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ABSTRACT Impact of global climate change on the future water resources of India is
intimately coupled with the variation of monsoon wind and monsoon rainfall. In this paper,
the differences in paleo records from different areas have been discussed. It is felt that the
climate models which can reproduce observed spatial distribution of monsoon are required
to further understand the recorded paleomonsoon fluctuations.
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INTRODUCTION

In one sentence one can define water as “water is life”; all organisms require
water for their survival. Water is used for drinking, irrigation, transport, and also in
industries. Old civilizations such as the Indus Valley civilization and the
Mesopotamian civilization thrived near major water channels. All the populous
cities are situated on the banks of large rivers (e.g., Varanasi and Patna on the banks
of the Ganga). All the Indian rivers depend mainly on the monsoon rains for water,
besides a small contribution from snow-melt in the case of perennial rivers. Drastic
changes in the past monsoon might have lead to the extinction of civilizations. For
example, some believe that the Indus valley civilization collapsed around 4200
years B.P. (Before Present, fixed at 1950 A.D.) due to the failure of the south Asian
monsoon (Staubwasser et al., 2003).

More than ~70% of the area of the earth is under water. The earth is known as
the ‘blue planet’, but only 2.55% of it is fresh water and the rest, saline. Most of the
fresh water is locked in glaciers and deep underground. We draw water for our use
from rivers, lakes and ground aquifers. The total amount of water present in world’s
rivers i.e. 2000 km® (Oki and Kanae, 2006) is much less than the annual water
withdrawn by humans ie. 3800 km’. It is estimated that 7600 km® of
evapotranspiration occurs from cropland and an additional 14,400 km® from
permanent grazing land every year (Oki and Kanae, 2006). However unlike oil
reserves, water reserves may not dwindle with geological time because of earth’s
closed water cycle. Water has its own cycle; it evaporates using the solar energy and
the vapors condense to liquid during convection in the troposphere. Water is
continuously supplied to rivers from either glacier melt or rainfall. Therefore the
management of naturally flowing water with the help of dams is of prime concern.
It is a very critical societal issue in modern times to sustain a fresh water supply and
to increase the availability of water to match the demands of the ever growing
population.
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The International Hydrological Decade promoted studies on world water
balances, and initial estimates were published in the 1970s (Lvovitch, 1973;
Baumgartner and Reichel, 1975; Korzun, 1978). Recent advances in information
technology have enabled the estimation of global water-balance at finer spatial
resolutions (Oki et al., 2001; Vorosmarty et al., 2000; Alcamo et al., 2003). In the
era of the ‘Anthropocene’ (Paul and Crutzen, 2002; Crutzen, 2004), the era in
which human impacts on natural processes are large and widespread, it no longer
makes sense to study only the natural hydrological cycle: some studies have been
initiated to assess the impact of human intervention on the hydrological cycle,
thereby simulating more realistically the modern hydrological cycle on a global
scale. In such studies, human withdrawals are subtracted from river flow (Alcamo et
al., 2003), and the regulation of flow regime by major reservoirs is also incorporated
(Hanasaki et al., 2006).

The demand for high-quality drinking water is limited to a few liters per person
per day and can be met through international trade or by desalination. However,
other demands for water for households, industry, and agriculture require up to one
metric ton of water per day per person in developing countries and considerably
more in developed countries. Problems of water, food, health, and poverty are
interlinked in many developing countries, particularly in the regions where
freshwater resources are scarce, the local economy is too weak to allow the import
of food from outside on a large scale, and desalination plants are impractical to
implement (Oki and Kanae, 2006).

According to the World Health Organization, 1 billion people do not have
access to fresh clean water. A World Resources Institute analysis adds that 2.3
billion people (41% of the world population) live in water-stressed areas, a number
expected to go up to 3.5 billion by 2025. Global population is rising by 80 million a
year and the demand for new sources of fresh water also keep rising.

GLOBAL CHANGE AND THE WATER CYCLE

A number of factors affect the hydrological cycle and global climate change is
one of them. Any change in temperature affects the atmospheric moisture,
precipitation and circulation pattern of the atmosphere, e.g., changes in the rate of
evaporation affects the hydrological cycle. Higher temperatures turn some part of
snowfall into rainfall; the snowmelt season occurs earlier, consequently the timing
and volume of spring flood changes substantially (IPCC, 2001). Nearly half of the
world’s population depends on groundwater sources for drinking and other domestic
use; the ground water recharge depends on the seasonal distribution and rate of
precipitation. Sea level rise causes salt water intrusion into freshwater aquifers near
the coasts and decreases the available groundwater resources. Using IPCC reports
on the future emission scenario of green house gases and multi-model ensemble
techniques the uncertainties in the projections of future hydrological cycle (Milly et
al., 2005) have been considerably reduced.

Any change in precipitation affects the fresh water reserves; changes in the
intensity, amount, frequency and the type of precipitation have been observed. This
behavior of precipitation makes us unable to sustain our water resources. The
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intensity of precipitation is influenced by increase in the heating due to green house
effect, El Nino, etc. Increase in heat provides more surface moisture by enhanced
evaporation. The heat used for evaporation acts to moisten the air rather than warm
it. According to the Clausius Clapeyron relation, the water holding capacity of
atmosphere increases by 7% with every 1°C rise in temperature. Thus increase in
temperature results in enhanced precipitation and risk of heavy rainfall. A warmer
climate increases the risk of droughts and floods but at different places and at
different times (e.g.. in 2005, Mumbai, Chennai and Bangalore were flooded while
the rest of India faced near-droughts). The amount of water vapor and cloud cover
also control the amount of precipitation. Water vapor in the troposphere is the main
source of moisture for monsoon, which plays an important role in our hydrological
cycle. Monsoon occurs over India, China, SE Asian countries, Western Australia,
Africa and to some extent in America. Most of these areas receive an intense
summer precipitation and winter (dry) winds and this has a strong socio-economic
impact in the region (Webster et al., 1998; Wang, 1994).

The Indian subcontinent experiences two different types of monsoons i.e. South
West (or summer) monsoon (SWM) and North East (or winter) monsoon (NEM).
SWM provides for ~80% of the total rain fall over the Indian subcontinent. SWM
occurs between June-September (see Gadgil, 2003 for a review). The Indian
monsoon is influenced by El Nino, La Nina, Indian Ocean Dipole (I0OD) and the
Walker circulation in the equatorial Pacific (Kumar et al., 1999; Krishnamurthy and
Goswami 2000; Sarkar et al., 2004). Change in Walker circulation and the Southern
Oscillation Index (SOI) i.e., difference in air pressure at sea surface between the
castern and western Pacific oceans are related: positive SOI leads to the La Nina
and negative SIO leads the El Nino. Ashok et al. (2001) observed that sea surface
temperatures has an important effect (i.e., a see-saw pattern between the central
equatorial Indian Ocean and Indonesian water, known as 10D) on the intensity of
the Indian monsoon. Climate change is expected to accelerate the global
hydrological cycle, and the average precipitation is expected to increase (Pant and
Rupakumar, 1997; Rupakumar et al., 2002). Evapotranspiration may not increase as
much as precipitation globally because elevated CO, concentration induces stomata
closure and is likely to reduce transpiration (Gedney et al.. 2006), and river
discharge is likely to increase on global scale because of the increased precipitation
and the reduced transpiration (Milly et al., 2005).

India is a tropical country gifted with a large number of the river channels and
the big rivers are perennial and they continuously receive water from glacier melt
and monsoon runoff. But due to recent rapid industrialization and consequent
urbanization some of our fresh water resources have become contaminated by
chemical effluents and the sewage from urban localities. Superimposed on this is
the threat of Global warming and its consequences. Therefore it is very important
for us to understand the pattern of monsoonal rainfall and the effect of changing
climate. A concerted effort between geologists, climatologists, engineers, chemists
and toxicologist is needed to manage our dwindling water resources.

The changes observed so far, which may be linked to global warming are as
under. It has been recorded that a large scale precipitation change (which includes
rainfall, snow fall and other forms such as frozen or liquid water falls from clouds)
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has occurred during the last century. Around 2.17 mm per decade increase has been
observed over land. The urban areas experienced higher precipitation mostly during
summer than the nearby rural areas due to change in the gradient of human energy
production (20-70 w/m?). This destabilizes the environment, thermal perturbation of
the boundary layer results in the downstream translation of Urban Heat Island or
UHI generated clouds (Shepherd et al., 2002; Shepherd and Burian, 2003,
Shepherd, 2005). The excess rainfall in the Indian metros recorded in 2005 could be
due to such a phenomenon.

All the water resources of the world depend on precipitation. For the last
century the precipitation change (% per century or decade) was calculated spatially
by using Global Historical Climatology Network (GHCN) station data. It was
observed that the rainfall over higher latitudes increased during the last century
whereas some of the tropical provinces such as South America, Chile and Mexico
were affected by droughts. At the same time Sahel in Africa faced the largest
negative trend in precipitation.

PROXY RECORDS OF PALEOMONSOON

Prior knowledge about extremes of climate such as droughts, floods and
precipitations is very important for the society; therefore it is crucial to understand
the variability of climate on larger spatial and longer time scales (Ramesh, 2001;
Ramesh and Yadava, 2005). Paleomonsoon reconstruction using stable isotopes of
oxygen from marine sediments and speleothems is useful in addressing this issue.

It is known from previous studies that the South Asian monsoon exhibits
variance at different time scales viz. decadal, centennial, and millennial. Decadal
scale variations can be studied using recorded meteorological data, which is
available for the last century or so, but limited to the four metros where weather
stations are located (Parthasarathy et al., 1995). For longer time scales we must take
recourse to various paleoclimatic proxies, such as sediments deposited in world
oceans (e.g. Sinha, 2007). Recently with the advent of AMS (Accelerator Mass
Spectrometry) one can obtain highly accurate chronologies because, here, instead of
dating bulk sediments, planktonic foraminifera are dated (no contamination from
detrital carbonate material). If suitable cores from appropriate regions (such as
continental margins) are available then we can explore paleomonsoon variations on
centennial to decadal time scales (comparable to human lifetime). The AMS method
also offers a higher sample throughput; thus more layers of the sediment can be
dated, providing a high time resolution up to about 40,000 years back in time (e.g.,
Tiwari et al., 2003).

Three distinct regimes exist as far as paleomonsoon reconstruction is
concerned: The western Arabian Sea, off the Somalian coast experiences intense
upwelling during southwest monsoon resulting in increased organic/inorganic
productivity and negligible fresh water run off due to meager precipitation over
adjoining landmass. As the western Arabian Sea is well known for the upwelling
induced by the monsoon winds, leading to a large reduction of Sea Surface
Temperature (SST) by at least 4°C, the monsoon signal is more easily detectable
here. A large number of previous studies (e.g., Naidu, 2006; Staubwasser, 2006;
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Tiwari et al., 2006; Naidu and Malmgren, 1996, 2005) concentrated here,
reconstructing the monsoon winds over the past several millennia, using the
variation in the abundance of a particular surface-dwelling (planktonic)
foraminifera, called G. bulloides. This species is cold loving and has a natural
preference to temperate rather than tropical waters. However as SSTs can be quite
low in the upwelling regions of the northwest Arabian Sea (off Gulf of Aden and
Somalia), this species proliferates here and has become the marker for pale
monsoon reconstruction. It is now clearly established that the monsoon was weak
during the Last Glacial Maximum (21ka). The Holocene (i.e., the past 10 ka)
records indicate a decade to century scale variability superimposed on the orbit
ally driven change in the monsoon: due to changes in the sun-earth geometry, i.e.,
eccentricity (periodicity - 100,000 years), tilt or obliquity (41,000 years) and the
precession of equinoxes (19 to 23 thousand years), the earth goes through warm
(interglacial) and cold (glacial) periods. Warmer climates favour better monsoons,
while they weaken during colder periods in general - see Korisettar and Ramesh
(2002) for a review. Another important finding is that the Asian monsoon has
recently reversed its millennia —long orbit ally driven low frequency trend towards
less rainfall in the drier areas of its influence, coinciding with the synchronous
increase in the inferred monsoon winds over the Western Arabian Sea (Anderson et
al., 2002): this leads to enhanced upwelling and hence increase in productivity
(Gupta et al., 2003). This change could be related to an increased summer heating
over and around the Tibetan Plateau (Braining and Man twill, 2004; Morrill et al.,
2005) or with persistent interglacial millennial scale mode of monsoon variability
(Gupta et al. 2003). (ii) The eastern Arabian Sea off the Western Indian coast
experiences moderate upwelling along the coastal regions of western India and
copious fresh water runoff due to intense precipitation (1000-4000 mm/yr) on
adjoining land (between Mumbai and Cochin, Sarkar et al., 2000). Results from this
region (Sarkar et al., 2000; Thamban et al., 2001; Tiwari et al., 2006) show that
there was no decline in the monsoon run-off during the Holocene, in contrast to
observations from the western Arabian Sea. (iii) the northern Bay of Bengal, which
receives an enormous amount of freshwater discharge due to the monsoon rains on
the hinterland; the significant decrease in the surface salinity and the stable oxygen
isotopic composition (3'°0) of the surface water, well preserved in the 30 of the
CaCO; shells on plank tonic foraminifer such as G. sacculifer and G. ruber, is the
monsoon signal to look for. Three detailed records available for this region are not
concordant for the late Holocene (Chauhan et al., 1993; Weber et al., 1997; Kudrass
et al., 2001).

As better dated high-resolution pale monsoon records become available,
important questions such as the following could be addressed: How good is the
correlation between the wind and rain records from the western and the eastern
Indian Ocean? Tiwari et al. (2006) reported precipitation proxies, i.e., high-
resolution stable oxygen isotope variations of two different species of plank tonic
Foraminifer viz. Gs. sacculifer and Gs. rubber in an AMS "C dated sediment core
from the monsoon-runoff-dominated eastern Arabian Sea. Their data sets reveal that
during the past ~1800 years (and perhaps up to ~2800 years, resolution of wind
record was too low for comparison) reductions in monsoon wind strength in the
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western Arabian Sea appear to be persistently accompanied by aridity over India. It
clarifies that past fluctuations in SWM precipitation over the Indian subcontinent
followed the wind intensity records from the western Arabian Sea on centennial
time scales. Figure 1 compares the 3'°O record of G. ruber from an equatorial
Indian Ocean sediment core (data from Tiwari et al., 2005) and the salinity
reconstructed from G. ruber §'°0 in a sediment core from the Bay of Bengal (data
from Kudrass et al., 2001). Both show similar long term trends, while the
fluctuations in the equatorial Indian Ocean appear to be of somewhat higher
magnitude. This is because we know that ~1%o change in salinity changes 3'°O only
by 0.3%e.

Until this question is fully settled, we must take recourse to continental and
ocean records of precipitation rather than wind to learn about the paleo-hydrology
of India. The variation of 3"°0 in the ice accumulating in Himalayan/Tibetan
glaciers, which are free from the problems of melting and refreezing that affect
preservation of original isotopic signatures with fidelity, has been used as a
qualitative pale monsoon indicator (Thompson et al., 1997, 2000). The records from
land, such as sand dunes suffer from imperfect chronology, with large uncertainties.
It appears that widespread deposition of sediments by rivers and dune building
activity was associated with cool and dry phases, while large scale fluvial erosion,
incision and sediment transport in the rivers and extensive slope failures were
dominant during the warm, wet, monsoonal phases (see Kale, 2004). In the
background of such uncertain qualitative inferences, the first quantitative
reconstruction of monsoon rainfall in India with decadal to annual resolution has
been obtained from speleothems, including samples from the Gupteswar cave,
Orissa (Yadava et al., 2004; Yadava and Ramesh, 2005, 2006). This has been
possible by using what is known as the ‘amount effect” in the precipitation.

In the deeper parts of a cave in karstic regions, where air circulation is poor and
high humidity prevails, carbonate precipitates slowly, maintaining isotopic
equilibrium between different ionic species. In such a case isotope ratios of oxygen
('"0/"°0) of the ions in the dripping water, which are influenced by the ambient
environment of the cave, are preserved in the growing speleothem lamina and can
be used to reconstruct the past environment (e.g. Gascoyne, 1992; Lauritzen, 1995;
McDermott, 2004).

For mid latitude and semiarid climatic zones 8"*0 of precipitation decreases
with increasing rain amount (Dansgaard, 1964; Bar-Matthews and Ayalon, 1997;
Fricke and O’Neil, 1999) and the temperature dependence is very weak. In tropical
locations any obvious temperature correlation is not observed for the modern
rainfall. The 80 of rain is dependent on the amount of rainfall (Yurtesever and
Gat, 1981): more rainfall is associated with less of "*O content in the precipitation;
this is termed as the ‘amount effect” (Dansgaard, 1964). Hence, in tropical caves the
8'°0 of freshly deposited calcite layers on a growing speleothem is a good proxy for
the past variations in 8'°0 of meteoric water, and thus the amount of rain.

For island stations a linear relationship (Yurtsever and Gat, 1981) between the
mean monthly 8'°0,, of precipitation and the mean monthly rainfall was observed:

80, = (-0.015 = 0.002)xP,, - (0.47 +0.42) (1)
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P, is the mean monthly rainfall, with correlation coefficient r = 0.87 for 14
island stations (each has at least 40 monthly observations). Average rate of
depletion is found to be -1.5 = 0.2%o for a 100mm increase in the monthly rainfall.
This depletion rate should be applicable to those locations where annual
temperature fluctuations remain within a narrow range. During the monsoon season
in 1999, precipitation samples collected at Jharsuguda (22°N, 84°E), which receives
majority of the annual rainfall during southwest monsoon, monthly depletion rate
for 100 mm increase in the monsoon rainfall was found to be 2.2 + 0.8%¢ (Yadava
and Ramesh, 2003), based on daily samples collected during three successive
months: July, August and September. This agrees well with the depletion rate
observed at the island stations. It suggests that during the monsoon months when the
vast continental land area cools down and attains a moderate temperature till the
monsoon is active, the amount effect at the inland sites is the same as what is
observed at the island stations. The 8'°O of speleothem from Gupteswar, Orissa,
could thus be converted into amount of rainfall, assuming that changes in the
speleothem 8"%0 had been solely due to variations in the 380 of the annual rain,
and that the depletion rate experienced at the island stations is also applicable at the
cave site.

The Gupteswar stalactite 3"%0 record (Fig. 1(c)) is compared in Fig.1 with two
other, similar, high resolution (comparable with that of speleothems; i.e. ~lyr to
~15 yr) paleomonsoon records from southern Asia, spanning the last 3400 yrs:
(i) the stable oxygen isotope variations from stalagmites in southern Oman (Fig.
1(a); data from Fleitmann et al., 2003); (ii) a high resolution (~7yr) record of von
Rod etal.,(1999), varve thickness of sediments collected from off Karachi, Pakistan
(northeastern Arabian Sea): here, precipitation and hence the river runoff control
varve thickness. The precipitation at the sampling site (von Rod et al., 1999) occurs
both during the summer (Jun.-Sep) and winter monsoons (Nov to Mar.) forming an
annual couplet of alternate dark and light colored sediment sequences. The
precipitation may have fluctuated (Liickge et al., 2001) due to variations in the
extreme positions of the ITCZ (inter-tropical convergence zone) and hence, the
variability in varve thickness was interpreted as a proxy for past rainfall variations
(Fig. 1(b)). The Gupteswar and Oman speleothem records seem to agree well. The
monsoon was stronger around 3000 B.P. as indicated by more depleted 3'°0 values
and also by the increased growth rate (higher sampling density). The increasing
trend between 1200 yr B.P. to 400 yr B.P. is seen in both the records. Also during
the extremely low rainfall epochs of 1700 and 2000 yr B.P. shown by the
Gupteswar speleothem, the Oman stalagmites show a hiatus, probably due to the
complete lack of rain. It must be noted that Oman is more like a desert relative to
eastern India and therefore growth of stalagmites there is more sensitive to rainfall
fluctuations. The decreasing trend of rainfall from 3400 to 1900 yr B.P. is reflected
both in the varve and Gupteswar records (Liickge et al., 2001, have reported lowest
Ti/Al ratio that reflects terrigenous matter and hence runoff) in the same core
around 2000 yr. B.P. But the two records differ significantly during the last 1500
years. Pollen records from different lakes in Rajasthan (Singh et al., 1974; Bryson
and Swain 1981; Swain et al., 1983) show high monsoon rainfall around 600 yr
B.P., similar to the Gupteswar data. As the speleothem records separated by a larger
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distance agree very well, it is likely that the varve thickness response to the
monsoon is nonlinear.
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Fig. 1 Comparison of high resolution paleomonsoon records for the last four millennia from
(a) Oman stalagmites (data from Fleitmann et al., 2003) (b) varved sediments (northern
Arabian Sea, data from von Rad et al., 1999) (c) Gupteswar stalactite (data from Yadava and
Ramesh, 2005); and the last forty millennia from (d) G. ruber 'O from the eastern Arabian
Sea (data from Tiwari et al., 2006) and (e) salinity data derived from G. ruber 8'°0, from
Bay of Bengal (data from Kudrass et al., 2001).

Staubwasser (2006) compiled the available paleo monsoon records from the
different localities from the Arabian sea (see Table 1; ODP site 723A,Gupta et al.,
2003; southern coastal Oman, Q35, Fleitmann et al., 2003, site 56KA, from NE
Arabian sea, von Rod et al., 1999 and 63KA, Staubwasser et al., 2002, 2003, and
3268GS5 from the eastern Arabian Sea, Sarkar et al., 2000) and from Bay of Bengal
(BOB, Site 126KL, Kudrass et al., 2001). The above studies involved different
types of proxies e.g. abundance of planktic foraminifera (Gupta et al., 2003),
speleothem stable oxygen isotope ratios, varve thickness (von Rod et al., 1999) and
the stable oxygen isotope record of water mass sensitive planktic foraminifera
(Kudrass et al., 2001; Sarkar et al., 2000). Staubwasser (2006) observed that the
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Table 1 Summary of high resolution monsoon records from the south Asian region.

ELocality/ Latitude Longitud  Proxy Used Indicator of  Duration Dating method
£ Sites e climatic condition and time
s resolution
1 63KA 24"50N  65°55E Gs.ruber ™0  Depletion in 30 12,000 yrs AMS "C
records shows strong  B.P. 16.72 yrs
SWM and high
runoff
2 56KA  24°S0N  65°55'E Varve Higher thickness 5,000 yrs AMS"C
thickness suggests  higher B.P. 7 vyrs
precipitation  and
increase runoff
from the Indus
river
3 3268 12.5°N 73°E §%0 records Depletion in 80 10,000 yrs AMS"C
G of Gs.  records shows B.P. 252.48 yrs
sacculifer &  strong SWM and
Gr.menardii high runoff from
the Western Ghats
4 GCS  10°23N  75°34'E 60 records Increase in 8°0 18,000 yrs. AMS'C
of Gs. ruber records of Gs. B.P 473.68 yrs
& Gs. ruber &  Gs.
sacculifer sacculifer suggest
low runoff from
western Ghats and
high salinity
5 g ODP- 18°58.40° 58'E Abundance of Higher abundance 11,500 yrs  AMS'"C
v 723 N Gg.bulloides suggests strong B.P. 137.66 yrs
8 SWM and
@ upwelling
6 © Qs I7°10N  54°18E 80 records High 8"™0 value 10,000 yrs *Th-UTIMS
of stalagmite ~ suggests low B.P.(With and
rainfall ie. weak the hiatus MC-ICPMS
SWM in the
growth
between
2600-1400
yrs B.P.
7 126K 19°58.40' 90°02.03 8"0 records Depletion in 80 80,000 yrs AMS"C
L N E of Gs.ruber records shows the B.P. 100 yrs
strong SWM.
decrease in salinity
and high runoff
from the Ganga
Brahmaputra
- Discharge
E
8 2 3111 15°52.000  91°10.00° §"O records Higher value of 20,000 yrs “C (Bulk
) N E of Gs.ruber & 80 records  B.P. Sample)
B Gs. sacculifer  shows the weak 371.70 yrs
= SWM

Source: (1) Staubwasser et al., 2002, 2003; (2) Von rod et al, 1999; (3) Sarkar et al., 2004;
(4) Thamban et al., 2001; (5) Gupta et al., 2003; (6) Fleitmann et al., 2003; (7) Kudrass et al., 2001;
(8) Chauhan et al., 1993.
# TIMS-Thermal Ionization Mass Spectrometry and MC-ICPMS (Multi-Collector Inductively Coupled

Plasma Mass Spectrometry).
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Holocene paleo-archvies from these regions revealed significant spatial differences
in paleomonsoon performance. The Oman margin (Q5 and ODP 723A) record
suggested a strong South West Monsoon (SWM) during early to mid Holocene on
the basis of very high abundances of upwelling indicator planktic foraminiferal
species Gg. bulloides, a reduction in & O of speleothems and lower & '* O of
Gs.ruber from NE Arabian Sea. Kudrass et al. 2001, (Site 126KL) also reported
maximum river water discharge from the Ganga- Brahmaputra (G-B) to the BOB
during the carly to mid Holocene, these records also correlated with the enhanced
humidity recorded in southern Tibet (Gasse and van Campo. 1994) . On the
contrary, eastern Arabian Sea records show higher runoff from the western Ghats
during the Late Holocene (Sarkar et al.. 2000: Thamban et al., 2001) inferred on the
basis of reduction in foraminiferal 'O due to the lowering in the salinity of sea
water caused by runoff. Thus the Eastern Arabian Sea records show an inverse
relationship with the western Arabian sea records. Stabwasser (2006) conjectured
that the observed differences could be due to changes in the winter monsoon rains,
affecting the run-off proxies. He proposed a model to explain the variability in the
monsoon over time, which suggests that the dissimilarities in between the paleo
records might be due to the difference in the distribution of active and break
monsoon periods. Due to break in the monsoon, some of the monsoon rainfall could
have shifted from the Indian peninsula to the Himalayan foothills, as deciphered
from the higher river discharge in BOB during the Early Holocene.

Kale (2004) has summarized that in the early Holocene (9.5 to 5.5 ka) the
southwest monsoon was stronger than today and in the late Holocene. around 3.5
ka, it weakened. Anderson et al. (2002) showed that during the past 4 centuries, it
has improved again. The annual resolution record of monsoon from a speleothem in
Karnataka (Yadava et al., 2004) has not shown any long term increasing trend.
However, recent work (Yadava and Ramesh, 2007) has clearly shown that there is a
solar periodicity of ~22 years present during a better part of the record. Based on the
instrumental data of monsoon rain for the last century, it appears that the monsoon
was never lower than 20% of the normal. This appears to be true for the ~330 years
record as well. But when we look at the past ~3400 years, there were extended
periods when the monsoon had really failed. The sun-monsoon link is also
confirmed by the speleothem record from the Himalaya (Denniston et al., 2000,
Sinha et al., 2005).

CONCLUSIONS

Predicting the future water resources of India in the context of global change is
intimately coupled with the variation of monsoon wind and monsoon rainfall. The
differences in the paleorecords from the different areas have been discussed. In
general a warmer climate appears to strengthen the monsoon. While there were
some years of deficient rain the paleo-records pertaining to the last few centuries,
and no failures were observed, this is not true of the paleo-record of the last three
millennia, which shows decadal failures of the monsoon. This appears to have some
link with solar irradiance variations, though the connecting physical mechanism is
not clear. On longer time scales, warmer periods have in general witnessed higher
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monsoon rain than the colder episodes. This appears to be mainly controlled by the
precession of the earth. Good climate models capable of reproducing the observed
spatial distribution of modern monsoon are required to further understand the
recorded paleomonsoon fluctuations.
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