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Abstract The design, analvsis and management of the water resources systems, involves
modelling and prediction of the behavior of complex systems. The Artificial Neural Network
(ANN) can be used in a large variety of problems, e.g. mapping, dvnamic process modelling,
optimisation, image processing, data analysis, forecasting, ~simulation, function
approximation etc. Due to the distributed nature of ANNs, destruction of a few nodes or
presence of some inconsistent data does not adversely affect the performance of ANNs. An
ANN model was applied to rainfall-runoff simulation of an Indian catchment. Hourly
rainfall, discharge and potential evaporation data were used. The results show acceptable
match between the observed and computed discharges.

INTRODUCTION

After the advent of digital computers, most of the information processing
applications have been based on programmed computing approach. In hydrology,
the systems may be nonlinear, multivariate and may have unknown
interrelationships. Such problems can be tackled efficiently by the Artificial Neural
Network (ANN). Because of their in-built mechanism of growing ‘wiser’ with
‘experience’, ANNs are capable of adapting their complexity and their accuracy
goes on increasing as more and more of input data are made available to them. The
processes involving several parameters are easily amenable to neurocomputing. In
most of the existing models, the following areas are inadequately covered:

Unknown processes When the underlying physical laws are unknown or not
precisely known, it is impossible to make a physically based model of the
phenomenon using these techniques.

Complex process When all the existing complex relationships between the various
aspects of the process under investigation may not be recognized, these cannot be
properly represented in the model.

Incomplete data In all modelling exercises, preprocessing of data is absolutely
necessary. A lack of data creates large uncertainties in the model results, as
approximations and guesses have to be carried out on the data. Sometimes, the
problem may be either poorly defined or misunderstood and observations of the
process may be difficult or impossible to perform.

Simulating human decision paths Another difficult problem arises when a
decision model has to be designed. Usually one predefines clear rules in a program
(IF..THEN..ELSE rules) or tries to implement an expert system. These models need
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some kind of predefinition and often become useless when exposed to unforeseen
and undefined situations.

Data intensive tasks Detailed models often require many different parameters,
especially while modelling dynamic systems. This requires data transfer and can
lead to extensive processing time. For on-line operation, these slow but detailed
models are unacceptable, since the state of the monitored system often changes

faster than the simulation frequency of the model. ‘
Changing environments To decrease processing time, the number of adjustable
parameters is often reduced and to retain the authenticity of the model the results are
calibrated. This calibration procedure can take a lot of time, fault tolerance decrease
and the resulting model will become useless when the simulated process changes.
Furthermore, in rapidly changing environments long calibration times are
unacceptable.

Optimal solutions A standard optimisation approach or statistical model provides a
solution only when allowed to run to completion; ANN always converges to optimal
or near to optimal solutions and need not run to any prespecified solution condition.

For the points mentioned above, conventionally applied modelling techniques
need to be refined and complemented to achieve performance by implementing new
or different methods.

NEURAL NETWORKS

Attempts have been made to develop a technique that does not require
algorithm or rule development and thus reduces the quality and complexity of the
software. This technique is known as “Neurocomputing” and the networks laid out
with many parallel processing elements to do this neurocomputing are called
“Artificial Neural Networks™ (ANN). ANNs represent highly idealized
mathematical models of our understanding of complex systems. They include the
ability to learn and generalize from examnle, to produce meaningful solutions to
problems even when input data contains error or are incomplete, to adapt solutions
overtime to compensate for changing circumstances, error tolerance, noise
reduction, to process information rapidly and to transfer readily between computing
systems. Since no algorithm development is involved, the technology can be easily
understood and implemented.

Network Topology

A Neural Network is a massive system of parallel, distributed information
processing system that relates an input vector to an output vector. An ANN consists
of a large number of information processing elements called neurons/nodes
interconnected via unidirectional, weighted signal channels called connections. The
neurons are grouped in layers. The neurons in a layer share the same input and
output connections, but do not interconnect with themselves. Each layer performs
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specific functions. The input layer processing elements get the input vector and
transmit the values to the second (hidden) layer of processing elements across
connections. Weighted values converging at a node in the hidden layer are summed
along with a weighted bias associated with the node. The result is then put through a
simple function to generate a level of activity for the node.

The activation levels of the hidden nodes are transmitted across
links/connections with the nodes in the output layer. Again these values are
weighted during transmission, then summed at the output node and are put through
an activation function. The level of activity generated at the output node(s) is the
network’s solution to the problem presented at the input nodes. All the nodes within
a layer act synchronously, meaning at any point of time, they will be at the same
stage of processing. The equations governing the mode of operation of such a
network, in the generalized form are as below:

h= f [(Wj\i . Xj) + b.] (])
yi=f[(vii. h)+Db] : (2)

where h; is the activity level generated at the i hidden node; y; is the activity level
generated at the " output node; x; is j' component of the input layer; w;; and v;;are
weights on the connections to the hidden and output layers of nodes, respectively; b
are weights biases at i " node (hidden node in case of Eq.(1) and output node in
case of Eq. (2)); and f( ) is activation function.

The function f( ) is chosen such that its value lies in the ranges [-1,+1] or
[0,1]. This function can be a sigmoidal function, a sine function, a Gaussain
function etc.

The ANNs operate on the principle of learning from a training set that
involves adjusting the weights of interconnections. The data passing through the
connections from one neuron to another, can be manipulated by weights. These
weights indicate the strength of a passing signal. Consequently, when these weights
are modified, the data transfers through the ANN will change and the overall
network performance will alter.

The manipulating parameters can all be adjusted and optimised to get a
specific response from an ANN. This process of adjustment and optimisation is
called learning/training and is defined by the learning algorithm of an ANN. The
learning algorithm is a set of optimisation function that adjusts the weights in a
manner, through which an input signal is correctly associated with a desired output
signal. Several learning examples can be presented to the network, each attributing
to the optimisation of the weight distribution. Accuracy of ANNs goes on increasing
as more and more of previous data are made available to it because it has an in-built
mechanism of growing ‘wiser’ with ‘experience’. Finally, when an ANN has
learned enough examples it is considered trained.

Training the ANNs

In general, it is assumed that the network does not have any prior knowledge
about the problem before it is trained. ANNs are trained with asset of typical
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input/output pairs called the training set. So at the beginning of training the network
weights are initialised with a set of random values say between ~1.0 and 1.0, During
training, the weights are adjusted to reduce the residual error of the training set. A
parameter ‘Errorindex-Threshold® represents the root-mean square of sum squared
residual error of the training set normalized by the standard deviation of the training
outputs. Thus by controlling this parameter one can constrain the number of hidden
units added to the network. After examining a few values, a particular value for the
ErrorIndex-Threshold can be settled for which the resulting networks provide a
better prediction resuits than other values. The final weight vector of a successfully
trained neural network represents its knowledge about the problem.

Backpropagation (BP) Algorithm for Training of ANN

The data enters the network through the input layer. The nodes in the input
layer are not computational nodes and each simply broadcasts a single data value
over weighted connections to the hidden nodes. Fach BP node also has an extra
input called the threshold input, which acts as a reference level or bias for node. All
hicden nodes thus receive all input data, but because each has a different set of
weight, the sets of values differ.

Each hidden node processes its inputs and broadcasts its result to the output
layer. The output nodes also have distinct sets of weights and process input values
to produce a result. For BP, the network’s result is asset of continuously variable
values, one per output node. Hidden nodes have no direct connection to input or
output. Introducing intermediate layers enhances the network’s ability to model
complex functions.

The hidden and output nodes process their inputs in two steps. Each
multiplies every input by its weight, adds the product to a running total, and then
passes the sum through a function to produce its result. This transfer function is
usually a steadily increasing S-shaped curve, called a sigmoid function. The
attenuation at the upper and lower limbs of the “S” constrains the raw sums
smoothly within fixed limits. The transfer function also introduces a non-linearity
that further enhances the network’s ability to model complex functions.

The key to the back propagation learning algorithm is its ability to change the
values of its weights in response to errors. For calculating the errors, the training
data must contain a series of input patterns labeled with their target output patterns.
(Labeled training data is a common, but not universal, requirement for neural
networks). During BP training, a network passes each input pattern through the
hidden layer to generate a result at each output node. It then subtracts the actual
result from the target result to find the output-layer errors. Next, the network passes
the derivatives of the output errors back to the hidden layer, using the original
weighted connections. This backward propagation of errors gives the algorithm its
name. Each hidden node then calculates the weighted sum of the back-propagated
errors to find its indirect contribution to the known output errors.

After each output and hidden node finds its error value, the node adjusts its
weights to reduce its error. The equation that changes the weights is designed to
minimize the sum of the network’s squared errors. This minimization has an
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intuitive geometric meaning. To see it, all possible sets of weights must be plotted
against the corresponding sum-of-squares of errors. The result is an error surface
shaped like a bowl, whose bottom marks the set of weights with the smallest sum-
of-squares error. Finding the bottom of the bowl-that is, the best set of weights-is
the goal during training.

Generating Results from Trained ANN

After the learning cycles, the learning algorithm of trained ANN is often
deactivated and the weights are frozen. Then, a test data set, which it has never
encountered before, is presented to the ANN enabling a validation of its
performance. This is called testing of ANN. Depending on the outcome, either ANN
has to relearn the examples with some modifications or it can be implemented for its
designed use.

RAINFALL-RUNOFF MODELLING

Problem of estimating the runoff in a river has received considerable attention
of hydrologists as runoff prediction is vital for planning and design of reservoir for
hydropower, water supply scheme, irrigation projects, designing of hydraulic
structures, flood prediction etc. The success with which ANNs have been used to
model dynamic systems in other fields of science and engineering suggests that the
ANN approach may prove to be an effective and efficient way to model the rainfall-
runoff (R-R) process in simulations where explicit knowledge of the internal
hydrologic subprocess is not required. ANNs for daily and hourly streamflow
forecasting have been successfully developed and used. French et al. (1992)
demonstrated that an ANN is capable of forecasting the complex temporal and
spatial distribution of rainfall generated by a rainfall simulation model. Chang and
Tsang (1992) used an ANN to model snow water equivalent from multichannel
brightness temperatures and obtained better results than from a multiple-regression
mode; ANNSs have also been applied to groundwater reclamation problems and to
prediction of average air temperatures.

In R-R modelling, the input pattern consists of rainfall depths and the output
the discharges at the catchment outlet. The contributions from different parts of the
catchment arrive at the outlet at different times and the variations in the discharge
output are determined by the rainfall depths at both the concurrent and previous
time intervals. Hall and Minns (1993) have indicated that the number of antecedent
rainfall ordinates required is broadly related to the lag time of the drainage area.
Since the ANN relate the pattern of inputs to the pattern of outputs, volume
continuity is not a constraint. However, care must be taken to avoid the presentation
of contradictory information to the ANN. More specifically, the input pattern may
contain many zeros both at the start of the rising limb of the output hydrograph and
during the recession when rainfall has ended and flows are decreasing. These two
situations could be distinguished by providing an extra input consisting of a binary
variable (say, zero for pre-storm and unity for post-storm conditions), but Hall and
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Minns (1993) have indicated that antecedent flow ordinates both perform the same
function and provide additional information about the input pattern, i.e. the longer
the input rainfalls remain zero, the more the output decreases. Hsu et al. (1995) have
shown that ANN model approach provides a better representation of the R-R
relationship of a medium sized basin that the linear ARMAX approach of the
Sacramento soil moisture accounting model. Minns and Hall (1996) have reported a
series of numerical experiments in connection with the application of ANN to R-R
modelling and concluded that the ANNs are capable of identifying usable
relationships between discharges and antecedent rainfalls.

The use of an output variable in the input is referred to as recurrent back-
propagation. The inclusion of the flow at time (t-1) as an input to determine the flow
at time t may appear to introduce an element of flood routing into the model, but
that is not the purpose of the ANN. Unlike the conventional R-R models, the
network seeks to learn patterns and not to replicate in detail the physical processes
involved in transforming input into output. The learning process does not depend
upon any number of (active) parameters or their possible physical interaction. Some
people have a feeling that the ANN could perhaps be regarded as the ultimate black-
box model.

The Study Area and Data Availability
The Kolar subbasin of the Narmada basin, located in central India, was

chosen as the application for this study. This Kolar basin is located in the latitude
range of 22°40” to 23°08° N and longitude 77°01° to 77°29° E (Fig. ).
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The basin elevation varies from 300 m to 600 m. The catchment area of
820 km® up to a gauge and discharge site measurement at Satrana has been
modelled. The hourly rainfall data at four stations was available for the period 1983-
1988 and was used to get weighted average hourly rainfall for the basin. The hourly
gauge discharge data for the monsoon season only was available at Satrana. Rating
curves were developed for this site to convert hourly stages and to hourly discharge.
The pan evaporation data for a station located near the basin in an agricultural area
was used. A time step of one hour was used in the simulations. It may be mentioned
that the availability of the input data for the catchment is far from ideal. The
coverage of the basin through the rainfall stations is also not uniform. However, the
data from this basin provides an opportunity for rainfall-runoff modelling in a noisy
environment.

Desingn of the ANN

Let R, E, and Q, represent the rainfall (mm/hr), potential evaporation (mm/hr)
and runoff (mm) at time t. In the design of the ANN six variables Ry, Ei, Re1, Quts
R, were used as input and the output variable was Q,. These data were normalised
so that the data were available in 0 to 1 range. This normalized data was used for
training the ANN. The number of hidden layers in an ANN and the number of nodes
in each of these hidden layers are two important parameters in the design of an
ANN. In general, the performance of the ANN improves as the number of hidden
layers increases though the network becomes more complex to solve.

In the preset case, a number of trials were made by varying the number of
hidden layers from 1 to 3. Moreover, number of nodes in each hidden layer was
varied from 1 to 15 in each case. For each of these combinations, the output mean
squared error was observed. It was found that with a five-layer ANN consisting of
input layer, three hidden layers and output layer having 6 nodes in input layer, 5, 10
and 5 nodes in the first, second and third hidden layer respectively and one node in
the output layer, the normalized output mean squared error was the minimum. The
weights for this configuration are given in Table 1. It may be mentioned that for
most of the real-life applications, three to five layers give acceptable results.
Further, it was observed that there was not much improvement in the results if the
number of nodes was increased beyond limit. In a few cases, as the number of nodes
in the hidden layer was increased, the error was found to increase rather than
decrease.

Validation of the ANN Model

In the validation phase, the weights calculated during the design phase were
freezed. The rainfall and potential evaporation data along with the weights were
used to compute the discharge. The observed and computed values of the discharge
for the year 1983, 1984 and 1985 have been plotted in Figs. 2, 3 and 4, respectively.
It is seen from these figures that there is a very good match between the observed
and computed discharges.
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CONCLUSIONS

The ANN approach has been applied to the rainfall runoff modelling
problem. The results obtained for the example catchment are quite promising, So far
the applications of ANNs in the area of hydrology have been to several diverse
nature of problems and the results in each case have been very encouraging. Due to
the ease of application and simple formulation, this technique has already become a
prospective research area with great potential

The ANN approach should be viewed as an alternative to conventional
computing techniques not as a complement. Many researchers are considering
hybrid systems integrating ANNSs, in particular with knowledge-based expert
systems, to exploit the advantages specific to each technique. They have many short
comings of their own, most notably, the production of inexact solutions, a lack of
theory to guide selection of the most appropriate size and configuration for a
network, and slow progress during training. Such issues need to be resolved before
the potential of ANNSs can be realized.
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