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III-1 
COMPUTER BASED MODELS 

Groundwater hydrology is a quantitative science and 

mathematics is one of its principal dialects. It will 

be unwise to ignore the powerful tools of the groundwater 

trade that rest on an understanding of mathematics. The 

mathematical methods upon which classical studies of 

groundwater flow are based were borrowed by the early 

researchers from areas of applied mathematics originally 

developed for the treatment of problems of heat flow, 

electricity and magnetism. With the advent of the digital 

computer, many of the important recent advances in the 

analysis of groundwater system have been based on much 

different mathematical approaches generally known as 

numerical methods. 

To fully define a transient boundary value problem for 

subsurface flow, one needs to know 

the size and shape of the region of flow, 

the equation of flow within the region, 

the boundary conditions around the boundaries of 

the region, 

the initial conditions in the region, 

the spatial distribution of the hydrogeologie 

parameters that control the flow, and 

a mathematical method of solution. 
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If the boundary - value problem is - for a steady - state 

syst m, requirement (iv) is removed. 

Consider the simple groundwater flow problem 

illustrated in Figure 1. 

The region ABCD contains a homogeneous, isotropic porous 

medium of hydraulic conductivity K
l
. The boundaries AB and CD 

are impermeable. The hydraulic heads on AD and BC are 

hl  and h2 respectively. Assuming steady flow and setting 

h
1  100m and h2 . Om, the hydraulic head at point 'E' will 

be 50m. Apparettly the implicit use of properties (i), (iii) 

and (v) have been made and the solution has been arrived 

at by inspection. If it is required to know the distribution 

of hydraulic head in a complex flow domain that has been 

shown in Figure 2, the equation of. flow and a mathematical 

method of solution are needed. 
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The method of solution can be categorized into five 

approaches : 

Solution by inspection 

Solution by grqphical techniques 

Solution by analog model 

Solution by analytical mathematical technique 

Solution by numerical mathematical technique 

Tractable mathematical solution to boundary value 

problems can be obtained provided the medium is homogeneous 

and the boundary conditions are idealized. The following 

two boundary value problems have been discussed as examplies: 

consider a confined aquifer bounded by a fully penetrating 

straight river reach on one side and extending to infinity on 

the other side. The aquifer is of uniform thickness and is 

homogeneous.(Fig. 3). 

Let the river - acilifer system is initially at rest condition 

i.e. the water level in the river and the water table position 

in the aquifer at all places are same. 

• 
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Lot the river stage attains a new position instanta-

neously, and lot the dratdown in the river stage is a. Let 

the river stage after attaining the new position remains 

uncharged indefinitely. For such an idealized flow domain 

the governing differential equation is 

p2
s 

 

at  
3x 

in which 

s = drawdown measured from the datum coinciding with the 

initial water table position, 

T = transmissivity, 

storage coefficient. 

The solution to the linear partial differential equation for 

the initial condition s(x,o) = o, and boundary conditions 

s(olt) = a is given by 

S(x,t) =[ 1 - erf (21--) ] 
V4pt 
Y -z2  where erf (V J' 
0  _ dz 

fa 0 

and p = 

The flow at any section 15 given by the expression 

Q(x,t) = - Nit (3) 

(2) 
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If the boundary condition changes with time, solution for 

drawdown and flow for the variable boundary rendition can be 

arrived making use of equation 2 and 3 as follows : 

Let K(t) . 1 - erf 
(rAti)  F  (4) 

t 
(x,t) = y Oc(z) K (t-z) dz (5) 

Oz 

(x,t) = r oa(z) erf ( x  )]dz.(6) 
Oz 1f4p(t-z) 

and 

(x,t) 8(5(7)  
az  dz 

irnp(t-i) 

 

(7) 
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Let us consider a 2nd example in which a prescribed 

flow rate is the boundary cone ition at one end and at other 

end a fixed head boundary condition exists. 

Assuming that the Dupuit Forchheimer assumptions are valid, 

the two dimensional problem in x,y plane can be regarded as a 

one dimensional flow problem. The governing differential 

equation will be 

a
2
h = T oh 

8.
2. at 

This equation is to be solved subject to the boundary conditions 

-KD At (0,t) . 9 
3x 

h (00,t) = o, 

and the initial condition 

h(x,o) = o. 

The solution is given by (Glover,1977) 

h  = qf41Tt 
(1r:
b

.) e-u 
211KD „pt x 77 du  

f4pt - 
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which simplifics to 

h _ 0-4nPt (2L- ) fit [ 0-  4 
2-11KD f4C.t 

relTi 11-11  
The flow rate at any section is given by 

q = a [1 - erf  x 2 miTt 

The error function can be evaluated using the following 

rational approximation (Abramovitz-4. and SteguW, 1959- 
It 

erf(x) = 1 - (a1t+a2t2 t +a3 3+a4t+a5t5)e,-x-+e(x) 

p..3275911, a
1
=.254829592 

a2.-.284496736 a3=1.421413741 

a =-1.453152027 a
5=1.061405429 4 

- 1 erf  
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In case of linear system the time parameter can be conven-

iently discretised and within each time step the imput to the 

system can be assumed to be constant but it can vary from time• 

step to timostep. Knowing the response of the system for a unit 

puls excitation, solution to the boundary value problem can be 

conveniently obtained. The problem becomes simple when the flow 

domain is homogneous. This method is recognised as discrete 

kernel method and tractable solutions for may complex boundary 

value problem have been obtained by this approach. The method 

of solution to flow in an aquifer by discrete kernel approach 

when a group of wells are operating has been explained here. 

Let a confined aquifer which is homogeneous and 

isotropic be initially at rest condition. Let a unit 

impulse quantity is withdrawn at t = 0, from a fully 

Penetrating well of very small diameter. The drawdown 

at a distance r at time t is known as unit impulse 

kernal and is given by 

e- r
2/4pt 

k (t) p = T/4   (1) 

in which T = transmissivity and 

0 = storage coefficient. 

When a unit quantity of water (say 1 m3) is 
withdrawn in the 1st unit time period (one unit time 

period may be 1 hour, 4 hours, one day, one week etc.), 
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th expression for drawdown at the end of m unit time 

period can be derived making use of equation 1 and it 

is given by 

1 -r2/4 (m_z) 
ar (m) = f e  dz 

0 4nT (m-z) 

Where
r(m) is known as discrete kernel for drawdown. 

Discrete kernel is nothing but the response of a linear 

system whetu a unit pulse excitation is given to a system 

during the first unit time period. 

2 
Substituting u = 

43 (m-z) 

dz _ r2 du 
2 

in equation 2, Or(m) is found to be 

2 
ar(m) - 1  I E ( r  )E l( 

r
2 

4nT 1 4pm 4p On --TT)]  (3) 

where E
1(X) is an exponential integral defined as 

Frr any positive integer values of in, o
r(m) can be 

evaluated using equation 3. The transmissivity term 

appearing in equation 3 should have the dimension of 

(length)2  per unit time period. The exponential 

integral appearing in equation (3) can be evaluated 

in the following manner : 

(2) 
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The exponential integral El(X) for 0 < X c 1 can be 
evaluated using the expression 

E1 (X) + log X - ao + a1 X + a2 x2 + a3 x3 + a4 X4 

+ a5 x5 + p (X) 

Where, 

1 C(X) 1 < 2 X 10-7  

ao= - .57721 566 

a1= .99999 193 

a2 ' - .24991 055 

a3 .05519 968  
a4 . .00976 004 

a5 =.00107 857 

for, 1 5 X < 00 

, X X2 + a
1X + a2 e EI (X) = 

X2 .4_ b X + b2  1 

Where, 

2.334733 

a2 = .250621 

b1 ' 3.330657 

b2 = 1.681534 

Use of Discrete Kernel to Evaluate Drawdown for Variable 
pumping Rate. 
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Let water is whithdrawn which varies withi time from 

a single well as shown in Fig.l. Let it is required to 

find drawdown at an observation point which is located at 

a distance r from the pumping well. 

Making use of equation 1, the drawdown at the end 
of nth unit time period can be written as 

2
/4p r (n-z) 

sr  (n) = f Q(z)P-  
Z5 dz   (4) 

Discretising the time span into n unit time step 

and assuming that within each time step, the withdrawal 

rate is constant but varies from step to step equation 4 

can be written as 

1 -r2/46 (n-z) Sr(n) = Q(1) f e dz 
0 4 it T (n-z) 

2 -r2/4p (n-z) Q(2) J' e dz 
1 4 n T (n-z) 

Q(r) J 0-r2/4p (n-z) 
dz 

Y-1  4 u T (n-z) 
2 

Q(n) y e-r /4/3  (n-z) dz (5) n-1 4 n T (n-z) 

or Sr(n) = E Q(y) I e-r2/4p (n-z) dz(6) y=1 1-1 

Let z - y + 1 = Y 

orz .Y+y-land dz dy 

Making these substitutions in equation 6 



1 -r2/ 4p (n-y+1-Y) Sr(n) = E 0(Y) I 
y=1 0 TrrçTr_yy—dY (7)  

or 

s
r(n) = E 0(y) a (n-y+1) y.1 

Thus •drawdown at the end of first unit time, 

Sr(1)= a(1).Q(1) 

drawdown at the end of second unit time is 

sr(2)= Q(1). a(4) +  

Thus, 6 (1), 6(2),  6(m) can be calculated 

and stored. Using these values the drawdown for any 

pumping pattern can be calculated. If several wells are 

operating, the corresponding discrete kernels can be cal-

culated and using the superposition the resulting drawdowns 

can be calculated. Thus 

Sr(n) = E 
: 01(Y)981 (n-Y+1)  y1  

Where P is the total number of pumps operating. 

2 
r. 

a. • (m) — 1 [E ) 4nT 1 4 p m 
2 
r. 

E1  ( 1  -47-Tm-1) ) 

ri = distance of ith well from the observation point. 

(a) 
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The discrete kernel approach is not limited to the 

rare situations when the pumping kernel function is known 

analytically. For heterogeneous aquifers, of finite size 

and intersected by a stream, the methodology has already 

been developed and implemented on the computer (morel-

Seytoux and Daly, 1975). 

The advantage of the methodology results from the 

following facts : 

(a) A finite difference model is used only to generate basic 

response functions to specialized excitations in an 

aquifer without any stream interaction. Once these basic 

response functions have been calculated for a particular 

aquifer and saved, simulation of the aquifer behaviour 

to any pumping pattern is obtained without ever making 

use any longer of the numerical (e.g., finite difference) 

model. 

(b) Because the finite difference model is used only to 

generate the response functions smaller grid siZes and 

time increments can be used to calculate accurately the 

influence coefficients than is usually feasible when 

performing a large number of simulation runs under many 

varied pumping patterns. Also with this procedure the 

accuracy of the calculations for an actula simulation 

remains that with which the influence coefficients were 

obtained. On the other hand in typical simulation approaches 

the accuracy of the finite-difference godel is usually 
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tested against an analytical solution using small time and 

space increments. When the simulator is used on an actual 

aquifer, vastly different time and space increments 

arc used and the accuracy of the results is to a 

large degree unknown. 

(c) Because the response functions are known explicitly 

in terms of the controllable (decision) variables many 

management problems can be solved through the efficient 

algorithms associated with a well structured Mathematical 

Programming formulation. 
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When the flow domain is nonhomogcneous and irregular 

and the boundary conditions and initial conditions are comp- 3 
plex, numerical methods should be applied to solve the 

goundwater flow problem. The approach to arrive at the 

Bonssinesq's equation which describes unsteady groundwater 

flow in nonhomogeneous isotropic aquifer is described 
here. 

The basic equation which describes a two dimensional 

unsteady flow in an isotropic aquifer is derived as follows: 

Consider a vertical column in the flow domain at some 

point x, y as shown in Figure 1. Let the flow conditions 

are such that the Dupuit assumptions stated below are 

valid. 

Dupuit assumptions : 

For small inclination of the line of seepage the 

stream lines can be taken as horizontal, and hence, 

the equipotential lines are vertical. 

ii) The hydraulic gradient at any section is given by 

slope of the free surface and it remains invariant 

with depth. 

Yrcr,‘ 



Free surface 

Impervious/4—
layer 

High Datum 

The mass balance for an incompressible fluid for the period 

t to t + At can be written as : 

Tltal quantities of inflow in time At 

. Total quantities of outflow in time At 

+ quantities gone to storage. (1) 

Total inflow in time span t 

= q
x 
. Ay .At .Ax .at, 

in which 

q
x = quantity of flow in x direction per unit time per 

unit length in the direction of y 

= quantity of flow in y direction per unit time per 

unit Iength in the direction of x. 

Total outflow in time span At 

Oq 
+ --I--Ax) ay. At 
ox 

Oq 
( n
Y OY 

(3,Y) 4X. ifAt q Ax Ay at "1  

q
Y  

= (qx 
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in which q is the net withdrawal from aqifer storage per 

unit area per unit time. 

Let the average water table position changes from h to 

h +Ah in time spanAG. 

The quantities gone storage is given by 

as 

Where, 0 is the spedific yield for unconfinedaquifer and it 

is equal to storage oDefficient for a confined aquifer. 

Substituting tce different terms in equation (1) 

eq x 
-+q+4) oh -0 ex ay at (2) 

Since H = h + s, therefore, Oh as 
at - at • 

Oh Replacing ot  as by - 7  equation (2) reduces to 
at 

(I) ( qx)(qy) = q (3) 

Let the flow domain is divided into a grid system as shown 

below: 
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means ±,i 
OqY  
ay 

Ii-1/2,j = li-1/3j  [s. 
T . 

6X 

_T T. 1-2-p i• Ti_1/2„. 7r.  T  

q I 
-4L-1  i,1+1/2 qY li,1-1/2 

GNY 

li,j+1/2 = T +1/2 (s1,j+1 19J1- 

AY 

T. 2T. T 
1,j+1/2 1+1 

Ir. T. a. 0+1 

T. (S. -S 
i,j-1/2 19j-1/2 1 ,j-1)  

T
i,j-1/2 _ 

2T 2,3  Titj-1 

The finite diffcrcncie form of the equation at node i,j in 

an ADI scheme is as follows : 

o 
s. ] 2 j[Si+1.9 j 19j 019j [siyi Sipj]  

At 

Ti-1/2yi Esiyi 1-120 
— s. 

0 
— 1  [s. . 9. 1,0+1 ,3  

+ . . q1,3 

q. 

qY  

T
1. 

+T. 
 
+ T

i,j -1 

_ .2.241-Ti,j+1/2 

T
, _ -1/2 

Es 
1, - 



..] 1,i 
— s 

 
— At  . _s .] c+1/2  1,3+1 1.0 

, [S - s 1,3-1/2 ipj 

[ - s. .] +1/2,j Si+1,i 1,3 

[S. S. - T
i-1/2pj 1,3 

-
1-1 + q. . 1,3 

X
i 

Thus one ADI cycle involves two successive time steps of 

duration t. 

After writing the equation at all nodal points in a flow 

domain with known initial and boundary conditions the linear 

algebraic equations are solved to find the drawdown at 

different nodes at different time in succession starting from 

time step one. Such huge calculations are only possible by 

a computer. 
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