
by = 3.330657
b, = 1,681534

2

Use of Discrete Kernel to Evaluate Drawdown for Variable

pumping Rate,




IT1-11
Let water is whithdrawn which varies with. time from
a@ single well as shown in Fig.l. Let it is required to
find drawdown at an observation point which is locatked at

a distance r from the pumping well,

Making use of equation 1, the drawdown at the end
of nth unit time period can be written as

2
n ..rﬁ/‘f!-;:; (1’1-—-2)
o G S
Sr(n) = [ .z L Saea. (B
0 4 71 T (m=-z)

Discretising the time span into n unit time step
and assuming that within each time step, the withdrawal
rate is constant but varies from step to step equation 4
can be written as
e—r2/4ﬁ (n—=z)

e e 3

A1
J
0 4 m T (r~z)
2
J
i

| Sr(n) Q(1)

=I' /4R (HR=z
+ Q(2) -£ ”./.J,i__,,,),__ dz
4 5w T (n—z)
=T /48 (n-z)
et S0 G S

r
+ Qln) F s L plaveronesl B

r >
or 8_(n) =1 aly) / ) N U
Y=1 Y-1 4 n T (n-z)

et z -y +1 =Y

or z =Y 4+ y - 1 and dz = dy

Making these substitutions in equation 6
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—rz/ 46 (n-y+1-Y)

n 1L
5.(n) =Y§1 a(y) { -5 U e e A SOOI
or

n
Sr(n) =Y§1 Q(y) 9 (n-y+1) i e B)

Thus drawdown at the end of first unit time,
8 (1) = &(1).a(1)

drawdown at the end of second unit time is
Sp(2) = (). o(d) + a(2).0@).

Thus, o (1), 8(2), ...... d(m) can be calculated
and stored, Using these values the drawdown for any
pumping pattern can be calculated. If several wells are
operating, the corresponding discrete kernels can be cal-
culated and using the superposition the resulting drawdowns
can be calculated. Thus

S_(n) = % Ql(y).éi (n-v+1)

P n
& =il 'Y:l

Where P is the tetal number of pumps operating,

r2
L ™ =
o M) = e @ SR
al (m) T il! ( 4B m )

r,
" e

i

i1 = distance of i-th well from the observation point.
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The discrete kernel approach is not limited to the
rare situations when the pumping kernel function is known
analytically., For heterogeneous aguifers, of finite size
and intersected by a stream, the mcthodology has already
been developed and implemented on the computer (morel-

Seytoux and Daly, 1975).

The advantage of the methodology results from the
follewing facts :

(a) A finite difference model is used only to gecnerate basic
response functions to specialized excitations in an
aguifer without any strcanm interaction. Once thesc basic
responsc functions havc been calculated for a particular
aquifer and saved, simulation of the agquifer behaviour
to any pumping pattern is obtained without ever making
use any longer of the numerical (e.g., finite difference)
model,

(b) Because the finite difference model is used only to
generate the response functions smaller grid sizes and
time increments can be used to calculate accurately the
influcnce coefficicnts than is usually feasible when
performing a large mumber of simulation runs under many
varied pumping patterns. Also with this procedure the
accuracy of the calculations for an actusld simulation
remains that with which the influence coefficients were
obtained. On the other hand in typical simulation approaches

the accuracy of the finite-difference podel is usually




ITT-14

tested against an analytical solution using small timc and -
Space increcments. When the simulator is uscd on an actual
aquifer, vastly diffcerent time and Space incrcmcents
arce used and the accuracy of the results is to a
large degree unknown.

(¢) Because the rcsponse functions are known explicitly
in terms of the controllablc (decision) variablcs many
management problems can be solved through the eofficient
algorithms associated with = well structurcd Mathematieal

Programming formulation,
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When the flow domain is nonhomogeneous and irregular

and the boundary conditions and initial conditions arc compe— :

plex, numerical methods should be applied to solve the
goundwater flow problem. The approach to arrive at the
Bonssinesq's equation which describes unsteady groundwater
flow in nonhomogeneous isotropic aquifer is described
here,

The basic equation which describes a two dimensional

unsteady flow in an isotropic aguifer is derived as follows:

Consider a vertical column in the flow domain at some
point x, y as shown in Figure 1. Let the flow eonditions
are such that the Dupuit assumptions stated below are

valid.

Dupuit assumptions :
1) For small inclination of the line of secpage the
stream lines can be taken as horizontal, and hence,

the equipotential lines aro vertical.

i) The hydraulic gradient at any scction is given by

slope of the free surface and it remains invariant

with depth.
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High Datum
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layer

The mass balance for an incompressible fluid for the peried
t to t + At can be written as :
Trtal quantities of inflow in time at
= Total quantities of outflow in time ot
+ quantities gone to storage. (1)
Total inflow in time span t
=qx.ay At + qy o BE & AT,
in which
qX = quantity of flow in x direction per unit time per
unit length in the direction of vy
q = quantity of flow in y direction per unit time per

unit Jergth in the direction of x,.

Total outflow in time span ot

0g
(ay + B?CLWAX) AY. ot

il

oq

2 (qy * B,B}X,way) AX. 8T + g aAxAayat

£ ; : - s : 1_,_,..-“.,.\4{“_:\,.,,*.-.
/\K //(::\ Imperviousﬁ ///]\W\\
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in which g is the net withdrawal from agifer storage per

unit area per unit time,.

Let the average water table position changes from h to
h +4h in time span Ac.

The quantities gonc t. storage is given by

ah . § .ax .pay
Where, @ is the spedific yiedd for unconfinedaguifer and it
is equal to storage osefficient for a confincd agquifer,

Substituting tic different terms in equation (1)

= Bt e ceena(2)
iMoo s oh_ _ _ 9s.
Since H = h + s, therefore, s - = .
. : dh ds . _
Replacing T by - ggm » equation (2) reduces to
dg .. 90 ~ .9 N
O 3T T (a,) oy (qY) =4 (3)

Let the flow domain is divided into a grid system as shown

belows:




. 3 o L | f i - i ]
= Ji' e _?____l LA ,.,_._,-A{I.;,h: e ___,_Tl:_E_Jﬂ wf-—v B "’J;-E'—}"’g"‘g"“"_‘"““_"’ T
: .—") | s 0 . L4 L‘ ¥ j v “1
x|d=1/2, 3+ el Rx|i+1 2,
ldlbt :15 }‘Area of influence

| Sl ol ) for node i, j

y| i, 3-142

po——ee L L Mo 1
! | i,5=1
i
AY !
' i 5 i
i 5 i
N
. N e |

Fizure 2

Y l1/2,9 = Jiay2,5

ety o o IHESRTISE S S

pav.e

Ay |i+1/2,3 etc are given by
(8. . =S
Ay |141/2,3 = Tit1/2, 3 m,_ifif.gm,_.ﬁbiﬂm,
AX
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' O :
U l1-1/2,5 = Ti-1/25 51,5 = 511, 5]

—
2T ., .
- Tl ey
N e e
A

ORI - L gl S
B meaﬂc.mﬂqumLLJiLLQm_wELAL%LJ:;[ﬁgr.
DY

i (o _(‘“
U |1,341/2 = T, g41/2 (S5 540 =S¢ 4)
INY

T .+ T, .
1sd l;J"l
The finite diffcrenco form of the equation at node 1,9, 1

an ADI scheme is as follows

.

¢ipj Eiiign ,Tl’JL = R 141 /2,3 141, ] iyl

"~ Mie1/2,5 L8y, - Si~l?j{f

0
i ~8

AY

2] 0 .
- T. . Qi . =il + q. .
1,3/ S g 81,3-1Jj i




Y ]
O e 5]
Lyd 1,7 . 1 . [\_f g ]
ST 2] i.i41/2 Pi, 541 T P13
Y
= e L Sl
1 e “NE 7
= ./ . : N
Ax 3 HL2,9 oo

Thus one ADI cycle involves two successive time steps of
dur=tion gyt.

After writing the cquation at all rnodal points in a flow
domain with known initial and boundary conditions the linear
algebraic equations are solved to find the drawdown at
different necdecs at different time in Succession starting from
time step one. Such huge calculations are only possible by

a computor.
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