Jalvigyan Sameeksha—a publication of
Indian National Committee on Hydrology
Vol. V, No. 1 & 2, June 1991

Modelling of Pollutant Tfansport Through Unsaturated Zone

by the Method of Characteristics

Deepak Kashyap and Sulekha Gupta
Department of Hydrology, University of Roorkee
Roorkee-247 667, INDIA

Abstract : The transport of pollutants through the unsaturated zone is goverened
by Richard’s and mass transport equations. Thus, the distribution of pollutant in
space and time for given initial and boundary conditions, can be estimated by the
solution of the two coupled differential equations. However, the conventional
numerical techniques may lead to siginificant errors due to ‘numerical dispersion’
especially when the convective and the diffusive transports are of the same order
of magnitude. A numerical algorithm for the solution by the method of

characteristics is described. The resulting model has been tested using reported

data.

Introduction

Waste disposal on land and application
of fertilizers and pesticides to croplands has
become a common practice universally. Water
infiltrating at the ground, dissolves such matter
and carries it downward through the unsaturated
Many types of waste material (e.g.,
heavy metals, radioactive material) do not
decompose easily. Such pollutants travelling
through the unsaturated zone join the water
table and may affect the water quality adversely.
Further, fertilizers which are not utilized by
crops are transported below the root zone by
the percolating water and pose a potential
threat to the groundwater quality.

zone.

In order to prevent or minimize such a
water quality hazard, a thorough understanding
of the flow process combined with the
mechanism of transport is essential. In recent
years many research workers have turned their
attention to the problem. Unsteady state
solutions have been given by Warrick et. al.,
1971 (analytical solutlon); Bresler, 1973; Russo
1988 (finite differences); Van Genuchten, 1988
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(finite elements); Smajstrla et. al, 1975;
Khaleel et. al., 1985 (method of characteristics)
and many others.

A model for numerical simulation of trans-
port of dissolved Inert pollutant through the
unsaturated zone is presented. The model
involves solution of Richard’s equation to arrive
at the velocity distribution. This is followed by
estimation of transport by the method of
characteristics. The model has been tested
using reportad data.

Governing Equations

The governing equation for one dimensio-
nal flow of a chemically inert solute through an
unsaturated porous medium, can be written as

follows,
a(Cs)/at = 5/32(sD. 3C/eZ—qC(zt) )
q = K. 9(—h(z, t) + 2z)/5z

(1)
(2)

whare, ¢ is volumretic moisture content, h(=h
(8) ) is the capillary pressure head, K(=K(#) )
is the wunsaturated hydraulic conductivity
(known as capillaty conductivity), h(s) and



(K (s) are the soil characteristics, z is a co-
ordinate along the vertical direction (--ve,
upwards), t is time, C(=C(z,t) ) is the solute
concentration, D(=D(z,t) ) is the hydrodynamic
dispresion coefficient and q (=q(z,t) is the
Darcy velocity in a vertically downward
direction,

The dispersion coeffecient D represents the
combined effect of both molecular diffusion

and mechanical dispersion, and can be defined
as follows, (Kemper and van, 1966; Bresler,
1973; Ogata, 1970; Van Genuchten, 1982;
Russo, 1988).

bs
D=D,ae T 7‘]“" (3)
where, @ and b are empirical constants charac-
teraizing the soil, A is dispersivity, v(=aq/s) is
seepage velocity and Do is the molecular diffu-
sion cofficient in a free water system.

The head from of Richard’'s equation
governing one-dimensional vertical flow (and
hence the distribution of Darcy’s velocity in z
and t) in an unsaturated medium, can be written
as follows,

Cu. ah(z, t)/st=8/0z(K.3(—h(z, t) +2)/3z)

(4)
where, Cu(=ds/dh) isthe specific moisture
capacity.

The Model

The numerical model developed to obtaina
solute concentration distributlon in space and
time, essentially involves a coupled solution
of equations (1) and (4).

Solution of Richard’s Equation

Richard’s equation is a non linear second
order partial differential equation. The non-
linearity arises due to the dependence of Cu
and K on s (and h). In order to solve this
equation the domain of flow extending from
ground to water table is descretized by a
number of nodes. Simalarly the time domain
is discretized by a finite number of discrete
times. Thus h(zt) at the j* node and k'
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discrete time is represented as h;,x Eqn (4)
is rewritten expresing the spatial and temporal
derivatives of h by central finite differences.
The resulting equation for an interior node j
and time step At from k™ to (k+1)" discrete
time is as follows.

hi: fr+l_hfl k= _.:]_.
At 2

A ~h. + H
[ st b

by, kvi—him1 Az } ol 4
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Kj. k+1
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hjv, k—hj k+AZ;
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hjpys e —hi x+ AZJ}] _2
ANZj AZi+AZj—y
(5)

J =923, Abit it dovbaedienin—i

where, n is the total number of nodes.

This provides (n-2) non-linear simultane-
ous equations. Two additional equations are
obtained by assigning boundary conditions at
the ground (i.e,, j=1) and at the water table
(ie., j=h). The boundary condition at the
ground may be either of Neuman type (when
tha entire input infilters) or Dlrichiet type (when
ponding occurs or just saturation is maintained
at the ground). At the water tabie the boun-
dary condition is of Dirichiet type (s=¢ or
h=D), This leads to a determinate system
of equations.

The system of non-linear simultaneous
equations is solved using Picard’s iteration
method (Remson et al, 1971). According to
this method the system of equatious is lineari-
zed and solved successively by evaluating K and
Cu in accordance with the known values of h
arrived at in the previous iteration. Thus. for
the m™ iteration eqn. (5) is rewritten with the
following substitutions,

(m) (m)
hjmge k41 =hj1s k41 7 Do ko1 =N1s k41
()
h}'+lr k+lth1+1r k41



(1—m) {(m-1)
CU], I\—+1=CU_;, k¥l ¢ Kj—]r k+]:K;v1: k41 H

(m—1)
K e1=Kj, 141

(e) (0)
K}', k+1,:KJE, k and CUJ, l{+]2CUj, ke
The resulting system of equations is tridia-

(m)
gonal and can be solved for (h;, x4y, j=1, n)

using the thomas algorithm (Remson et al,
1971). As the itertion index approaches in-

(m)
finty, (hj x+:) converges to the unknown true

solution (h;, x4,) of non-linear equations.

(m) /\ (6)

- 0
hj- k+1_hi- k4
Limitm oo
—

To avoid to large a number of intertations,
are stopped when the following check is
satisfied, '

[ (m) (m—1)
Fhj ke — hjepr > & &)

where » is a small 4+ve value.

Thus the distribution of h in space and
time is obtained.

Computation of Velocities
Using the values of h;, i, seepage velocities

are computed as follows.

Kj+j,"_’al(|,'2- (_H‘{’ZAZJ?. -ﬁ_j'.-k-i-ln'u) (8)

V;H, 2 k+1/2
where,

h = hjppkar—hjca—h 40— hjk

8 jorkrr2e= (8 jprkerF+€jiks1+ 05 kaq +6 k)4

Solution of the Solute Transport Equation

The transport equation i.e. eqn(1) comp-
rises of a convective and a diffusive component.
In the proposed model, the convective compo-
simuylated by the method of
The diffusive component is
implicit

nent is
characteristics.
subsequently accounted for by an
finite difference scheme.

In the method of characteristics, instead of
solving eqn(1) directly the characteristic equa-
tions are determined and solved. An equivalent
set of ordinary differential equations for eqn(1)
can be written as follows :

dz/dé = q/g (9)
d(C#)/dt = d/dz(sD. dC/dz) (10)

The solution of eqn(1), thus reduces to the
solution of equations (9) and (10). The
following steps are involved.

(i) The solute infilterating at the ground
is represented by a small strip of uniform thick-
ness, the bottom of which coincides with the
initial interface (ground surface) between the
solute and the unsaturated flow region. This
has been termed as the off take point (refer
Fig. 1) This off take point will move into the
system with a velocity equal to the flow
velocity  at ithe ground. When the
vertical distance moved by it equals (or
exceeds) the thickness of the strip, the entire
solute content represented by it, would have
entered the flow domain. At this stage the off
take point is assumed to have taken off and is
termed as a moving point (refer fig. 1). The
instant an off take point enters the flow domain
it is replaced by a new one, to account for a
continuous movement of flow.

take off point
I

initial = ‘
interface

flow-domain
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Fig. 1. Illustration of an off-take point and a moving point
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(ii) Once a moving point has entered the
flow domain, it's movement is goverened by the
velocity distribution obtained by solving eqn(4)
(as described previously). U, .42 an average
velocity of the p* moving point during the
period k to k+1 is assigned in accordance
with the rollowing equation.

Usiksz=Vjyamsrra+ (Visrjaksre—V g 20k41/2) -

gf}lkﬂ Z_,l'-—-]f 2
Ziyafa—j_qy2

(11)

where, z; is the depth co-ordinate of the j*
node and ¢, is the depth co-ordinate of the
p’* moving point at k’ discrete time.

The depth co-ordinate ¢,x4 of the p®
moving point at the discrete time k-+1 can be
quantified as follows,

éprk+1"_”cwk + Up:k+lj'2- &t (1 2)

where,

{sokty is the co-ordinate at time level k-+1.

(iii) FEach node represents an area of
influence and any moving point falls within the
area of a certain node j, if

Z,— A2 < L €2 + 2540/2 (13)

All moving points lying in the area of
influence of a certain node contribute towards
the solute content of that node. Thus the solute

incoming solute content
at node j

Ll

concentration at any node j at time k41, due
to convection is assigned as follows,

/\ _ JiEVike
Ciiksr T Volj. k4

(14)

where, J, comprises of all the moving points
lying in the area of influence of the j** node at
the time level k+1, V, is the solute content of
the p** moving point, Vol; is the representative
volume of node j and @4+ is the moisture
content at node j at the time level k+1.

(iv) The change in solute concentration
due to dispersion is computed for each node
using an implicit centered in space finite
difference scheme. A finite difference form of
eqgn (10), including the convective term can be
written as follows,

Bincer +6)% __92.34__.1-!-(_;;}_@___ 5 {Cj+luk+1-“civk+l

2 NE ANZ:
Oics1reDjmrreiianz
AR M.
- '1‘t/iﬁ_l”f<—ﬂ“ t‘f'—lak+1.'2Dj—lfzrk+1f2 }
- J -1
2 Vi k1 —0 ok
— L ————= —(qC);, 15)
Azj';_az}-l jok At (q )Jk+] ( J
= 20304 L saiine ]

where,

;;-m‘m/zi(8jrk+:-r'-6;-:.k+1+&,.k F6j-1.k) 4
C,.x4+, is the solute concentration at node j, at
the end of k 1 discrete time.

(ac) jik+1 is computed as follows.

outgoing solute content
at noce j

(ac) e =

ﬁ;t. VOl,‘

The incoming and outgoing solute contents are
computed by keeping atrack of the moving
points entering and leaving the area of infiuence
of node j during the period from ki to k-1t
time level.

The resulting system of linear simultaneous
equations (along with the boundary conditions
at j=1 and j=n) is solved for (Cj, k4i.j=1r2 «)
using thomas algorithm.
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(v} Change in solute content of each

moving point due to dispersion is taken care of
in.the follo ving manner.

The change in solute content AV, k4, due
to dispersion at node j, is written as foliows,

AVi, k1= (Cjs k1—Cji k#1). 9j, iz VOI;
For J, >0
V, =V, + M‘

J if Avh k44 >0
1



Vo

I3V, if A1 <<O

VP AVj,k+1

For J,=0 (i.e. no moving point is preasnt
in the area of influence of the node), a new
moving point is created as follows.

np=np +1

where, np is the total number of moving
points present in the flow domain at time k--1.
Vh{.'-l-]_ = VAerk+l

The depth co-ordinate of the new moving
point is assigned as follows,

Cn,,+1-k+1 =2

(vi) The solute content V4, leached into
the water table till the discrete time k+1, is
computed as follows,

Vk+1 — szVp
where, J. comprises of all the moving points
which have entered the water table (i e., satis-
fying the inequality ¢,x+,>D, D being the
depth to water tals).

MODEL TESTING

A field experiment of calcium chloride and
water has been reported by Warrick et al (1971).
The reported data have been used to test the
model.

The reported hydraulic properties and initial
and boundary conditions are stated below,

h(g) — J 06829 —009524in (| h1)
0.4531 — 0.02732in (| h|)
h > 29.5
29.5 > h > 14.495
K(s) = 3.24 x 10-%exp(35.8)

where, K is in em/min.
For the solution of eqn(4),

8(z,0) = f(2) Oz
h(O,t) = hs
h(Z,t) = hi

where, Z is the total depth of simulation, hs is
the capillary head at saturation value and hi is

40

the initial capillary head at depth Z.

For the solution of eqn(1),

C(z,0) = O 0<z<2
C(0.,t) = 0.209 d < 7.62
c(t =0 d> 7.62

where, d is the cumulative depth of infilteration
in cm.

aC/ez(Zt) = 0O

where, z is in cm, ¢ is in cm*/cm3, C is in meq/1
and t is in minutes. To compute the hydrody-
namic dispersion co-efficient, parameters a and
b were taken as 0.002 and 10 (Olsen and
Kemper, 1968; Russo, 1988). For the disper-
sivity A a range of 0.7—1.2 was taken to
demonstrate it’s effect on the concentration
distribution with time. The computer code was
written in FORTRAN IV and was run on a
DEC 2050 mainframe.

RESULTS AND DISCUSSIONS

The measured and computed soil moisture
profiles at 2,9,11 and 17 hrs of infilteration are
presented in fig. 2. An examination of the
profiles reveals that there is a close agreement
between the observed and computed distribution
of moisture in space and time. According to
the reported data, the infilteration of the solute
(7.62 cm) and water (22.9 cm). required a
time period of 1050 minutes (17.5 hrs). The
model simulated period of infiltration is 1044
ninutes (17.4 hrs).

The reported and computed solute concen-
‘ration profiles at 2,9,11 and 17 hrs are plotted
in fig. 3. It is revealed that at 9 hrs. A=0.7
yields a close match. However, at subsequent
times higher n values (A=1.0at 11 hrs, A=12
at 17 hrs) are necessary for matching the
reported and computed profiles. The corrobo-
rates the t'me (or depth) variability of A reported
by Corey et al (1970).



Fig. 2 Measured and simulated soil moisture
profiles
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An apparent lag between the simulated
and measured solute concentration profiles is
observed at all time levels (2,9.11 and 17 hrs).
Attributing this lag to an incomplete mixing of
solute within the soil pores (i.e. most of the
water moves through the larger water filled
pore sequences), the velocity computation
(Gaudet et al, 1977) was modified as follows,

Vistrorksiz = QJ+1/2ak+1!2/Gf—Hi1r1)
where gim is an immobile water content.
For g < sim, the capillary conductivity is taken
as zero.

Neglecting the transfer of solute from the
mobile phase to the immobile phase and taking
a value of gim=0.08 the runs were repeated.

The modified results are ploted in fig. 4.
It can be seen that the lag between the two
profiles has been considerably reduced.

CONCLUSION

The proposed model is capable of simulating
the convective and dispersive solute transport
through the unsaturated zone.
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Fig. 3 Measured and simulated concentration profiles
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Fig. 4 Measured and simulated concentration profiles considering immobile pore water
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