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ABSTRACT 

A variable parameter simplified hydraulic method 

based on the approximation of the St.Venant's equations which 

describe the one dimensional flow in a channel or river has 

been developed for routing floods in channels having uniform 

trapezoidal cross section and constant bed slope. The gover-

ning equations of this method are same as that of Muskingum 

flood routing method and it has been demonstrated that these 

equations can directly account for flood wave attenuation 

without attributing to it the numerical property of the method 

as stated by some researchers. The parameters & and K viz., 

the weighting parameter and the travel time respectively, have 

been related to the channel and flow characteristics. Using 

this method the nonlinear behaviour of flood wave movement may 

be modelled by varying the parameters 6 and K at every routing 

time level, but still adopting the linear form of solution 

equation. 

The developed method has been applied for routing 

floods in four different channels having prismatic trapezoidal 

cross-section with different constant bed slopes and Manning's 

roughness coefficients, and the results were compared with the 

corresponding St.Venant's solutions. Three different solution 

approaches have been used for routing floods in each channel 

corresponding to a reach length of 40 km. These approaches 

consists of considering the entire 40 km. length as a single 

reach and obtaining the solution by varying 6 and K; considering 
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the entire 40 Km. length as a single reach but obtaining the 

solution by varying K and keeping 8 constant; and considering 

the 40 Km. reach consists of 8 equal sub-reaches and obtain-

ing the solution by successively routing through these reaches 

by varying both 0 and K. It has been found from this study 

in general, the last solution approach is able to reproduce 

more closely the St.Venant's solution for both stage and dis-

charge hydrographs, when compared with the other two approa- 

ches. 

The theoretical reason for the reduced outflow in the 

beginning of the Muskingum solution has been brought out and 

the needed remedial measure to avoid it is suggested. Also 

it has been brought out from theoretical considerations that 

for Muskingum method, the maximum value of 0 is 0.5 and its 

negative value is admissible. 
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1.0 INTRODUCTION 

Flood routing is the process of tracking a flood wave 

as it propagates down a channel or a river. A great many di-

fferent methods and procedures for solving flood routing pro-

blems have been described in engineering literature. In gen-

eral, those methods that attempt a strict mathematical treat-

ment of the many complex factors affecting flood wave movement 

are not easily adaptable to the practical solution of problems 

of routing floods as they demand on high computer resources 

as well as quantity and quality of input data. In order to 

keep the amount of computation within practical limits and to 

confirm to limits ordinarily imposed by the type and amount 

of basic data available, it is generally necessary to use 

approximate flood routing methods that either ignore some of 

the factors affecting flood wave movement or are based on 

simplifying assumptions in regard to such factors. Approxi-

mate methods produce results at considerably less expense but 

are limited in generality and accuracy which is the penalty 

--One has to pay for their simplicity and low cost of usage. 

2lethodsof flood routing are broadly classified as em-

pirical, hydrological, simplified hydraulics and hydraulics. 

Empirical methods were generally developed from intuitive pro-

cesses rather than from mathematical formulation of the pro-

blem. Their application is limited in practice for situations 

in which sufficient observations of inflows and outflows are 

available to calibrate the needed coefficients (Fread,1981). 
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Hydrological methods are based on some mathematical formula-

tion of continuity equation in lumped form and, generally, a 

storage equation. 

formulation of the 

past observations. Simplified hydraulic methods may use con-

1967; Cunge, 1969 and Dooge et al., 1982) or in distributed 

tinuity equation either in lumped form (Hyami, 1951; Harley, 

form (Thomas and Wormleaton, 1970 and NERC, 1975) in addition 

to simplified form of the momentum equation of St. Venants' 

equations. The said simplification may be obtained either by 

curtailing certain terms based on the consideration of order 

of magnitude analysis of these terms 

So (Hyami, 1951; and Lighthill and Whitam, 

It is possible to classify certain flood routing 

techniques under the category of both hydrological and simpli- 

fied methods depending on the parameter estimation procedure. 

The typical example being the Muskingum method. The conven-

tional Muskingum method introduced by McCarthy (1938) may be 

classified as a hydrological method wherein the parameters K 

and A, respectively the travel time and the weighting coeffi-

cient are estimated based on the past observations. But the 

variations of the Muskingum method introduced by Cunge (1969), 

Dooge (1973), Koussis (1978) and Dooge et al.(1982) may fall 

under the category of simplified hydraulic method, wherein the 

Parameters K and U are related to the channel and flow 

The parameters involved in the mathematical 

hydrological method are evaluated using 

that of bed slope, 

1955) or by curtail- 

ing and replacing the terms by some appropriate approximation 

(Apollov et al.,1964). 

with 
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naracteristics. 

In practice hydrologic models are in vogue for many 

years. Well known among them are the Muskingum method (McCar-

thy, 1938),lag and route method (Meyer, 1941)and Nash Model 

(Dooge, 1973). These methods use the parameters calibrated 

from the past flood records for routing floods for the purpose 

of forecasting or simulation. Since the flood characteristics 

are likely to vary from one flood to another, it would be rash 

to assume that the parameters determined from one set of flow-

observations could be used to predict the behaviour of an al-

together different flood. This, in effect, limits the predic 

tive capability of the hydrological methods to floods similar 

to that used in the calibration, and any attempt at extrapola-

tion is unwarrented. This necessitates the use of simplified 

hydraulic models in practice which enables one to determine the 

parameters in terms of physical system characteristics. Such 

methods enables either flood analyses to be performed in area 

where data are not available in sufficient quantity and/or 

quality or do not exist at all or for studying the future be-

haviour of the system subject to land use change including 

channel improvement. Well known examples of the simplified 

hydraulic models are the linear convection-diffusion method 

introduced by Hyami(1951), Kalinin-Milyukov method (Apollov 

et al.,1964), the complete linearized model (Harley, 1967), 

Muskingum-Cunge method (Cunge, 1969) etc. 

The adoption of constant parameters simplified hyd-

raulic models for routing a flood wave is based on the 



assumption of linearity and this is in contradiction with the 

nonlinear property of flood waves. The wide use of constant 

parameter simplified hydraulic models such as Kalinin-Milyukov 

and Muskingum-Cunge methods in practice demonstrate that the 

accuracy of routing results is not severely affected. However, 

this aspect has not been conclusively proved. The constant 

parameters of these models are estimated based on the assump-

tion that the flow variation takes place around a reference 

discharge. This limitation produces distortion in the predic-

ted outflow when wide variation in the flow variable are con-

sidered. Keefer and McQuivey (1974) state that if the model 

is linearized about a high discharge, the low flows arrived 

too soon and are over damped and if it is linearized around 

a low discharge the peaks arrive late and are underdamped. 

This has led to the development of variable parameter 

diffusion model (NERC,1975), variable parameter Muskingum-

Cunge model (Ponce and Yevjevich, 1978), variable parameter 

Muskingum-Koussis el(Rousis,1978) etc. The most desirable way 

the nonlinearity in the flood routing process may be taken in-

to account is to use such a model that remains linear at one 

time level, but the linear characteristics may change from one 

time level to another time level. Thus the parameters involved 

in the modelling vary from time to time just as the flow vari-

able involved in the phenomena. This concept has been adopted 

by Ponce and Yevjevich (1978), and Koussis (1978) while 

they applied the Muskingum method based on 
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the diffusion analogy principle. Whereas Ponce and Yevjevich 

(1978) considered the variation of both K and 0, the travel 

time and weighting parameter respectively of the Muskingum 

method from one time step to another, Koussis considered the 

variation of K onlykeeping e constant. 

In an earlier report (Perumal, 1986-87), the author 

presented a variable parameter simplified hydraulic model for 

routing floods, without considering lateral inflow, in uniform 

rectangular channels having constant bed slope, by considering 

the variation of flow characteristics at each time level and 

by adopting linear solution approach. 

In this report a variable parameter simplified hyd-

raulic flood routing model without considering lateral inflow 

is developed for routing floods in uniform trapezoidal channels 

having constant bed slope using the same solution approach 

as adopted in the earlier study. It is also shown that the 

solution equations developed for routing floods in uniform 

rectangular channel with constant bed slope is a particular 

case of the solution developed for trapezoidal channel. Also 

the inference arrived from this study regarding Muskingum 

method is same as inferred in the earlier study. 
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2.0 REVIEW 

In this section, only those flood routing models 

which take into account the nonlinearity of the routing pro-

cess by remaining in the linear solution domain at any time 

level, but varying the linear characteristics from one time 

level to another time level have been reviewed It is well 

known that the routing process is nonlinear in nature and 

therefore flood routing models with variable coefficients can 

be expected to perform better. It has been shown by Keefer 

and McQuivey (1974) that if the inflow hydrograph into a 

channel reach is considered in several blocks with each block 

having its own reference or linearizing discharge then the 

convolution of these inflow blocks with the corresponding unit 

hydrographs of the channel reach developed based on the refer-

ence discharge of each block yield routed hydrographs compar-

able well with the observed hydrograph than that routed hydro-

graph obtained based on the convolution of the inflow hydro-

graph withthe unit hydrograph corresponding to a single refer-

ence discharge for the entire inflow hydrograph. This envi-

sages the need for adopting variable parameter routing models. 

Koussis (1978) developed a variable parameter Musk-

ingum method based on the diffusion analogy principle, using 

the same concept as adopted by Cunge (1969), with constant 

weighting parameter 9 and varying travel time K. Koussis (1978 

has found from his experience that Q is not varying consider-

ably with discharge when compared with K. Koussis varied the 
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value of K at each time step by averaging the travel speed of 

the flood wave estimated at the upstream and downstream sec-

tions of the reach by introducing the correction in the rating 

curve at the respective sections using " Jones formula" 

(Henderson, 1966) as given below: 

= Qn(1  C3+1/2  

in which, 

Q= the discharge at a section during unsteady flow 

9n = the normal discharge at the same section corres-

ponding to the flow depth y observed during un- 

steady flow 

the travel speed corresponding to discharge Q at 

a section 

t = notation denoting time 

By iteratively solving equation (1), the travel speeds at the 

upstream and downstream sections may be obtained corresponding 

to each time level of the Muskingum method solution. Koussis 

(1978) estimated the outflow discharge Q, using the following 

expression obtained by assuming linear variation of inflow 

over the routing time intervalA t: 

Q2  = C112  + C2I1  + C3Q1 ...(2) 

Wherein the coefficients CC
2 and C3 are given as 

0 ) Cl = 1 (1 -  
A t 

C
2 (1  - 0 = a ) - and A t  
C3= 
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Where 0 = e-At/K(1-61) 

Following the same approach of Cunge (1969), Koussis 

estimated the parameters 8 and K in terms of Channel and flow 

characteristics by relating the numerical diffusion with the 

physical diffusion. The form of the parameters so estimated 

are given as: 

 

At/K  9 = 1 
A+1+At/K  ln(
A+1-At/K ) ...(4) 

Where 

 

Qo 

  

and 

BEbc x 

Q
o  = Reference discharge. 

K = Ax/c 

 

The symbols B and Ax represents respectively, the 

channel width and reach length. The estimation of discharge 

at the outflow section requires one more iteration procedure 

using equation (2) besides the iteration required for the 

correction of rating curve at downstream section for the esti-

mation of travel speed based on the loop rating curve. There-

Eore it can be realized that although the Koussis procedure 

is physically based, it involves tedious iterative computa 

Ponce and Yevjevich (1978) suggestid a simple vari-

able parameter method based on the Muskingum-Cunge procedure. , 

Usually the routing time intervai being fixed, and Ax and S
o  

are specified for each computational cell constituting of four 
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grid points, as shown in figure (1), their method involves the 

determination of flood wave celerity and the unit width dis-

charge, q for each computational cell. The values of c and 

q at grid point (j,n) are defined by 

dQ c-  

in. which 

Q = discharge 

A = flow area 

The following ways of determining c and q were inves-

tigated by Ponce and Yevjevich for the computation of varia-

bles 6 and K of Cunge (1969) for each time level: 

directly by using a two point averase of the values 

at grid points (j,n) and (j-'-1,n); 

directly by using a three point average of the values 

at grid points (j,n), (j+1,n) and (J,n+1); and 

by iteration, using a four point average calculation. 

They concluded that three point and four point itera-

tive schemes of varying c and q yield better results 

and both are comparable. In view of iterations in-

volved in four point scheme,it may be considered that 

three point average procedure is desirable for use 

in practice. Besides, this method is also much 

simpler than the method suggeted by Koussis (1978). 

However both Ponce and Yevjevich's (1978), and Kouss-

is '(1978) approaches for varying the parameters of 

9 
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FIG.1. SPACE TIME DISCRETIZATION OF MUSKINGUM 

METHOD 
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the Muskingum method at each routing time level are 

arbitrary and not based on the mathematics of the 

Muskingum method solution. 

In an earlier study(Perumal. 1986-87) the author pre-

sented a variable parameter simplified hydraulic method based 

on the approximation of the St. Venant s equations for routing 

floods, without considering lateral inflow, in channels having 

uniform rectangular cross-section and constant bed slope. The 

method was developed assuming that the friction slope Sf is 

constant at any instant of time over the channel routing reach 

and by adopting the concept that during unsteady flow there 

exists a one to one relationship, at any instant of time, bet-

ween the stage at the middle of the routing reach and the dis-

charge downstream of it. The form of the governing equation 

for obtaining the solution is same as that Muskingum method 

which is given as: 

I - Q = HE K[Q + 6 (I-Q)] 

in which 

K - 

 

 

5 4 Y3  

B+ 3 2y " v3  _  

and 

e  = 1 _ n 
7   

 Gm + 
1/2(1/271)(1/2-2) 

‘411'7  Ll 
2 Gm 

F 2(1- 4_4 n2,1_ 2 m -14   
B+2ym  

5 4 Ym  
S B[ - ( o 7 7 B + 2ym  )]vm Ax 
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where, 

2'm 2 1 - AF2  (1 - m  ) 9 B+2y
m 

 G
m 

SoB [ 4 _ 4  Ym Ym (B+2ym) 

The symbols y3  ,v3  and Q3  respectively denote the flow depth, 

velocity and discharge at section downstream of the mid-

section of the reach where the discharge during unsteady flow 

is uniquely related with the flow depth at mid-section of the 
reach, and y

m  and vm  represent the flow depth and velocity at 
mid-

section of the reach during unsteady flow. F is the Froude 

number corresponding to flow at the mid-section of the reach. 

For wide rectangular channels equations (9) and (10) reduce 

to 

and 

-G  + 
j.-(1/2-1)(4-2)

GT,n+..](1--49F2) 12:-- m U_ 
...(13) SoB (5v ) x 7 m 

when neglecting the terms G
m, G , ....etc., 0 reduces to 

e _ ()n(1 F2)  

 

250B (4v
m) Ax 

It was shown that when the variables are fixed corresponding 

to a reference discharge value Q0, 

K - Ax 

 

5 
7v0 
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Q0 
 ( 1 1

9
V 

Fo
2 ) 

250 B( 4 v
o

) Ax 

The above expression for K and e were obtained by Dooge et. 

al. (1982) based on linearized St. Venant's solution approach, 

for the case of constant parameters Muskingum flood routing 

method. When the rectangular channel is not wide and after 

eliminating G
m  , G2  , ... etc. K and 6 reduce to: 

Ax 
K= 5 4 Y3  

B + 2y3  

y
m
Q
n
[1 - F2(1 - 

 

) ]v3  

 

2y
m )2 ]  

B + 2y
m 

 
e =  1/2  - 

 

   

2S0  [ 4 ( Ym  
B + 2y 

m 
 

) ]Qm Ax 

The developed method employed equation (17) and (18) 

for routing floods in foul different channels having prismatic 

ractangular cross-section with different constant bed slopes 

and Manning's roughness coefficients, and the results were 

compared with the corresponding st. Venant's solutions. Three 

different solution approaches were used for routing floods 

in each channel corresponding to a reach length of 40 Km. 

These approaches consist of considering the entire 40 km. 

length as a single reach and obtaining the solution by varying 

6 and K; considering the entire 40 Km length as a single reach 

but obtaining the solution by varying K and keeping 0 constant; 

1 3 
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and considering che 40 km. reach consists of 8 equal sub-

reaches and obtaining the solution by successively routing 

through these reaches by varying both 6 and K. It was found 

that the last solution approach was able to reproduce more 

closely the St. Venant's solution of both stage and discharge 

hydrographs when compared with the other two approaches. 

The study also brought out the theoretical reason for 

the reduced outflow in the beginning of the Muskingum solution 

and suggested the needed remedial measure to avoid it. Also 

it was shown using the developed theory that for Muskingum 

method the maximum value of 6 is 0.5 and its negative value 

is admissible. 
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3.0 PROBLEM DEFINITION 

It is required to develop a simplified hydraulic 

flood routing method for tracking flood wave movement in pri-

smatic channels having uniform trapezoidal cross section and 

constant bed slope. The routing procedure may adopt a linear 

form of solution equation with the relevant parameters varying 

from one time level to another time level of solution and thus 

taking care of approximately the non-linear behaviour of the 

flood wave movement. 
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4.0 METHODOLOGY 

The method developed herein is similar to that deve-

loped in the earlier study(Perumal, 1986-87) by the author for 

routing floods in uniform rectangular channels having constant 

bed slope and roughness coefficient. For the purpose of be- 

tter understanding of the method developed herein, the physi-

cal basis of the proposed theory and the assumptions involved 

in the development of the method are once again described 

without referring it to the report quoted above. 

4.1 Physical Basis of the Proposed Theory 

During steady flow in a river reach there exists a 

unique relationship between stage and discharge at any cross 

section. This situation is altered during unsteady flow, with 

the discharge appearing first in a cross-section and at the 

same time the stage which corresponds to that discharge during 

steady flow appears at a section upstream of it. This concept 

has been adopted by Kalinin and Milyukov (as quoted by Miller 

and Cunge, 1975) to determine the unit length of reach' re- 

quired for flood routing in river reaches. However, Kalinin-

Milyukov method is less flexible since the 'unit reach length' 

of the channel is fixed for a given flood wave and the end 

section of the unit reach length may not coincide with the 

downstream section where the stage-discharge information is 

required, thus necessitating interpolation of the routed hy-

drographs. Besides, the adoption of constant unit reach leng-

th implies that the unique relationship between discharge at 

the outflow section and the depth at the middle of the reach 

16 



always exists during unsteady flow phenomena. This is in con-

tradiction to the characteristics of unsteady flow phenomena 

in channels. In this report, it is shown that the modifica-

tion of the concept of Kalinin-Milyukov method leads to a 

.flood routing method which is devoid of such limitations men- 

tioned above. 

The concept adopted in the Kalinin-Milyukov method 

is that during unsteady flow in a uniform rectangular channel 

with linearly varying water stage along the river reach, the 

channel storage S in the routing reach of length Ax is uni-

quely related to the mean water stage of the reach which in 

turn is uniquely related with the discharge observed at the 

outlet of the reach. Here the distance Ax corresponds to 

the unit reach length. 

The constant parameters of the Muskingum method have 

been -evaluated by extending this concept that the mean water 

stage of the routing reach of length Ax is uniquely related 

to the discharge at a section located 'i' units of length down-

stream of the midsection of the reach (Apollov et al, 1964). 

However, here Ax need not correspond to the unit reach length 

as in the case of Kalinin-Milyukov method. 

The above concept has been used to evaluate the varia-

ble parameters of the proposed method. The mathematical des-

cription of the method which is different from that of Kalinin-

Milyukov method is given in the following pages with the assu- 

mptions involved. 
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4.2 Assumptions 

The following assumptions have been made in develop- 

ing this method: 

The channel reach is having uniform trapezoidal cross 

section. 

The channel bottom slope is constant over the routing 

reach length. 

There is no lateral inflow or outflow from the reach. 

The friction slope Sf  is constant at any instant of 

time over the channel routing reach. 

During unsteady flow, there exists a one-to-one rela-

tionship at any instant of time between the stage at 

the middle of the routing reach and the dischafge 

passing through a section downstream of it. 

4.3 Development of the Model 

Figure (2) depicts a river reach having uniform trape-

zoidal cross-section with upstream and downstream sections, 

where the inflow and outflow hydrographs are observed have been 

denoted respectively as sections (1) and (2). Let the distance 

between these sections be Ax. Let the side slope of the tra-

pezoidal section be Z (Z Horizontal:1 vertical). The defini-

tion sketch of the trapezoidal section is also shown in fig.2. 

Based on assumption (5), the water depth observed at 

the middle of the reach corresponds to the normal depth of that 

discharge which is observed, at the same instant of time, 

units of distance downstream from the middle of the reach. Let 
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STEADY STATE WATER SURFACE® 

AX 

SECTION 0-0 : CORRESPONDS TO THE INFLOW POINT 

SECTION 0-C) : CORRESPONDS TO THE OUTFLOW POINT 

SECTION 0-0 CORRESPONDS TO THE POINT WHERE 
THE DISCHARGE Qe IS UNIQUELY RELATED 
WITH THE STAGE Al THE MIDSECTION 
OF THE REACH 

FIG. 2(a) DEFINITION SKETCH OF THE REACH UNDER 

CONSIDERATION 

4 

FIG.2 (b) DEFINITION SK ETCH OF THE CROSS-SECTION 

OF THE REACH UNDER CONSIDERATION 
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this discharge be denoted as Q. and the section where this 

discharge is observed be marked as section (3). The discharge 

at the middle of the reach may be expressed as: 

Qm  =  A V 
M 

(19) 

where, Am  and vm  are the area and velocity during unsteady flow 

at this section. Equation (19) may be re-written in terms of 

width and side slope of channel section, depth of flow at the 

mid-section and Chezy's or Mannings roughness coefficient. 

First the mathematical formulation of-the-problem in terms of 

Chezy's friction law is presented followed by the formulation 

using Manning's friction law. 

4.3.1 Mathematical formulation involving Chezy's law 

Before proceeding with further mathematical operation 

on equation (19) using assumption (5), it is necessary to use 

assumption (4) in order to simplify the expression for fric-

tion slope which would be used in modifying equation (19). 

Let the expression for discharge Q at any section of 

the reach during unsteady flow condition in the reach, as 

depicted by figure (2),may be expressed as: 

Q = Av (20) 

where, A is the channel cross section and v is the velocity 

of flow. The discharge using Chezy's friction law is given 

as: 

Q = AC /ITT (21) 

where 

C = Chezy's constant 
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R =. A/P, the hydraulic radius 

P - the wetted perimeter, and 

Sf= the friction slope 

The area of cross section of the trapezoidal section is exp-

ressed as: 

A =(B + yfly 

where 

B = the bottom width, and 

Z = the side slope (Z horizontal : 1 vertical) 

The wetted perimeter of the trapezoidal section is expressed 

as: 

P = (B + 2y /1 ...(23) 

The hydraulic radius of the trapezoidal section is expressed as: 

R = (B + yZ)y/(B + 2y )17-77) ...(24) 

Equation (21) is re-written in terms of channel width, side 

slope and depth of flow as: 

z 
C[(B + yfly]

3/ 
 sp ...(25) 

  

[B + 2574I-Ti7] 

The friction slope Sfcan be expressed as (Henderson, 1966): 

S =s ay _ v av _ 1 ay - f o ax g ax i at 
...(26) 

Where, 

= the bed slope 

= the water surface slope 
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V By 
I- ox = convective acceleration slope 

1 Dv 
= local acceleration slope 

8 

= notation denoting distance 

the acceleration due to gravity(9.81 m/5ec2). 

Differentiating Q as given by equation (21) w.r.t. x: 

BQ = a cC-a— (A /8) + CA/R (52) ax f 3x ax f ...(27) 

Based on assumption (4) that Sf remains constant at any instant 

of time, the above equation reduces to: 

a2 = cA7 3 (A /R) ...(28) ax f -- 3x 

On further manipulation the above equation reduces as: 

aQ P aR 3A 
ax 

[ 7,
ax + Dx ...(29) 

DiR The differential can be expressed as: ax 

aR _ (B+2YZ) _ay 2(B+JZ) y /57:7- jy 
ax (13+4,4„. ax (B+2y /1+Z2) 3x ...(30) 

The differential Le! can be expressed as 3x 

a A 
ax = (B + 2yZ) ...(31) ax 
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Substituting eqns. (30) and (31) in eqn.(29) yields 

= v [ ...(32) 
ao 3 (B+yZ)y 1/1711  1  ii --(B +2YZ) -  

(B+ 2Y /1 + Z2  ) i  ax  

The above equation can also be expressed as 

aQ 
3  .14_‘, /---7  ax = v [ 
7 ay 

 - R 1+Z 
ax ...(33) 

WhenS
f nmminsconIstant at any instant of time over the 

a av reach under consideration, the terms 
FvR' .. and ;fc  

of eqn. (26) also remains constant. This implies during un-

steady flow, the water surface is linearly varying at any ins-

tant of time over the routing reach. 

Defferentiating eqn. (32) yields: 

a2Q 3 a 
a x2 

a (B+yZ)y V1+Z21  ly vi 7 -55wi (B+2YZ) 
(84- 2y /1+Z2) ax 

+v[ 4(B+2yZ) - 3-)/T4V2  ] 25)4 

4- 7( 3 B+2 Z) (BT)Y 1+Z2) ay a Y (B+ y /1+Z2  - sa-).7 ax 

Assuming the terms 14 (AY )2  and as- Ai are negligible in ' ax a x'ax 
magnitude when compared with the magnitude of a Y , eqn. (34) ax 
can be approximated to : 

...(35) 

Eqn.(35) implies that Q is also varying linearly over 
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the reacn where S
f is considered constant, at any instant 

Evaluation of terms 17 1H and 1 in terms of g ax g at a  x 

Using equation (20) and (33) one can arrive at the 

expression for at any section in the reach in terms of g ax 

hydraulic radiva, top width of flow section and Froude number 

as: 

X lY =. r 1/2  _ R irTir- F2  aY ...(36) 
g ax ' aA/ay ax 

Similarly using the hydraulic continuity equation which is 

given as : 

aQ + aA o ...(37) ax at 

1 _sly and eqns. (20) and (33), the expressioin for at any sec- 

tion of the reach is given as: 

R )2  
= F2[-4  

1 By 3 2 R/1+Z2  - (1+Z2)]Ii. aA 
BY TY 

...(39) 

Therefore the friction slope expressed by equation (26) can be 

modified for the routing reach under consideration, using equa-

tions(39) and (36) as: 

2 1 ii,4 F2, Sf = So ( 1-so ix 
ay 

The discharge at the middle of the reach is expressed as: 

Qm  = A v m m ...(19) 

Equation (19) is re-written in terms of area and wetted peri-

meter as: 

Q
m  = Am  C/p  

A 

of time. 
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Where P
m is the wetted perimeter at the mid-section of the 

reach and other symbols are as defined earlier. Q
m may be re 

written after substitutingfor Sf  from equation (40) into equa-

tion (41) as: 

Q 
m  =A  m CP

m So S {1-1  a
m  - Yi [1 2-211 ,457,n 2)} 1/2 ...(42) ax W- aA l  

aY i m 

where 

Rm = the hydraulic radius at mid section of the 

reach 

axlm = the water surface slope at the mid-section of 

the reach 

rim - the top width of flow section at the middle 

of the reach 

Based on assumption (5), the flow depth observed at 

the mid section of the reach corresponds to the normal depth 

of discharge Q
nwhich is occuring somewhere downstream  of  the 

mid-section of the reach. Therefore the term A CiAm  S co-

rresponds to the discharge Q
n  

Thus equation (42)i's modified as: 

Q
111=Qn -,il m(141(1-2111 1/177i7)2

)]½ 
d 1AI 

aY'm 
Based on the typical value of S, experienced in natural 

rivers (Henderson,1966) it may be considered that the absolute 

value of the term 

1 [1-
4  
F2  ax m (1-2 m  /1-F22 h < 1 3o — 

Under such situation the Binomial series expansion of eqn.(43) 

25 
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is convergent, and it is given as : 

] 
2 

2 
Q. = Q 1 - n  1 4-- (1- R 

  2 

0axm 
F r

im
il+Z2)  

2 R 
(1/2-1) Bil

m(14(1-2 /17a2)2)]2  Li so a x 
aY m 

2 R 2‘,3 _  [1 (1_F(1_2 isr-FF*J]  
Li S0  ax m 

aY m 

...(44) 

Let the term iiim[1-1(1-2 0:1752] So axl 
By' 

G ...(45) 

Eqn. (44) is written in terms of G as 

  

Qm  = Qn  - Qn[ + G G2+128 5   G2  +....] 16  

 

 

F2  [1 - 1F/T)21-gi n  

5-71m  

 

...(46) 

    

So 

Eqn. (46) is modified by replacing aY  by -12  using eqn. ax i ax (33) 

as: 

5 +1 G2+ 128G2....] TX  

F2  [ 1 - .4—(1 2  
ay l m  

 aQ 
ax 

v s [ 3  IA — R 4-7-T2-] m o 7 a ylm m 

m  
...(47) 

Since the discharge is varying linearly an= 1$3 ...(48) 
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at 
ac2 
ax 

where, 

= the rate of change of discharge at section (3) 

Therefore eqn. (47) is modified as: 

5  
Qm = Qn Qn [1/2  IL Ac; 16G2+  128G3  

F2,„ 
4 

[ , - ti-2 417J52] -- aek i  
aY'm 

NI 3 v S , I m[ 4 - a .Firin m 0  

Therefore the distance it' between the mid-section and that 

downstream section at which the normal discharge corresponding 

to the depth observed at mid section is given as: 

1 1 5 9, r k gG +C2  + 128G2 +  

[ 1 - F2( 1-2 —P. i1Tf7)2] 
ay 

i 
1m  

v 
R 

S 14 I [ - )11+z2]I m o ay m z _a& 
aylm 

Since the discharge is varying linearly within the reach of 

length Lx, the discharge Q
n  at section (3) is computed in terms 

of inflow I and outflow Q as: 

Q ( - IL) (I - Q) n Ax 

Now applying the continuity equation 

= o ...(37) 
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between sections (1) and (3) of figure (2), one arrives at 

1 

721 3 = aQ1 9A13 
3Q  1 at 3 

But using eauatiorn(33), may be written as: 

where 5 

BQ 
= v3  

R, 
v  1+ Zi  aA, 

iYI3 

...(53) 

v3  = velocity of flow at section (3) 

Therefore substituting eqn. (53) in eqn. (52) yields: 

aQ , 
F5i 13 = 

 

1 a (54) 
3  R3  

v3[7- ‘11+Z2]  13  

aQ Since 3)(13 = 221 ax 2 as inferred from eqn. (35), eqn(54) 

is modified and written in numerical difference form as 

I - Q - A X iL (Q ) at 3 ...(55) 3 R3  

v3[ 7  — 
4+Z21

3 aY  

But Q3  is same as Qn  and it is given by eqn. (51) 

Therefore Eqn.(55) is modified as: 

I - Q - AX  

3 R3  v3[7  - 11+z2] 
By13 

-2—  [Q+ (1/2  - 1--)(I-Q)]  at AX 

Since I and Q varies only w.r.t. t, the partial derivative of 

eqn.(56) is changed to full derivative and the eqn.(56) is modi-

fied as: 
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I - Q = dt  K [ Q + (1/2  - El) (I - Q) 

where, 

9, is given by eqn. (50) and 

 

  

Ax ...(58) 

  

3 Al  
‘73[ 7  - VITZT ] 

TO 3  

Eqn(57) is of the same form as that of well known Muskingum 

method. 

Parameter 8 is approximated by neglecting the terms G, G2,G2... 

in eqn. (50) as: 

F2  Q [ 1- - 2 ir n .727)2] 
0 = 1/2  - 3ylm  

3A 3 Rm 2 S v T-1  mh.  ['y - yri  irTrf] Ax omy 
rylm 

...(59) 

Eqn.(59) is more suitable for use in practice: 

Expressing equations (58) and (59) in terms of channel width 

and flow depth as: 

K - Ax 
...(60) 3 (B+y3Z) y3/777-77 

v317 - (B+2y34+z2) (B+2y3Z) 

where, 

y3  = flow depth at section (3), and 
2(B + Zym)ym  /1+Z Q3[1_pi_   )2] 
(B 2ymi1Ti21(B+2ymZ) 

3 (B+ym  Z)ym/1772  2B0vm(B+2ymZ)[ 7 /---2 ]Ax 
(B+25,11r 1+Z )(B+2ymZ) 
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when the flow variables are fixed at reference values, then K 

and 6 reduce to 

K = Ax 

   

...(62) 
v  [ 3 _ (B+y Z) y 7  0 0  

(B+2y0  1-17717)(B+2y0Z) 

and 

   

Q 
o o 0[ 1...

E

4

1
1 (1 

 _ 2(B+y Z)y \11+Z2 2 

0 = 1/Q- 
(B+2y041+Z2)(B+2y0Z)) H 

r..(63) 
r3 (B+yoZ)yo 41

+z2 
2 S v (B+2y0Z)L7-(B+2y

o \111-Z2)(B+2y0Z) ikiX 
00 

Reducing K and 0 for rectangular cross-section channel case;  

For rectangular cross section Z = 0. 

When Z = 0, &pitons (60) and (61) reduce to: 

Ax  K = ...(64) 
r 3 Y3 

v3'7 - 117773' 

Q [1-F2( )2 ] 3 4—  B + 2ym 

)  B+2y Ax 

4.3.2 Mathematical formulation involving Manning's friction 
law: 

Proceeding in the similar manner as in the case of anal- 

DQ yis 1?ased on Chezy's friction law, the expression for i-cc  using 

Manning's friction law is given as: 

-aD-TQ 5(B+2yZ) _ 4 (B+yZ) 
17Z2 ]j  v[   3 (B+2y 11+Z 2 ) ax 

The equation can also be expressed as: 

aQ =  v  
ax I DY a ax 

...(66) 

...(67) 
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m 
_ m 2 
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It can be proved, as it has been done earlier for the 

3Q  unsteady flow governed by Chezy i 's law, that s also varying 

linearly at any routing time level over the reach where the 

friction slope Sf  is assumed constant. 

Evaluation of the terms Y ill and 1  LI in terms of Li : 
g ax g at ax  

Using equations. (20) and (67),  the expression for 
v 84.  
g ax 

at any section in the reach is given in terms of hydraulic 

radius, top width of flow section and Froude number as: 

_v v A  R 2 
- 

r 
- 7  3A ,FTIM F2  3 x By 

where, 

F denotes the Froude number of flow. 

1 av Similarly the expression for" if  at any section of-the reach 

is given as: 

1 3v r 10  t  28 t(-- , 2 16 R2  
I TE - - —7 - —7 - —7(1W)2(1+Z2)]F2  

°Y Ty 

The addition of equations (68) and (69) yield: 

211417-Z-I--2 ix  v By 1 By 4 2 + i if  = - 7F (1 - DA ) ax ay 

3y ,..(69) 

...(70) 

Therefore the friction slope expressed by equation (26) can be 

modified for the routing reach under consideration as: 

2R 
S{ 1 - 1— [1-4  o So ax 

F2(1- aA liTir)2 } 
ay 

...(71) 

Based on similar analysis as carried out for the case 

of unsteady flow following chezy's friction law, it can be 

shown that the distance between the mid-section and that 
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downstream section at which the normal discharge corresponding 

to the flow depth of mid-section is experienced, is given as 

1 5 k Q
n
[ + 1Gm  + G+  

IT mIBm •••'i  

4 R 
- F2(1-2 _a i 2 2 (1-2 41+Z ) I 

DY'm  

— v D L 
r r 5 4 R 

 --I -A-    M (pay M 3 lAI 

ay l m 

...(72) 

where, 
4  1- 2-9-P (1 - 2 m  \11.+Z2)2 3A 1  Gm = ay'm  

v S [ - —11-I  )1+Z2] mo aym A I  
y l m 

...(73) 

R . 3A and m vm  are as defined earlier for the derivation us- 

ing Chezy's friction law. 

Similar analysis as carried out earlier for the flow 

following Chezy's friction law, leads to the governing unsteady 

flow equation as: 

I - Q = [ K (Q + e (1 - Q)] ...(57) dt 

in which, 

Ax 

and 

R3 
 J
Z 1+Z v3  

303 

...(74) 

5  G3+  128 

Rm  4 2 
[I - F ( 1-2 @A l  dl+Z2)3 

TYlm  

V s ±j{5 4 Rm 1
l+Z j 

2, A  m mrcrm 1' - ati  v  

aY ini  
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) 2 ]  

5 4 (B +YmnYm J11-Z2 iAx 2S o  vm  (B+2ym2)[7 7 (B+2ym  1+Z )(B+2ymZ) 

and 4 2(B + yin  Z) ym\)1+Z2  
Q3[1"2(1 (B+2Y 41-Fzr)(B +2ymZ) m  

= 1 /2  - 

Where, 

R3 = hydraulic radius at section (3) 

1-
91I top width of flow at section (3) 

v3  = velocity of flow at section (3) 

vm = velocity of flow at mid section of the routing reach 

Rm  = hydraulic radius at mid-section of the routing reach 

3A, vic  top width of flow at midsection of the routing reach 

Qn = Q3 the flow at section (3) 

Expressing K and 8 in terms of flow variable and negle- 

cting Gm,C111, 0:1  etc. 

K - A x ...(76) 
r  5 4 (B Y3Z)  Y3 411-2-2.  

v3' 7-7 (B+2y341+Z-2)(B+2y3Z)J 

..(77) 

K and 8 expressed by Equations(76) and (77) have been used in 

this study. 

Reducing K and 8 for rectangular cross-section channel case: 

For rectangular cross section Z = 0 

when, 

Z = 0, equations (76) and (77) reduce to: 

Ax ...(78) 5 4 y- v3[ 3  
B + 2y3  

3 



and 

e = 1/2  - 

4 2  Q3[ 1 - F ( 
B + 

m 
 2y )

2
] 

...(79) 

 

4 Ym  2B S
m  vm

( 5  7- 7  B+2ym  1A x 

 

Equations (78) and (79) were obtained in the earlier study 

(Perumal, 1986-87) of simplified hydraulic method for routing 

floods in uniform rectangular channels with constant bed slope. 
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5.0 APPLICATION 

The methodology described above was verified by applying 

it for routing floods in trapezoidal channels assuming that the 

flow follows Manning's friction law. It was assumed that the 

routing parameters K and e can be represented in terms of chann-

el and flow parameters by equation (76) and (77) respectively. 

It was considered that the approximation involved in com- 

puting e using approximate Z 
the distance between the mid-

section and the section downstream of it where the normal dis-

charge corresponding to the observed depth at mid-section is 

realized at the same instant of time, would not affect the 

accuracy of routing solution based on this procedure. 

5.1 Test Series 

The best approach for verifying the suggested methodolo- 

gy is to use hypothetical inflow-outflow hydrographs. Accor-

dingly a hydrograph defined by a mathematical function is rout-

ed through the given channel for a specified distance using 

St.Venant's equations, which govern the one-dimensional flow 

in open channels, and thus the "observed" outflow hydrograph 

at the end of the specified distance is established. Now the 

same inflow hydrograph is routed in the same channel using the 

suggested procedure for the same specified distance and the 

resulting routed hydrograph is compared with the corresponding 

St. Venant's solution. The criteria for comparison based on 

various characteristics of outflow hydrograph are defined at 

section 5.3. The logic behind the use of hypothetical inflow- 
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outflow hydrographs for verifying such methodologies has been 

already established (Kundzewicz,1986). 

5.1.1. Inflow hydrographs 

In order to get a better understanding of the suggested 

procedure and for the purpose of effective comparison of vari-

ous outputs obtained based on this procedure, it was decided 

to use the same inflow hydrograph in all the test runs. The 

hypothetical inflow hydrograph defined by a four parameter Pe-

arson type-III distribution which is expressed by the follow-

ing equation was adopted in this study: 

1 
1  - 1) 

(1-1) ...(80) 
(1-t/t ) Q(t) = Qb  + (Qp-Qb)(

L

! )( 

where, 

Qb base flow 100 m3/S 

Qp peak flow 1000 m3/S 

t
p - time to peak - 10 hours 

Y skewness factor 1.15 

This hydrograph was addopted by Weinmann (1977) based on the 

consideration of steepness of hydrograph and magnitude of ini-

tial flow. The hydrograph based on equation (80) is shown in 

all the discharge hydrograph plots presented in this report. 

The same hydrograph was also used in the earlier study(Perumal 

1986-97) for verifying the simplified routing method developed 

for routing floods in rectangular channels. 

5.1.2 Channel geometry and flow resistance properties. 

The trapezoidal channel with the bottom width of 50 in 
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and the side slope of Z=1.5(Z horizontal: 1 vertical) was used 

for all the test runs, and the routing computations were carri-

ed out for a maximum reach length of 40 km. The methodology 

was tested on four different channel configurations which are 

characterised by the following bed slope and friction values 

as given in Table - 1. 

TABLE 1 

CHANNEL CONFIGURATIONS 

Channel type bed slope n - Value 

1 0.0002 0.04 
2 0.0002 0.02 
3 0.002 0.04 
4 0.002 0.02 

These configurations were earlier adopted by Weinmann(1977) 

possibly due to the reason that the first two configurations 

represent worst cases for which the approximate routing proce-

dures is expected to perform poorly, and the last two configur- 

ations represent the best cases for which it is expected to 

perform well. 

5.2 Solution Procedure 

The initial parameter values for K
o  and ea  were evalua- 

ted using equations (76) and (77) respectively. Using these 

parameter values, the coefficients of the conventional Musk-

ingum method were evaluated as: 

-K8
o +At/2 Cl K(1-8 ) +At/2 
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C3 K(1-0 ) + At/2 

C2  

K(1-0o) - At/2 

KAo + A  t/2 

Then the discharge Q2  at the outflow section corresponding to 

inflow I2 where 12 corresponds to inflow ordinate at t = At, 

was evaluated as: 

Q2  = C112  + C2I1  + C3Q1 ...(82) 

Knowing 12  and Q2, the discharge at section (3) as dipicted 

in figure (2) was evaluated as: 

Q3 Q2 eo(I2 - Q2) 7 ..(83) 

:orresponding to this discharge, the normal depth at the middle 

pf the reach was evaluated using Newton-Raphson method based_ 

)n the normal depth-discharge relationship as: 

1 [(B + ymflym 1 
5/3 S1/2 

...(84) Q3 
(B + 2ym 41+Z2)2/3  

Then the discharge at the middle of the reach was evaluated- as: 

Qm  = ( 12  + Q2  )/2 ...(85) 

Knowing Qm,ym,Q3  and F2, the new 0 was computed using equation 

(77) corresponding to Q2. Based on equation (66) the flow 

depth at section (3) was evaluated as: 

(Q3  - Qm ) 
. +  

4 (8+y
mZ)ymj1+Z

2 
Qm  y3 

 y
m 

 

5 [7(3+2ymz)-7 r -2 1  y
m(B+ymZ) (B+ZymNil+Z ) 

...(86) 
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y3(B+y3Z; 

The velocity v3  at section (3) was computed as: 

Q3  
V3 

...(87) 

Knowing v3 and y3  , and the distance of routing reach px, the 

new travel time K was computed using equation (76). 

These revised K and 8 values were used for the next step 

of solution corresponding to the new input ordinate. These 

steps were repeated for the entire solution procedure thus 

varying the values of K and e at every time step-, but at the 

same time adopting the linear solution procedure. The flow 

deptl at the outflow section corresponding to the solution Q2  

was computed as: 

Y2 = Ym  
( Q2 - Qm )  

 

y (B-'-y Z) j1+ZZ 5 4  m m Qm  
[7(B+2ymZ)-7  

(B+2ym j1+Z
2) I ym(B+ym

Z) 

The procedure described above correspond to the vari- 

able parameters case. Two different approaches of solution 

procedures were adopted for the variable parameters case viz, 

Considering the entire 40 km. reach as a single reach 

and 

Considering it consists of number of sub-reaches. The 

other solution procedure corresponds to the case of 

adopting constant B and variable K, along with the 

consideration of 40 km reach as a single reach. 
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In order to test whether linear interpolation of given 

inflow and routed outflow hydrographs at some downstream-point 

is appropriate for finding the routed hydrograph at some in-

termediate points, two different cases were studied. 

In order to check whether the interpolation solution 

yield comparable result with the direct routing solution for 

a distance of 5 km, the following procedure was adopted: 

For the case of channel type-1, and channel type-2, the 

linear interpolation solution was obtained at the end of the 

reach length of 5 km. based on the given inflow hydrograph and 

the routed hydrograph at the end of 40 km. For comparison 

with this solution, the inflow hydrograph was routed for 5 km. 

by considering it as a single reach. 

Sixteen test runs as indicated in Table-2 were made in 

order to have a better understanding of the proposed metho- 

dology. Runs based on different combination of parameter 

variations, and number of sub-reaches considerations were 

made. Such combinations tested are listed in the 'Remarks' 

column of Table-2. In all the runs, the routing time inter-

vals At was considered as 15 minutes in order to avoid any 

numerical error in the solution using equation (82). 
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5.3 Comparison Criteria 

The following comparison criteria were adopted for check- 

ing the efficiency of the proposed method of solution in com-

parison with the St. Venant's solution: 

5.3.1 The hydrograph fitting consideration 

The closeness with which the proposed method of solution 

follows the true solution, including the closeness of shape 

and size of hydrograph, can be measured using the criteria of 

,variance explained by the method. The expression for variance 

explained in % is given as: 

Variance explained (Total Variance-Remaining Variance) x100 
in (%) Total variance 

...(89) 

there, 
1 N , 

the total variance = N.E (Qoi  - y 
2

oi, 
1=1 

1 N 
the remaining variance = N.E (Q0 ci2-Q :)

2 

1=1 

...(90) 

...(91) 

with, 

Qoi 
the i th discharge observation 

Qci 

mean of the discharge observation. 

= the i th  discharge computed using the proposed 
method 

= the total number of discharge ordinates. 

5.3.2 Magnitude of flood peak consideration 

Relative error in peak discharge (%) is given as: 
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QPE 
(Q Q ) PC po  

x100 
po 

...(92) 

where, 

the computed peak outflow discharge pc 

p o the observed peak outflow discharge  

Error in. peak stage (metre) is given as: 

YPE y -y 
pcpo 

where, 

...(93) 

computed peak stage at the outflow section pc 

o observed peak stage at the outflow section. p 

5.3.3 Time of peak consideration 

Error in time of peak discharge(hours) is given as: 

TNE = t (Qpc) t(Q

0

) 
...(94) 

where, 

t(Q )= time corresponding PC to computed peak discharge 

t(Q 
o)= time corresponding to observed peak discharge. p 

Error in time of peak stage (meters) is given as: 

T = t(Y) - teypd) PYE ...(95) 
where, 

t(y
pc)= time corresponding to computed peak stage at the out flow section. 

t(ypo)= time corresponding to •observed peak stage at 
the outflow section. 

5.3.4 Conservation of mass consideration 

The relative error in the flow volume in percent of the 
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total inflow volume is expressed as: 

N N 
E Q E Ii  ci- 

EVOL = I i=1
N L i=1 ] x 100 ...(96) 

where, 

I. = the ith inflow discharge. 1 
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6.0 RESULTS AND DISCUSSIONS 

6.1 Results 

Table-3 presents the results of variance explained, re-

lative errors in peak discharge and peak stage, errors in time 

to peak discharges and peak stages, and the relative error in 

flow volume for all 16 test runs made in this study. Figure(3) 

shows the inflow hydrographs, and the outflow hydro.‘ 

graphs., computed from test run nos 1, 2 amd 3 

and from St. Venant's equations (the " Observed " hydrographs) 

Figure (4) shows the corresponding computed stage hydrographs 

at the outflow section. Similarly figures (5),(7) and (9) res-

pectively show the inflow.hydrographs,and the outflow hydrogra-

phs computed from test run number 4-6, 7-9 and 10-12 along with 

the St. Venant's solutions for these runs. Fugures (6), (8) 

and (10) respectively show the computed stage hydrographs at 

the outflow sections along with the concerned stage hydrogra-

phs due to St. Venant's solutions for the above mentioned runs. 

Figures (11),(12), (13) and (14) respectively show the varia-

tion of the travel time parameter K vs. the corresponding given 

inflow ordinates for test run nos. 1,4,7 and 10. Figures (15). 

(16) (17) and (18) respectively show the variation of the weigh-

ting factor 15 vs the corresponding given inflow ordinates for 

test run nos. 1,4,7 and 10. Figure (19) shows the inflow hydro-

graphs, the computed outflow hydrographs, and the corresponding 

St. Venant's solution from test run No 13 and 14 corresponding 

to channel type-I. The computed discharge hydrograph at sec-

tion (3) corresponding to test run No. 14 has also been plotted 
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to demonstrate that this hydrograph is observed downstream of 

section (2), i.e, the outflow section, indicating the negative 

value of the parameter 6. The outflow hydrograph computed from 

test run No. 13 for the reach length of 5 km, was obtained by 

interpolation of the given inflow hydrograph and the correspo-

nding computed outflow hydrograph at 40 km. using the developed 

procedure. The outflow hydrograph computed from test run No.14 

was obtained by directly routing the inflow hydrograph usin,! 

the developed procedure for the same reach length of 5 km. 

Figure 20 shows the computed and St. Venant's solution stage 

hydrographs corresponding to test run No. 13 and 14. The com-

puted stage hydrograph of test run No. 13 was obtained by 

linear interpolation of the "observed" stage hydrograph at the 

inflow section and the computed stage hydrograph at 40 km. 

using the developed procedure. The computed stage hydrograph 

of test run No. 14 was obtained by direaly routing the Inflow 

hydrograph for 5 km. using this procedure. Figure (21) shows 

the discharge hydrographs obtained from test run Nos. 15 and 

16 corresponding to channel type II and they are similar to the 

results of test run Nos. 13 and 14. Figure (22) shows the 

stage hydrographs obtained from test run Nos. 15 and 16 corres-

ponding to channel type-II and they are similar to the results 

of test run nos. 13 and 14. Figure (23) shows the variation 

of 0, corresponding to routing in the first reach length of 

5 km of test run Nos. 3, with the inflow hydrograph ordinates. 

It can be seen that all the G values are negative indicating 

the admissibility of negative values. 
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FIG.3 : OBSERVED AND COMPUTED DISCHARGE HYDROGRAPHS FOR 
CHANNEL TYPE-1. 
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FIG.5 OBSERVED AND COMPUTED DISCHARGE HYDROGRAPHS FOR 
CHANNEL TYPE-2. 
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FIG.7 OBSERVED AND COMPUTED DISCHARGE HYDROGRAPHS FOR 
CHANNEL TYPE-3. 
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FIG.8 OBSERVED AND COMPUTED STAGE HYDROGRAPHS FOR CHANNEL 
TYPE-3. 
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AN.- OBSERVED HYDROGRAPH (ST. 
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FIG.9 OBSERVED AND COMPUTED DISCHARGE HYDROGRAPHS FOR 
CHANNEL TYPE - 4. 
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FIG.10 OBSERVED AND COMPUTED STAGE HYDROGRAPHS FOR CHANNEL 
TYPE-4. 
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6.2 Discussions 

6.2.1 On the resultsof test run nos. (1),(2) and (3) 

Based on the consideration of variance explained, it 

can be seen from Table-3 and verified from figure (3), that 

the hydrograph computed corresponding to test run no. 1 is 

able to reproduce the St. Venant's solution more closely than 

the solutions of test run-nos. 2 and 3, except at the beginning 

of routing. The computed hydrograph dips in the beginning as 

observed by many researchers (Nash, 1959; Venetis, 1969; and 

Dooge, 1973) in the case of Muskingum flood routing method. 

The reasoning for this dip is explained at a later stage. 

The hydrograph of test run no.2, corresponding to the 

case of constant S and varying K, does not reproduce the St. 

Venant's solution satisfactorily. The constant e value esti-

mated for this test run was 0.3198 and it was obtained using 

the expression given by equation (77) after freezing all the 

flow variable with reference to the reference discharge Q0  

which was computed as (Price, 1973): 

I +Qp 
Qo 2 

where, 

the inflow hydrograph peak 

the outflow hydrograph peak 

The reasoning for the weighting parameter becoming negative 

is given later. Note that the value of Q required for the 

computation of Q
0  was unknown and it was approximately consi-

dered as the peak value of the hydrograph obtained by routing 
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the given inflow hydrograph for the same reach length using 

varying K and that & value which was computed from equation 

(77) based on initial flow conditions. It may be noted from 

Table-3 that conservation of mass principle is grossly violated 

in this case when compared with the cases of test run nos. 1 and 

3. However both test run nos. 1 and 2 reproduce equally well, 

the other characteristics of hydrographs such as error in peak 

flow and stage value, and the errors in time to peak discharge 

and stages. 

The results of test run nos. 1 and 3 are better than 

test run no.2 from the aspect of conservation of mass. While 

dip in the beginning of routing was observed in the case of 

test run nos. 1, it was absent in the computed hydrograph of 

test run no. 3. Although the peak flow was slightly underesti-

mated in the case of test run no. 3 (690 m3/sec. when compared 

with 758 m3/sec observed; and 740 ma/sec obtained from test 

run No.1), the other hydrograph characteristics were well re-

produced especially the stage hydrograph. It has to be noLed 

that there was no computational problem faced in the case of 

test run no.3 of channel type-I when the reach of 40 km. was 

sub-divided into 8 sub-reaches as it was noted in the corres-

ponding rectangular case(Perumal, 1986-87):  It may be inferr-

ed from the overall considerations of results presented in 

Table-3 for these three runs, that the routing solution obtain-

ed from eight sub-reaches consideration may be preferable than 

the other two cases especially for flood forecasting purposes. 
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6.2.2 On the results of test run nos. (4),(5) and (6) 

As seen from Table-3, the variance explained by the 

solution approaches of test nos. 4 and 6 were greater than 99%. 

Similarly in both cases, the conservation of mass was well 

maintained ((0.25%). However the multiple reach solution with 

8 sub-reaches and Ax = 5 km., belonging to test run no.6,per-

formed well when compared with the results of test run no.4 in 

reproducing the stage hydrograph. Note that the peak stage 

was differing from the true solution only by 0.05 m. when com-

pared with 0.32 m of test run no.4. The variance explained 

by the solution procedure of test run no. 5 is less than that 

of the other two cases, although the difference is not signi- 

ficant. However from the consideration of :onservation of 

mass, this test case performed poorly than the other two cases. 

In this aspect, the performance was simi.lar to that of test 

run no.2 which also usedthe varying K and constant 0 solution 

approach in arriving at the routed hydrograph at 40 km. There-

fore the routing of steep rising inflow hydrographs such as in 

the cases of test run no. (2) and (5), in very flat streams, 

.using constant & and varying K based solution approach may not 

yield appropriate results. However further studies are requir-

ed to arrive at any definite conclusion about this statement. 

Considering the result of test run nos. (4), (5) and 

(6), one may prefer again the multiple reach bas:.A solution 

allowing both the parameters K and D to vary. 

6.2.3 On the results of test run nos. (7),(8)and (9), and 
(10), (11) and (12) 

In all these runs the variance explained by the different 
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solution approaches was gieater than 99% with the absolute 

maximum error in the conservatioin of mass being = 0.42%. All 

the other hydrograph characteristics were very well reproduced. 

These test runs results indicated that there was no significant 

difference between the results of variable parameters solution 

approach in which both 10 and K varying; the solution approach 

based on the variatioin of K only keeping 9 constant; and 

number of sub-reaches solution approach considering the varia-

tion of both e and K. As will. be  discussed later, that there 

exists no significant variation of 0 values corresponding to 

the given inflow ord_nates for the test run nos. (7) and (9) 

of channel type-3, and test run nos. (10) and (12) of channel 

1 ay  
type-4. In these cases the value of w  . was nearer to zero 

Do a' 
indicating that the flood wave is of kinematic in nature. This 

inference has been verified by figures (7) and (9) as there was 

very little attenuation of flood peaks in these cases. It may 

be inferred from the closeness of the solutions shown by fig-

ures (7Y and (9) that the method suggested herein may be used 

for kinematic routing of flood wave in long reaches in a single 

step routing. 

6.2.4 On the results of test run nos. (13),(14),(15) and (16) 

Test Nos. 13 and 14 were conducted on channel type-1 

and these 15 and 16 were conducted on channel type-II. These 

tests were conducted for the verification of interpolatioin 

solution obtained at 5 km. distance from the inflow point using 

the hydrographs at the inflow section and the computed outflow 

hydrographs, obtained based on single reach routing solution, 



at 40 Km. The verification was made by comparing the interpola-

tion solution at 5 Km. with the cnrresponding direct routin-g 

solution based on the same solution approach. It can be seen 

from table-3 that the results of these runs are comparable to 

each othea-  and also they are well comparable with the St. 

Venant's solution. The same may be verified from figures 19,20 

21 and 22. It may be inferred from the results of theae test 

runs that the unsteady flow solution required at any section 

of the reach may be obtained by linear interpolation of the in-

flow hydrograph and the resulting routed outf16 hydroga-aph of 

a long reach obtained in a single step solution. This inte-r-

polation approach replaces the number of tedious routing compa-

tations for short reaches. The basic difference between test 

run nos. 13 and 14, and 15 and 16 is with reference to the 

value of Manning's roughness coefficient of the channel. While 

n = 0.04 for test run no. 13 and 14 it was 0.02 for the latter 

test runs. Results oE latter runs indicate better perform-ance 

than the former runs which may be attributed to the redacion 

in the roughness coefficient which indirectly causes the reduc-

tion in the magnitude of water surface slope and thus making 

it possible to adhere closely to the assunptions involved in 

the development of the procedure. 

6.2.5 On the variation of K and 

Variation of  K : 

Figure (11),(12),(13) and (14) shag the variations of 

the travel time parameter K at eacn routing time level with 

reference to the corresponding time level inflow ordinates for 
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the cases of test run nos. (1),(4),(7)and(10). The purpose 

of relating K with the inflow hydrograph ordinates is to 

assess the realvariation of K for—ald channel configu-

rations studied, standing on a common platform such as 

the inflow hydroTaph which is not influenced by the outflow 

information based on this method. Note that in all these 

cases the reach length Ax was fixed as 40 km. It can be 

seen from these figures that for all the cases the travel 

time corresponding to the same inflow discharge decreases 

as the order of channel type increase which implies that 

the velocity increases with the increase in the order of 

channel types. The reduction in the magnitude of K in 

the case of channel type-2, when compared with channel 

type-1 is solely due to reduction in Manning's roughness 

coefficient to 0.02, when compared with the corresponding 

value of 0.04 in the case of channel type-1. As indicated 

by figures (1fl and (14) the increase in the bed slope 

also causes increase in the velocity. Therefore this dis- 

cussion confirms that the physics of the open channel flow, 

i.e. the decrease in roughness coefficient or increase 

in bed slope or both cause increase in the velocity of 

flow, is closely followed by the methodology presented 

herein. It has been seen that the travel time in trapezoidal channel 

is dightly greater than that in the rectangular channel(Permal 1986-87) 

for the same inflow discharge. 

Variation of  e 

Figures (15),(16),(17)and(18)show the variations 

of the weighting parameter e at each routing time level with 
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reference to the corresponding time level inflow ordinates for 

the cases of test run nos. (1),(4),(7) and (10). Before dis- 

cussing these results, it is necessary to look into the aspects 

of the variation of 6 from the physical point of view. 

The weighting parameter 6 can be expressed as: 

= 

 

...(98) Ax 

With reference to figure (2), 6 represents the non-dimensional 

distance between section (3) and (2). Using equation (98), the 

variation of 6 can be studied. 

When sec:Pion (3) lies between the mid-section and the 

outflow section of the routing reach, 0<6<0.5. When section(3) 

coincides with section (2), then 6 = 0 as in the Kalin-Milyukov 

method. 

However if the routing reach length is such that section 

Ax (2) is located ahead of section (3), in whcih case the 

value of 6.<0. When such a situation occurs during the routing 

process using this procedure, the outflow discharge magnitude 

would be greater than the normal discharge Q3  as observed at 

section (3). 

This situation was experienced in test run no. (13) in 

which the 0 values corresponding to each time level of routing 

was negative and thus the outflow discharge was greater than 

the normal discharge Q at all the time levels of routing. 

Figure(19) shows the discharge hydrograph results of test run 

no. 13, in which the single reach solution obtained by varying 

both 0 and K is plotted along with the St. Venant's solution. 

The corresponding normal discharge hydrograph is also shown 
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therein. It can be seen from this plot, that the outflow dis-

charge hydrograph is observed ahead of normal discharge hydro-

graph confirming the interpretations based on equation (98). 

It was observed that-2.3301at-0.3294 for this case. Although 

the possibility of 6< 0 was indicated by Dooge (1973), the 

argument in favour of 6 becoming negative from physical point 

of view has been put forwarded by Strupczewski and Kundzewicz 

(1980). Note that the value of 19‹ 0 does not have any meaning 

in the case of Muskingum-Cunge method as it is considered as 

the numerical weighting factor with 003<1. From the point of 

view of numerical mathematics as generally understood for the 

flood routing application 64.0. Therefore the reasoning given 

herein for & <0 makes the present theory more attractive than 

any other theories presented so far on the Muskingum flood rou-

ting method. 

When section (3) coincides with the mid-section,i.e., 

2=0 and this leads to 6 = This represents the situation in 

which the normal discharge coincides with the normal depth at 

the mid-section of the reach and thus leading _to the Kinemattc 

flood wave movement 

The situation wherein 6>0.5, implies the location of 

section (3) upstream of mid-section of the routing reach and 

oased on the physical basis of the model, i.e., the discharge 

proceedea the corresponding steady flow stage in unsteady flow 

situaCon, the ch),nge of direction of flow c)uld be realized. 

Accordingly, the computed hydrograph at Cat) outflow section 

i.e, at section (2), would be the amplification of the inflow 
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hydrograph. Explanations on the basis of various considera- 

tions are also available for 0>0.5 by other researchers (Cinge, 

1969;Dooge, 1973; aqi Strupczwski and Kunlzewicz, 1940). 

It can be seen from figures (15) and (16) which belong 

to test run nos. (1) and (4) respectively, that the variation 

of e w.r.t. inflow ordinates are wider. However for test run 

nos. (7) and (10), the variation of 0 was not very' much and 

their values were also found to be nearer to 0.5. These vari-

ations are brought out in figures (17) and (18). However, the 

0 values in these runs are greater than the corresponding 

values in rectangular channel (Perumal 1986-87). 

It can be inferred from these variations that when the 

term 
I— . -aX is nearer to zero and its variation is not 
So ax  

significant then the value of 0 is nearer to 0.5 and its vari- 

ation is less. But when the magnitude of s  . ,x 
s large and 

° 
varies much, it causes widef variations in the value of 0 in-

cluding the possibility of 0 values becoming negative as shown 

in figure(23) corresponding to test run no. 13. An understand-

ing of these variations as explained above can be obtained from 

1 ay. 
equation (46) and (47). The term . ,is inversely propor- 

tional to the term vm ay  - 3—A l m 
 and therefore, higher magnitude 

of 1 " • '• 
9A 

imphies lower magnitude of vmm 
which in mulri.pli 

So 
cation with So  results in the higher value of 't' the distance 

between mid-section and section (3) of the routing reach. Thus 
1  

the magnitude of 0 will be much less than 0.5. When s  .- i ax  s 3A  
nearer to zero, there is increase in the magnitude of vm71 may m 

and this causes decrease in the value of 'C. Thus the 
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the terms 

magnitude of A will be 

1 
•
ay 

S-  ax 

nearer to 0.5. The typical values of 

as calculated using this methodology for 

test runs nos. (1), (4) (7) and (10) have been tabulated below: 

TABLE 4 

TYPICAL VALUE OF 1  . a—Y So a x 

Sl.No. Test Channel Length No. of 
Run Type of Reaches 
No. Reach 

  

Magnitude of 
1 iy 
So 3x 

Redarks 

Minimum Maximum 
1 1 1 40 km 
2 3 1 40 km  

3 4 2 
4 7 3 
5 10 4 

1 -0.6694 0.4558 
8 -1.2253 1.1908 

0.7991 0.7928 

0.7860 0.6563 

0.7706 0.5657 

-0.7535 0.5010 

0.7359 0.4520 

0.7166 0.4131 

0.6959 0.3812 
1 -0.3949 0.2435 

1 -0.0281 0.0143 

1 -0.0142 0.0062  

Single reach 

first reach 

second reach 

third reach 

fourth reach 

fifth reach 

sixth reach 

seventh reach 

eight reach 

single reach 

single reach 

single reach 

40km 

40 km 

40 km 

1 l_y-1  It can be seen from Table-4 that the typical value of  

for test run no. (3) and for this situation the binomial series 

expansion is not convergent even though the results obtained 

are not very poor from the true values. Further, it can be 

seen as the order of channel type increases, the typical values 
1 3y of s  .  become less and less indicating that the attenuation ax 

causing factors do not have any role to play in the routing 

process. 

It was observed while discussing the results of test 



run no. (3) in section 6.2.1, that the eight sub-reaches solu-

tion with both 0 and K varying resulted in the stage hydrograph 

much closer to that of St. Venant's solution when compared with 

the case of single reach solution with both 0 and K varytrig. 

This is due to the assumption of linear variation of water sur-

face is closely followed'in eight sub-reaches solution case than 

in the case of single reach solution. Therefore to follow the 

assumption of linear variation of Pa-X , it is necessary to sub-

divide the reaches into smaller reaches. At this juncture, one 

may rise the question that why the discharge hydrograph of test 

run no. (3) was not properly estimated in the case of eight 

sub-reaches solution when compared with the discharge hydrogra-

ph of single reach solution. The reason may be attributed to 

1 3y  
the magnitude of s ax  >1 as observed in the first reach of 

the eight sub-reaches solution, thus invalidating •the solution 

of discharge hydrograph from the first reach. When this hydro-

graph is routed along the sub-reach, the resulting hydrograph 

is poorly estimated than the single reach solution. From these 

discussions one can infer that the assumption of linear varia-

tion of discharge is more valid than the 'assumption of linear 

variation of flow depth for a longer routing reach. 

6.2.6 On the cause of dip in the beginning of solution. 

This physically based routing method enables to ascer-

tain the cause of negative or reduceld or dip in the beginning 

of solution of the Muskingum flood routing method in the foll-

owing manner: 

The governing unsteady flow equation of the Muskingum 
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method is given as: 

I - Q = zr  [K(8I + (1-8)Q] ...(8) 

Multiplying both sides of equation (8), by (1-8) gives: 

I-(0I+ (1-0)Q) = If[K(1-0) (0I + (1-0)Q)] ...(99) 

But the expression OI + (1-0)Q is same as Q3  , the normal dis-

charge. 

Therefore equation (99) is re-written as: 

I - Q3  = [K(1-0)Q3] ...(100) 

The solution of equation (100) assuming K and 0 to be constant, 

yields : 

Q3 _ -t/K(1-e) 
T/K(1-0) e dr+I  

When I = I
o at t = 0 

...(101) 

Q3  
e t/1_0) t - 

 o
f reT/K(1-0)dT when 1=0 at t=0 

K(1-0) 
...(102) 

Equation (101) and (102) indicate that at section (3), Q3=I
0 

 

and Q3  = o respectively when t = 0. Since the discharge varies 

linearly along the reach from t = 0 onwards, this leads to a 

discharge less than I or 0 at section (2) when it is located 

downstream of section (3) for which case 0<8<0.5. The discharge 

at section (2) would be always greater than the initial steady 

flow if it is located upstream of section (3) for which case 

9< 0. The above inference arrived based on constant 0 and K is 

also valid for variable K and B. Note that when ' t ' is small 

and section (2) is located far away downstream of section(3), 

then such a situation leads to dip or negative flow in the be- 
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ginning of routing. The larger distance between sections (2) 

and (3) is due to longer reach considered for routing. This 

aspect has been brought out by the results of test run nos. (1) 

(4), (7) and (10) wherein the routing was carried out by con-

sidering 40 km. length-of the channel as a single reach. the 

respective discharge and stage hydrographs plotted in figures 

(3)-(9) show the dip in the beginning of the solution. 

The magnitude and duration of this dip depends on the 

1 aY magnitude of the terms s  . ax. When the magnitude of this 

terms is high, then the magnitude and duration of the dip in- 

creases. This inference can be verified from the typical 

1 ay values of s  . ax  given in Table-4 for runs (1), (4),(7) and 

(10) and from the respective stage and discharge hydrographs 

given in figures (3)-(10). The hydrograph solutions obtained 

for the above mentioned runs and for the same length of reach, 

after dividing it into sub-reaches, are also depicted in 

figures (3)-(10). These solutions indicate no dip in the be-

ginning of routing and thus confirm the above inference arrriv-

ed regarding the formation of dip and its elimination. 
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7.0 CONCLUSIONS 

A variable parameter simplified hydraulic method has been 

developed for routing floods in channel reaches having 

uniform trapezoidal cross-section and constant bed slope. 

The governing equations of this method which describe 

the flood wave movement in channels are same as that of 

Muskingum flood routing method introduced by McCarthy 

(1938), and it has been demonstrated using this method 

that these equations can directly account for flood wave 

attenuation without attributing to it the numerical pro-

perty of the method as stated by Gunge (1969). Therefore 

this method gives a new insight into the theoretical 

aspects of the Muskingum flood routing method. 

The parameters 8 and K of the Muskingum method have been 

related to the channel and flow characteristics. 

The nonlinear behaviour of flood wave movement in chann-

els having uniform trapezoidal cross-section may be mode-

lled using this method by varying the parameter 0 and K 

at every routing time level, but still adopting the 

_linear form of solution equation. 

There exists a minimum routing reach length for which 

this method with both El and K varying can be applied 

successfully without experiencing computational problem 

due to high negative value of 8. 

The flood routing solution in reaches having length less 

than the above mentioned minimum reach length, can be 

obtained by linear interpolation of discharge and stage 
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hydrographs of given inflow hydrographs and the corres-

ponding computed outflow hydrographs obtained at the Lo-

cation of minimum reach length using this variable para-

meters, method. 

In general, the method in which both 9 and K varying 

along with multiple routing reaches consideration is able 

to reproduce the true solution much closer than the 

method in which both 0 and K varying, but with the con-

sideration of single routing reach. 

In general, the method in which both 0 and K varying 

is able to reproduce the true solution much closer than 

the method in which only K varying and 19 remaining con-

stant. 

1 ay  
However when the relative water surface slope s  . ax 

is very small, there is no difference between the solu-

tions obtained using the method in which both 8 and K 

varying, and the method in which only K varying and 

remaining constant. 

As there is no standard definition of "small" and 

"large" applicable with regard to the magnitude of the 

1 
relative water surface slope s  .  , it is always de- 

sirable to use this routing method with the considera-

tion of multiple routing reaches, and both parameters 

8 and K varying in each reach routing. 

The higher the absolute magnitude of the relative water 

1 ay  
surface slope s  . , the higher the values of travel 

a x 

time K and their variation for the given channel cross- 
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section. 

The higher the absolute magnitude of the relative water 

surface slope 1  . , the higher the variation of So  ax 

weighting parameter 0. 

The weighting parameter 0 would be negative when section 

(2) is located upstream of section (3) at any instant 

of time during routing. 

The cause of reduced outflow in the beginning of rout-

ing solution of Muskingum method is due to the linear 

variation of discharge considered by the method over the 

routing reach and due to longer routing reach length 

Ax considered for routing. 

The magnitude and duration of reduced outflow is direct-

ly proportional to the magnitude of the relative water 

1 surface slope . 1/ ' and the length of routing reach 
o ax  

Ax. 

To avoid this reduced outflow theoretically, the routing 

reach should be divided in such a manner that section 

(2) is located upstream of section (3) for each consi-

dered sub-reach. 

Routing in uniform rectangular channels can be achieved 

using this procedure by putting Z = 0 in the governing 

equations for the parameter K and 0. 
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