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PREFACE 

The development of a mathematical model begins 

with a conceptual understanding of the physical system. 

Once these concepts are formulated they can be transla-

ted into a mathematical framework resulting in equations 

that describe the process. A variety of analytical 

and numerical techniques can be applied to solve the 

equations, resulting in practical tools such as type 

curves or finite difference and finite element computer 

programmes. 

Considering the large number and variety of pollu-

tants that may be released to the subsurface and the 

wide range of environmental situations that may be 

encountered, it is apparent that a highly systematic 

approach must be followed in developing a capability 

for predicting sub-surface transport sufficient to 

meet the goals of ground water pollution control. 

In the present note, a review of the existing methodolo-

gies of solute transport phenomena has been made, 

keeping in view the ultimate aim to provide methodolo-

gies which will permit accurate prediction of the effect 

from a point source pollutant activity on the quality 

of ground water at points of withdrawal or discharge. 

The basic concepts of the transport phenomenon have 

been, described in detail and various mathematical models 

to solve the advection-dispersion equation have been 

critically reviewed. 

This report entitled "Mathematical fiodelling of 

Solute Transport in Groundwater from a Point Source 

of Pollutin" is a part of the research activities of 

"Conjunctive Use" division of the Institute. The 



study has been carried out by Sh. Kemal, Scientist 

'B' and Miss Deepti, R.A. under the guidance of Dr. 

C.C. Mishra, Scientist 'F'. 
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ABSTRACT 

Considering the large number and variety of pollutants that may 

be released to the subsurface and the wide range of environmental situa-

tions (geological, hydrological, chemical, and biological) that may encoun-

ter, it is apparent that a highly systematic approach must be followed in 

developing a capability for predicting subsurface transport sufficient to 

meet the goals of groundwater pollution control. Accordingly, the major 

thrust of transport research should be directed towards the development 

of mathematical models that integrate physical process descriptions with 

pollutant properties and environmental characteristics to yield quantitative 

estimates of subsurface transport. 

In the present note, a review of the existing methodologies of solute 

transport phenomena has been made, keeping in view the ultimate aim that 

is to provide methdologies which will permit accurate prediction of the 

effect from a point source pollutant activity will have on the quality of 

groundwater at points of withdrawal or discharge. 

The basic concepts of the transport phenomenon have been described 

in detail and various mathematical models to solve the advection-dispersion 

equation have been critically reviewed. 



1.0 INTRODUCTION 

The future will see a growing dependence on groundwater supplies 

to satisfy the needs of agriculture, industry and our increasing population. 

Consequently, it is our duty to become familiar with this resource - how 

and where it occurs, and how various activities can affect its quality. We 

do not know the current extent of groundwater pollution, but from avai-

lable information, we know that the threat is substantial. Many activities 

can lead to the deterioration of groundwater quality. In fact, ground-

water may get polluted solely because of nature's input. 

For centuries, man has been disposing of his waste products by 

placing them in streams, or storing them either in or on the ground. Water 

soluble substances in these wastes may be dissolved and carried into the 

ground and eventually pollute the underlying groundwater. 

Until recently, relatively little attention has been focussed on ground-

water pollution in India. The causes of groundwater pollution are numerous 

and are as diverse as the activities of man. According to Fried (1975), 

groundwater pollution is traced back to four main origins: industrial, domes-

tic, agricultural and environmental pollution, each family being divided up 

into continuous and accidental types. 

(i) Industrial pollution is carried to the aquifer by: 

- •used waters which contain chemical compounds and trace elements 

or which are at a rather high temperature. Radio active pollu- 

tion from atomic plants can also be brought in in this way, 

- rain infiltering through waste disposals, 

- accidents like the breaking of a pipe line. 
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(ii) Domestic pollution is carried to the aquifer by 

rain infiltering through sanitary land fills, 

accidents like the breaking of septic tanks. 

(iii)Agricultural pollution is due to irrigation water or rain carrying 

away fertilizers, minerals, salts, herbicides and pesticides. 

(iv) Environmental pollution is mainly due to sea water intrusion in 

coastal aquifers. 

1.1 Factors Controlling Pollution 

The process of pollution of groundwater is controlled by several 

factors like nature and concentration of effluents, soil and subsoil charac-

teristics, time factor, porosity, permeability, hydraulic gradient, storage 

capacity of aquifers etc. The following considerations are significant 

during pollution of groundwater from effluents: 

Reactions in the top soil and vadose zone: Some of the processes 

like biological degradation, filteration, sorption, oxidation and 

reduction, precipitation, buffering etc. take place in the top 

soil and vadose zone. These reactions are affected by micro-

stratigraphy, pore velocities, hydrodynamic dispersion and hydro-

chemical factors. As a result of these reactions, several trace 

elements may be removed or added depending on the characteris-

tics of effluents and nature of strata through which infiltration 

takes place. 

Effect of soil moisture deficiency: storage capacity and moisture 

characteristics of vadose zone are important factors in controlling 

percolation of polluted waters. In areas where moisture deficiency 

is there due to lack of recharge, considerable amount of pollutant 

may remain in the soil and vadose zone. 
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(iii) Laminar flow of pollutants: unlike nonlaminar and at times turbu-

lent flow of polluted surface waters, the flow of groundwater 

through strata is laminar. According to Walker (1973),recharged 

water with pollutants appears to maintain a bulb like mass as it 

moves downward to the lower part of surficial aquifers, then 

horizontally through the aquifer material to some nearby discharge 

point. McKee and Wolf (1963) have observed that a small ribbon 

of polluted water injected into groundwater flow will move in a 

well defined streamline with a minimum of lateral or vertical 

diffusion and in many cases vertical diffusion is inhibited by 

horizontal clay lenses or extensive aquicludes. These findings 

indicate that dilution of polluted water by native groundwater 

during movement of pollutants from recharge to discharge areas 

can take place only to a limited extent. 

(iv)Specific gravity, viscosity effects: the specific gravity and visco-

sity of effluents are usually different from natural groundwater 

and difference in these characteristics may play an important 

role to prevent diffusion of effluents with groundwater. 

(v) Slow movement of effluents: the flow of groundwater and pollu-

ting constituents that it may contain is very slow as compared 

with flow on land surface. Underground flow may be a few feet 

per year through sandstone and other finer grain deposits and 

a few feet per day through sand and gravel or creviced lime-

stone., As a result of slow movement of effluents, it may take 

considerable time for polluting materials to move away from the 

source of pollution and degradation in water quality may remain 

undetected. However, when pollution effects are evidenced, 
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rectification cannot be achieved by stopping the pollution from 

source as process of purification by leaching takes more time 

than initial period of pollution. 

1.2 The Modelling of Groundwater Pollution 

Simulation of a groundwater system refers to the construction and 

operation of a model whose behaviour assumes the appearance of the actual 

aquifer behaviour. The model can be physical, electrical analog, or mathe-

matical. A mathematical model is simply a set of equations which, subject 

to certain assumptions, describes the physical processes active in the aqui-

fer. The mathematical modelling of groundwater pollution has actually 

started, developed and been recognized, during 1950s and 1960s, as a 

possible and perhaps efficient tool in the description and prediction of 

pollution behaviour in aquifers. It took advantage of the interest in the 

study of the fundamental and applied aspects of miscible displacements in 

porous media. Particularly, it benefited by the introduction of the disper-

sion-convection equations, the study of the physical meanings of their 

various parameters, the derivation of numerical solutions (Fried and 

Combarnous, 1971). Simultaneously, as modelling was confronted to real 

field situations and not only to laboratory work, difficulties and even limi-

tations to its use started to appear related among others to the scale effects 

and the heterogeneities of natural grounds, to the scarcity of data, and 

also to the mathematics of the models, which after the quick developements 

of the late sixties, resulted in slowing down of the applications of modelling 

to real field situations. 

The modelling of groundwater pollution consists in describing 

(i) the convection of the contaminant, i.e. its movement with the 

mean flow, 
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(ii) the dispersion of the contaminant, i.e. , its scattering by mixing 

or spreading around the mean flow, 

(iii)the chemical and physio-chemical reactions of the contaminant 

with the solid matrix of the porous medium, 

(iv)the biochemical reactions of the contaminant with its environment, 

(v) the reactions within the contaminant, 

by means of mathematical tools, like systems of partial differential equa-

tions or probabilistic processes, used in well chosen functional or probabi-

listic spaces representing the porous medium. 

1.2.1 Types of models 

Generally three types of models have been considered: 

Black box models, which represent the aquifer as a system with-

out any assumed structure and relate the inputs and outputs 

of contaminant in the system by means of a very general mathe-

matical formulation, like a convolution relationship or a general 

mass conservation equation, based on a few and simple working 

assumptions. They are usually characterised by a transfer func-

tion which, combined in some way to the input, yields the output, 

its form and numerical values have to be determined by calibra-

tion on existing data. 

Grey box models, which represent the aquifer as a system equi-

pped with a few structural properties: for instance a sequence 

of reservoirs with various behaviours. They are also character-

ized by a transfer function, the form of which is imposed as 

a consequence of the physical structural assumptions; the value 

of its parameters are determined by calibration on existing data. 
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(iii) Complete structural models describing the various aspects of 

contaminant transport with all possible details and predicting the 

distribution of pollution in space and time. The most usual 

models of that category have been derived by considering that 

the convection and the dispersion of the contaminant are best 

described by a general diffusion equation, while the other pheno-

mena will be accounting for by adding various functions and 

their derivatives to this diffusion equation. 

1.3 Applications 

Ground water pollution models or solute transport models have exten-

sively used in predicting the effects of problems involving hazardous was-

tes. Some of the applications include: sea water intrusion, underground 

storage of radioactive wastes, movement of leachate from sanitary land fills, 

groundwater contamination from holding ponds and waste injection through 

deep wells. 



2.0 REVIEW 

Since 1970s, investigations have been carried on fostered by the 

appearance of various groundwater pollution problems to be accounted for 

in water resources management and aimed at improving the modelling of 

groundwater pollution. These investigations mainly concern: 

the changes of scales, involving the possible derivation of a 

diffusion equation, the spatial variability of the dispersion 

coefficients, the description of the early stages of the disper-

sion process; 

the improvements of the numerical solutions of the general 

diffusion equation; 

the derivations of black and grey box models; 

the experimental research in the laboratory and in the field 

resulting from new groundwater pollution probelms and from 

improved theoretical approaches to modelling. 

2.1 Changes of Scales 

Theoretical studies have been recently performed to test the repre-

sentativity of the general diffusion equation as a model of the dispersion 

process at field scale and, not surprisingly, have concluded that a diffu-

sive regime does not necessarily govern the dispersion. At least three 

different papers have treated this problem in 1980: 

(i) Analyzing longitudinal dispersion data in open channel or pipe 

flows. Chatwin (1980) discusses the assumptions made by 

Taylor in his approach of dispersion, stressing the consequen-

ces on modelling when these conditions are not met i.e. the 

occurrence of a nondiffusive regime, illustrated by nongaussian 



curves. The author does not propose a new equation but a 

quantitative assessment of the deviations of observed concen-

tration profiles from gaussianity by series of Hermite polyno-

mials depending on various moments of the concentration dis-

tribution. 

(ii) Studying a bidimensional flow in a horizontally stratified medi-

um, characterized by a constant horizontal velocity per stra-

tum, Matheron (1980) uses a stochastic process to describe 

the movement of tracer particles in that flow. This movement 

is the sum of a convective movement with the velocity in the 

stratum and a dispersive movement assumed to be fickian and 

isotropic; the expectation of the concentration at a point and 

at a given time is the probability density function of a particle 

at that point and at that time. Taking the x-axis along the 

velocity direction, Matheron computes the variance of the 

coordinate x(+) of a particle as a function of the vertical 

variations of the velocities: a gaussian process being classi-

cally characterized by a variance linearly 
sproportional to time, 

Matheron, defines the mathematical conditions on the variance 

to obtain a diffusive regime. Justifying the derivation of such 

a regime by authors like Marle (1966) or Gelhar (1979) who 

make the right assumptions for that, he shows that in many 

cases there is no reason for a diffusive regime to exist even 

for very large times: this is particularly the case of stratified 

flow with horizontal velocities in an infinite bidimensional medium, 

where no mixing occurs by convection. 

(iii)Applying the old concept that dispersion in porous media is due 

to the variations in the velocity distribution and is therefore 
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related to the spatial heterogeneity in permeability of the aqui-

fer, Smith and Schwartz (1980) develop a stochastic process 

consisting of the deterministic motion of tracer particles with 

the flow velocities in a macroscopically heterogeneous permea-

bility field combined by addition to a random motion of these 

particles accounting the for anisotropic dispersion. 

These studies conform two main ideas: a dispersion process is not 

necessarily of the diffusive type; the emergence of a diffusive regime is 

related to a sufficient spatial averaging conditioned by good mixing. Under 

the assumptions of the emergence of a diffusive regime, studies have been 

performed to describe the early stages of a dispersion process and to 

evaluate the asymptotic time i.e. the time necessary for a diffusion regime 

to take place. The knowledge of this time is essential for a correct sca-

ling of the field experiments aimed at measuring dispersion coefficients, 

as the dimensions of the experimental domain should at least be equal to 

the product of the mean velocity by this time. 

Analysing unsteady convective diffusion in two dimensional open 

channel turbulent flows with a given initial concentration distribution of 

solute, Lee and Gill (1980) developed a generalized dispersion thoery which 

models the early stage of the dispersion process by an equation relating 

the time derivative of the concentration to an infinite series composed of 

the space derivatives of the concentration at all orders with time dependent 

coefficients. Gelhar et al (1979) used a classical method of turbulence 

analysis (as did previously by Bear or Fried) in stdying a bidimensional 

flow in a horizontally stratified medium with a horizontal velocity constant 

in each layer. 

It appears that recent theoretical studies concern the change of 

scale from an already macroscopic continuous medipm and not the bSic 
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problem of the derivation of the dispersion equation at macroscopic level 

from pore size (microscopic) level. It means that the medium is always 

considered as continuous in the sense that all variables (like concentra-

tions or velocities) are defined everywhere and that, for some authors, 

the dispersion process is even described by a diffusion equation at the 

lower scale. 

2.2 Numerical Solutions 

Although the method of characteristics proved to be free of nume-

rical diffusion, it was seldom used because of the complexity of its pro-

gramming and authors mostly investigated the possible decreases of the 

numerical diffusion using dispersion correction terms in the numerical 

expressions either with finite differences or finite elements with mitigated 

success (Gray, Pinder, Ehling and Van Genuchten). A simplified adap-

tation of the method of characteristics was successfully tested by Migault 

(1979) and could prove quite useful. 

Work on overshoot has been simultaneously performed, mainly on 

Galerkin finite element schemes, essentially based on possible reductions 

of space or time increments and then limited by problems related to the 

solution of large size systems of linear equations. Varoglu and Finn(1980) 

tested a combination of finite elements and method of characteristics for 

the convective part of the diffusion equation, both for numerical disper-

sion and overshoot. Sauty (1980) produced easily usable numerical solu- 

, tions in the form of type curves based on analytical solutions of the 

diffusion equation with simple boundaries and boundary conditions. 

Already discussed by Fried (1975) for a Cauchy problem, the depen-

dence of the uncertainty of the concentration function on the uncertainties 

of the dispersion equation parameters has been again examined by Tang 
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and Pinder (1979) showing a relative stability of the solution of the equa-

tion. 

Finally some attempts have been made to solve the general inverse 

problem (i.e. the determination of dispersion coefficients from concentration 

distributions) essentially by an optimization method (Umare et al, 1979), 

while a new deconvolution method was introduced in a black box modelling 

of contaminant transport in ground water (Migault, 1979). 

2.3 Black or Grey Box Modelling 

The limitations in the use of the general diffusion equation for the 

various reasons (such as inadequacy of the equation related to the dimen-

sions in space and time of the proposed study, unpredictable dispersion 

coefficients, sparse or unaccurate data) have involved the use of black box 

models. 

Although most of the work concerning deconvolution has been per-

formed for the determination of the hydraulic parameters of the aquifers, 

the necessities of modelling transport (to describe new laboratory work, 

for instance concerning motion with physico chemical interactions between 

the contaminant and solid matrix, or field problems like the transfer of 

contaminants between a river and its alluvial aquifer) have implied some 

theoretical work on deconvolution within the frame of groundwater pollution 

modelling and the development of an original method by Migault (1979). 

To operate a black box model, a preliminary study of the consistency 

of the input and output data must be made, especially to analyse the time 

sequences, when the modeller does not have complete control of the experi-

mental setting and procedures. Collongues (1979) used statistical methods, 

especially spectral analysis, with success to take care of possible missing 

or unadequate data. 
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Grey box models, either distributed parameter models, or lumped 

parameter models, have been conceptually developed before 1972. From 

the extensive review made by Anderson (1979) , they appear to have been 

used with some improvements afterwards. 

In brief, it appears that although some progress has been made in 

the understanding of the modelling of field conditions and the significance 

of the parameters and their so called variability, a could be of help 

for setting and scaling field experiments, the practical applicability of the 

diffusion equation to field problems as a forecasting tool is not insured 

while other possible models, like stochastic motion models, proposed to 

simulate the situations when the diffusion equation does not hold, are yet 

too cumbersome to operate. The classical field methdology correcting the 

deficiencies of the complete structural models by non numerical considera-

tions on the lithology,  , geology, morphology of the medium, by the use of 

black or grey box modelling and by pure kinematic considerations is still 

very practical. 
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3.0 TRANSPORT PHENOMENA 

Many articles have been written over the past several years review-

ing the science and art of groundwater transport modelling. These reviews 

have generally been written at a fairly well sophisticated level. While a 

great deal of accessible literature exists for groundwater flow models in 

standard groundwatqjçjiydrology texts, the concepts of transport model- 

91  ,1 
ling have been repe' in many different sources and at many different 

levels of difficulty. Very few articles exist to explain transport models 

at a basic level for hydrologists ,hy drogeologists ,and groundwater resource 

managers concerned mainly with the migration contaminants from various 

waste sources. 

3.1 Basic Concepts 

Transport processes of concern in ground waste include advection, 

dispersion. adsorption, decay and chemical reaction. The incorporation 

of these transport mechanisms into groundwater model formulation is des-

cribed in more detail by Bredehoeft and Pinder (1973) , Fried (1975) , Ander-

son (1979) , and Freeze and Cherry (1979). 

3.1.1 The advection-dispersion equation 

Solute transport is generally viewed as the net effect of two pro-

cesses, advection and dispersion. Advective transport is attributed to the 

average motion of the fluid. In processes involving displacement of misci-

ble fluids in one dimension, with advection the only transporting mechanism, 

a sharp front would be maintained between the initial and displacing fluids, 

and this front would move at a velocity equation to the average linear pore-

water velocity. The average linear pore-water velocity, defined macrosco-

pically at a point in the porous medium is the microscopic solution velocity 
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ADVECTIVE- DISPERSIVE TRANSPORT 

1 - 1 AD `. ECTIVE TRANSPORT 
, ( PLUG FLOW ) 

X3 

vector averaged over a representative elementry volume (REV) about the 

point, referred to as average solution velocity, V. The advective solute 

flux is given by 

Ja  = qc (3.1) 

where a 
is the mass of solute crossing a unit area of porous medium orien-

ted normal to the flow direction per unit time [ML
-2  T-1 q is the specific 

discharge or Darcy flux [LT
-11, and c is the solute concentration (mass 

of solute per unit volume of solution)[ML
-31. 

Dispersion causes mixing at the interface between two fluids of 

different composition, and according to Fried (1975), it is the occurrence 

and evolution of a transition zone between two domains of the fluid phase 

with different composition. Bear (1972) further describes dispersion as 

being nonsteady and irreversible. The effects of advection and dispersion 

are shown schematically in Fig.1 for one dimensional displacement of misci-

ble fluids. 

X 3  > x2  > > x 

ts > 1 2  > > 

X3/ /1 
3 3 

FIG 1 SCHEMATIC REPRESENTATION OF THE ADVECTIVE AND 
DISPERSIVE SOLUTE TRANSPORT PROCESSES 
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Dispersion is the result of two processes, molecular diffusion 

and mechanical mixing. Diffusion is the result of the thermal kinetic 

energy of the molecules, which,in the presence of a concentration gradi-

ent,results in a net flux of solute toward the low-concentration zone. By 

modifying Fick's first law to account for the presence of the solid phase, 

the diffusion flux in a porous medium becomes 

J
d 

= -in D
dgrad c (3.2) 

where J
d is the diffusive solute flux (mass of solute per unit area of 

porous medium per unit time) [MC2 T-1], Dd  is the coefficient of mole-

cular diffusion in the porous medium (effective diffusion coefficient) 

[L2 T-1
], in is the porosity of the medium, and c is the solute concentra-

tion. The porosity term is introduced because the cross sectional area 

available for diffusion is reduced by the presence of the solid phase. 

The mechanical mixing component of the dispersion process is 

the result of velocity variations within the porous medium. For homoge-

neous media, there are three microscopic mechanisms that give rise to 

velocity variations. These mechanisms, shown schematically in Fig.2, 

include 

(ii) (iii) 

FIG.2. MICROSCROPIC COMPONENTS OF MECHANICAL MIXING 
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the velocity distribution associated with the flow of viscous fluid 

through a pore, 

variations in velocity as a result of different pore geometries, 

and 

(iii)fluctuations in the stream lines with respect to the mean flow 

direction. 

The mechanical-mixing component of dispersion is analogous to diff-

usion in that spreading of the solute is the result of velocity variations 

across a concentration gradient. Consequently, on the macroscopic scale, 

the.mechanical mixing component of the solute flux is commonly represented 

by 

m 
= -n Dm grad c (3.3) 

where Dm is the coefficient of hydrodynamic (mechanical) dispersion. 

Adding eqns. (3.2) and (3.3) gives the dispersive flux of the solute as 

= D grad c 

where D is the dispersion coefficient, defined as 

D = D+D 
d m 

(3.4) 

(3.5) 

Recognizing the advective and dispersive flux components, and applying 

the principle of conservation of mass gives 

a Vie)  = dive] D grad c - qc) (3.6) D t 

The specific discharge 4 in eqn. (3.6) is generally replaced by the average 

solution velocity according to the relation 

11= (Earl )w (3.7) 

-  
where V is the average solution velocity [LT-1

] and w is an empirical 
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exponent. The work of Eliis and others (1968) indicates that the value 

of the exponent is very nearly 1 in granular materials. Substituting eqn. 

(3.7) into eqn.(3.6) and assuming the porosity to be constant and the 

fluid incompressible gives 

c = div(D grad c) - V grad c t (3.8) 

This is frequently referred to as the advective dispersion equation, 

or simply the dispersion equation for solute transport. Although, eqn.(3.8) 

is in a more general form than is commonly applied to contaminant migra-

tion, it is nevertheless subject to several assumptions and limitations: 

The contaminants are soluble in water. 

The fluid properties (density and viscosity) are independent 

of solute concentration. 

The fluid is incompressible. 

The coefficients of molecular diffusion and mechanical mixing 

are additive. 

Eqn.(3.7) is applicable. 

The solute is nonreactive. 

3.1.2 Effect of velocity on the dispersion coefficient 

Dispersion is due to the combined action of both a purely mechani-

cal phenomenon and a physicochemical phenomenon. It must be stressed 

that it is not generally possible to distinguish the proper effects of each 

phenomenon. 

Mechanical dispersion 

When a fluid flows through a porous medium, its velocity dis-

tribution is not uniform, due to boundary effects acting in three 

different ways:• 
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the velocity is zero on the solid surface, which creates a 

velocity gradient in the fluid phase, as in a capillary tube; 

the vaCiation of pore dimensions cause discrepancies between 

the maximum velocities along the pore axes; and 

the streamlines fluctuate with respect to the mean direction 

of flow. 

These three proceeses combined yield the mP,_nanical dispersion. 

The coefficient of mechanical dispersion D dppends on the flow 

pattern, e.g. throught the velocities, on the Peclet number P
e' which is 

defined as 

= LV P 
e D

d 
(3.9) 

where L is some characteristic length of the pores, V is average pore 

velocity and Dd  is molecular diffusion coefficient, and on some basic medi-

urn characteristics. Many investigators consider the sum D =(D
m  + Dd) 

as the coefficient of dispersion (or rather, of hydrodynamic dispersion) 

which depends on the velocity, molecular diffusion, and medium character-

istics. 

Taylor (1953) in his one-dimensional analysis obtains D proporti- 

onal to V2 . Bear and Todd (1960) in their one-dimensional analysis 
_ 

suggested D = aiV, i.e. D proportional to V, with al  being some chara- 

cteristic medium length. In the analysis of variances, the dispersion, or 

the spread of particles around their average displacement, is described 

by tthe matrix of covariances x.( )x.(t). There it is shown that these 

covariances may be related to the coefficient of dispersion D.. for large 

times in the form D.. = r..(0)V.V.t
0  , where t

0  is the time during which j  

velocities are still effectively correlated. If, following Nikolaevskij (1959), 
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Olet r..( )t = L/17 , where 17-  is the absolute value of the average velocity and 

L is a_characteristic medium length (e.g. length of a channel is a porous 

D.. = (ii.t./17)L 
I]  

(3.10) 

i.e. if) is proportional to the first power of the velocity. 

Scheidegger (1957) summarizes his analysis on these two possible 

relationship between D and V according to the role played by molecular 

diffusion. 

D al 0, where a' is a constant of the porous medium 

alone (dynamical dispersivity) is derived by a dynamic 

procedure applicable where there is enough time in each flow 

channel for applicable mixing by molecular transverse diffu-

sion to take place. 

D a"V, where a", another constant of the porous medium 

(geometrical dispersivity), is derived by a geometric proce-

dure applicable where there is no applicable molecular trans-

verse diffusion from one stream-line to another. 

Thus in all models in which the combined effect of a velocity distri-

bution across a channel and transverse molecular diffusion are considered 

(e.g. Taylor 1953) , the coefficient of dispersion is proportional to V 2 . 

Where only the mean motion in a channel is considered while mixing accurs 

at junctions connecting different channels, disregarding molecular diffusion, 

one obtains D V. Of course, intermediate cases where D is proportional to 

some power of the velocity between 1 and 2, lie between these two extremes. 

3.2 Parameters Used in Quantitative Approaches of Dispersion Model 

Several concepts are introduced in the quantitative approaches: 
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densities, concentrations, velocities and coefficients, describing the pheno-

mena. 

Three levels are needed in the study of dispersion phenomena: a 

local level or microscopic level, a fluid volume or pore volume level, and 

a macroscopic level. 

Local level: It is the usual level encountered in fluid 

mechanics. The parameters which are defined at this level 

describe a physical quantity at a point, i.e. in an 'infini-

tely small' volume element, consistent with molecular 

physics data. 

Fluid volume level: The parameters at this level are defined 

as 'means' of the corresponding local parameters over a 

finite fluid volume. In a porous medium, this definition is 

necessary to introduce the concept of 'pore quantities' 

(such as the pore velocity) and then the average is taken 

over a set of pores. The way of defining an average is 

described in each case, especially when nonadditive quanti-

ties are involved. 

Macroscopic level: This level is only used in porous media, 

when a solid matrix exists, to define an equivalent conti-

nuum. The parameters at this level are the averages of the 

corresponding local parameters taken over a finite volume of 

porous medium. 

3.2.1 Densities 

The notation p used alone represents the classical density at the 

pore volume or macroscopic levels. At these levels p i  is the specific gra-

vity of constituent i and p is the specific gravity of the mixture. Some 
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times p is used at a local level, but in such cases this symbol is always 

coupled to a symbol of velocity or concentration which defines its scale; 

for instance, p u is a local motion quantity. We have 

p= E Ci (3.11) 

where C. is the concentration defined below. 

3.2.2 Concentrations 

Several definitions of the microscopic concentration of one compund 

A in a mixutre M may be used. 

The mass concentration C is the mass ma 
of the compound A in a 

small volume v of mixutre, divided by the volume v, or 

C = ma /v 
(3.12) 

Such a definition is useful when mixing occurs without volume 

changes, i.e., the total volume of a mixture of two chemical species of 

small volumes v1 and v2 is v1
+ v2

. 

The mass fraction C is the mass ma 
of A divided by the mass mm  

of M contained in the same volume, or 

C = ma
/aim 

(3.13) 

where C is an intrinsic quantity which does not depend upon the physico-

chemical ways of mixing C and C are related by 

C = p C (3.14) 

where p is the density of the mixture. 

The molecular concentration C is the number na 
of molecules of 
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A divided by the volume of mixture v which contains the molecules or 

CM = na/v (3.15) 

The molecular fraction C is the number na 
of molecUles of A in 

a volume of mixture divided by the total number nm  of mixture molecules 

in the same volume. 

CM = nainm 
(3.16) 

At the fluid volume level, the same definitions may be used, the 

reference fluid volume being large. Hence the mass concentration is C, 

the mass fraction C, the molecular concentration CM 
 and the molecular 
' 

fraction CM. 

3.2.3 Local velocities 

The various compounds (i) of the mixture move with different ve-

locities u.. Two definitions of the average local velocity of the mixture 

are mainly used. 

The mass average velocity u 

U = (3.175 

where C. is the mass concentration of compound (i) 

The molecular average velocity um  

(3.18) 
. CMi  u. 

u = M E CMi 

CMi 
being the molecular concentration of compound (i). 
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These velocities are referred to stationary coordinate axes. But 

diffusion and dispersion are mainly relative phenomena and it may be 

interesting to introduce relative velocity concepts, indicating the motion 

of one compound relative to the motion of the mixture ui  - u is the diffu-

sion or dispersion velocity of compound(i) with respect to u, and ui-um  

is the diffusion or dispersion velocity of compound(i) with respect to um . 

uThese velocities u., and u are the usual local or microscopic 

velocities in fluid mechanics. 

3 . 2. 4 Mean velocities in the fluid phase and at the macroscopic level 

In a fluid volume B of any kind (for instance, the volume of a 

stream tube or the volume of several pores), the mean velocities are 

defined as follows: 

The mass average velocity V of the mixture is defined by 

V= [feu dx]/[./ pdx] (3.19) 

The mass average velocity Vi  of one compound is defined by 

]V [ I C.u. dx]/[I C. x 1 11 a 
Evidently V may also be defined by 

(3.20) 

V = [ E C V.]/P (3.21) 
i 1  

At the macroscopic level, the velocity is the usual Darcy velocity 

VD. When V is defined for a large number of pores, it is linked to VD  

by the relationship: 

V = VD RID (3.22) 

where cp is the porosity of the medium. 
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4.0 SOLUTION METHODOLOGY 

Numerous analytical solutions to advective dispersion equation are 

available, most of which represent one-dimensional cases for steady flow 

in homogeneous semi-infinite or, finite porous media. Most of the solutions 

of interest to hydrogeologists are included in Ogata and Banks (1961) , 

Brenner (1962) , Biggar and Nielsen (1976) , and Ogata (1970). Solutions 

for homogeneous media with uniform steady flow and three-dimensional 

dispersion are described by Baetsle (1967,1969) for contaminants entering 

the systems as point sources, and by Codell and Schreiber (1979) for 

point source, line source and planar source inputs. Analytical methods 

and solutions are described in the texts by Bear (1972) and Fried (1975). 

For analysis of contaminant migration in heterogeneous hydrogeo-

logi systems with complex flow patterns and time-dependent boundary 

conditions typical of many field situations, numerical solution procedure 

have been developed. These include finite difference methods, finite ele-

ment methods and method of characteristics. The finite element method is 

described in detail by Pinder and Gray (1977). Each solution procedure 

has limitations when applied to practical field problems. These can include 

restrictive boundary conditions, numerical dispersion, convergence and 

stability problems, and excessive computer storage or time requirements. 

4.1 Analytical Models 

To solve the dispersion scheme, both analytical and numerical 

methods can be applied. Analytical solutions of the dispersion equation 

exist only in very few cases, extensively discussed by Bear (1972). Ana-

lytical solutions to this equation have been developed either by neglecting 

adsorption (Lapidus and Amundson, 1952) or by assuming the adsorption 

isotherm to be linear (Lapidus and Amundson, 1952, Lindstrom et a1,1967, 
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Cleary and Adrian, 1973). 

Analytical methods that handle solute transport in porous media 

are relatively easy to use. Various mathematical technqiues can be applied 

to the finding of analytical solutions, such as Green functions, Laplace 

transforms or Fourier transforms. Here we present two basic examples 

(Fried, 1975) that can be used to derive pollution type-curves for mono-

or bi-dimensional flow. 

4.1.1 Laplace transform approach 

Let us consider a one dimensional case. Assuming longitudinal 

dispersion, at a constant velocity V in a semi-infinite medium, with a step 

initial function. The dispersion coefficient D is constant. 

The mathematical problem is defined by the set of equations: 

3C D( B ) V(-) x 
x

2 
BC 
a t 

(4.1) 

C(x=0, t>0) = Co , C(x== , t 0) = 0, 

C(xi 0, t=0) = 0. 

The problem is solved by Laplace transformation, which is defined 

as under. 

Let f be a function of the variable x, defined for all x and equal 

to zero for x< 0. The Laplace transform of f is the function: 

, 
L(f) = ?(p) =  ! e Fa  f(x)dx (4.2) 

0 

provided that this integral exist. p is a complex number, equal ton + IE . 

If n is zero, f(p) is the Fourier transform of f. 

The properties of the Laplace transofrm used here are the 
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following: 

L(e) = pi(p) - 1(0) 

L(f")= p21(p) - p1(0) - 17 (0) 

easily proved by applying Eqn.(4.2) to the functions ft(x) and fn (x 

first and second derivative of f(x), respectively. Setting 

-pt e(x,p) = e - C(x,t)dt, Eqn.(4.1) yields: 
0 

2- d C do D( 
dx

2 ) V(—dx ) = pa 

d(x=0) = a(x=00) = 0 (4.3) 

and eqn.(4.3) has solution: 

a = 
co V-(V2+ 4pD)  --exp[ x] 2D 

= Co exp (Vx ) • —1 exp [- x V2 

- 2D -   Di (-
4D + p) 

From a table of Laplace transforms, we obtain: 

Co C 
C = erfc [ x-Vt o]+ 2 exp (V

D
x ) erfc E  x+Vt  

2(Dt) 
2 

2(Dt)1 

(4.4) 

(4.5) 

Fig. (3) provides the solution of this equation as type-curves. 

4.1.2 Green function approach 

We now consider a bidimensional horizontal model. The aquifer 

is horizontal, monolayered and homogeneous. The water velocity v is 

constant and parallel to Ox. The dispersion coefficients are constant, 
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proportional to the velocity (dynamic dispersion regime) . At the origin, 

pollution is injected at concentration Co, and at the rate Q,  during period 

dt , the mass of the injected pollution is Co
Qdt. The initial concentration 

is zero. The domain is infinite and the concentrations are equal to zero 

at infinity. The mathematical model is the equation: 

9  2C 92 C ac ac a v —+  OL V 
2 

— v = x t L x2 T 9y  
(4.6) 

The Green function, i.e. the solution of this equation for the 

injection of a unit amount of pollution at the origin, instantaneously at 

t=0 is: 

2 
1 (x-vt)

z 
Y  G(x,y,t) = , exp [- 4a vt  

trivt (a La T ) 
t 4aTvt J 

L 
(4.7) 
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and the solution of the problem is then: 

C(x,y,t) = (x-vt)
2 2 CQ dt o   Y   exp  

4Tryt(a La T ) 
E- 

i 4aLvt 4aTvt (4.8) 

For a continuous injection at rate Q, the solution at time t is: 

C(x,y,t) = 
CoQ 

(x-v0)2  y2  de (4.9) LlaLye 4aTye 8 din v(a La T)i 0  

The steady-state regime is obtained for t=co : 

C(x,y) = oQ 2 2 
 exp ( —Y— 

C 
) zaT  o ,2 4aLa T  27v(aL

a
T

) 2 
(4.10) 

where Ko is the modified Bessel function of the second kind and zero 

order. It should be noticed that on the x-axis (y=0) when a T  tends to 

zero the concentration tends to infinity, which has no physical meaning: 

one should revert to the monodimensional case. If the velocity v incre-

ases, the concentration decreases everywhere: pollution is quickly 

washed out. If Q and v are constant, c tends to 0 when a
L tends to 

infinity: when dispersion increases, the concentration at a point decrea-

ses. 

An interesting computation of eqn.(4.9) is due to Emsellem (Arlab, 

1974) and leads to practical type-curves by the introduction of the tabu-

lated Hantush function W(v,b): 

2 
W(v,b) = I exp(-y - b dy

y 
 

iT 

Eqn.(4.9) can be written: 

CoQ t 2 
2 )I C(x,y,t) - 1  exp ( ) .r exp[- 

L 0 L' 
ve t  x  4. _YNiASII)  

'elaLv 4aTvi 0 J 8 4Trv(aLaT ) 2   
(4.11) 
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C(x,y,t) = 
4+v(aLaT) / 

fC ) _ b2 

`2a ' 4y y L 0 

CoQ 
exp (4.12) 

Setting y = v9/4, we have: 

2 
x

2 
with b2 = 

4a2 
4aLa T 

and eventually: 

C
o

Q 
C(x,y,t) =  exp ( )[W(0,b) - W(t,b)] 

47v(aLaT )i 2aL 
(4.13) 

The values of W(t,b) can be found in Hantush tables (Walton, 

1962). 

4.2 Numerical Methods 

An analytical solution is interesting because it does not introduce 

errors due to the approximations by the finite differences. But the analy-

tical solutions are only found for very simple cases or for research purpo-

ses. The numerical solutions, which take full advantage of the digital 

computer's capacity are of more practical interest to regional groundwater 

modelling. The numerical methods, which exist in practice are Finite 

difference methods, Finite element methods, and Method of characteristics. 

4.2.1 Finite-difference appromixations 

The finite difference scheme is derived by replacing the differen-

tial equation by finite difference approximations. In these approximations, 

the domain (space-time) is discretized and the solution is computed at the 

centers of the elementary domains of the grid. The equations are then 

discretized, for instance, at each center of the grid, with Taylor's expansion 
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theorem. In a unidimensional space, for instance, with Ax the increment 

on the x axis, At the time increment, and C
i,n  the concentration at time 

n A t and abscissa i Ax, Taylor's theorem yields 

ac 32 C iC A+Ln  = C. + x(--)• + ithx)
2 
 (-2 )i,n+ •" 1,n 3 x 1,n Dx 

3 C 2 a 2 
Ci-1,n = C.1  -Ax(—). + 1(Ax) (4 ,n n 9 x 1,n Bx 

Thus (BC/9x)i,n  and (3 2 
 C/3x

2 
 )i,n  can be approximated by 

(C. - C. 9 C 1+1,11 1-1,n) 
3 x 1,n 24x 

_ 1+1 - 2C +C. ) ,n i,- n 1-1,n  
n 

Dx2  
(4x)2  

Similarly 

C - C. BC ,n+1 1,n-1 
Bt 

i
1,n 2At 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Other possible ways of writing the first-order partial derivatives are: 

(C - C ) f _3C1.  
Ax 

(c. - c. ) , a c = 1,n 1-1,n  or ,  
Ax 

forward derivative 

backward derivative 

(C.    i  3 CI A  1+1,n Cm) 
+ 1,n 1-1,n or t 3x)=#' A x Ax ) Crank Nicolson 

approximation 
when A =0.5 

A [0,1] 

Though Ax and At are often assumed constant, they may be varied. 

Ax can be reduced to create a higher density of grid points in zones 

where C changes rapidly with x. At may be varied to increase computa-

tional efficiency. 
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The quality of the finite differences numerical schemes can be 

checked on the basis of the following criteria: 

Suppose we call C(x,t) the computed solution and 1( (x,t) the 

exact solution of the dispersion equation. 

Consistency: A finite difference scheme is consistent if the 

finite differences operator has as limit the original differen-

tial operator when the discretisation step, Ax on the dimen-

sion x for example tends to zero. 

Convergence: A finite difference approximation is conver-

gent if the difference between Y (x,t) and C(x,t) tends to 

zero when Ax and At tends to zero, at given x and t. 

Stability: When time varies, we compute C(x,t+ At) from 

C(x,t). This is an iterative process, which is valid if the 

difference between (x,t) and C(x,t) is bounded in some 

sense, when t , for given Ax and At. If such a condi-

tion is verified, the approximation is stable. 

4.2.1.1 Explicit scheme 

The dispersion equation is approximated by the finite-difference 

scheme: This equation is written between time tn and time tn+1 taking a 

square grid of space (Ax,2Ax, iAx, I Ax) and backward diffe- 

rence of the convective term: 

-2C. +C. C. -C. C. -C. 
D 

Ci+1 ,n 1,n 1-1 n 
V -

1,n 1-1,n i,n+1 1,n 
2 Ax At 

( x) 
(4.19) 

or 

DA t VA t VAt DAt DM 
C. = C. [-

2
+ ] + C. [1- 2 --- 2 ] + — (4.20) 

i,n+1 1-1,n 1,n Ax Ci+1,n (Ax)2 
(Ax) ( Ax) 
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This system of equations may be written under the matrix form: 

C(tn+i ) = MC(tn) (4.21) 

M = 

with: 

DAt VAt VAt 2—DAt 
a 
 _DAt  

a l-- + a 2 Ax , 2= 1- —Ax ' 3 2 Ax Ax (Ax) 

C(tn) is a vector of components Ci,n. 

From Gerschgorin theorem, the eigen values of M lie in the inter-

val [1 - 2(V At/ Ax) - 4(D At/ Ax
2
),1]. From the general convergence 

theorem, the iterative process defined by eqn.(4.20) does not converge 

if the eigen values of the iteration matrix are greater than 1 in absolute 

value. Thus, the explicit approximation is stable if: 

1 2 
VA t DAt -  Ax (Ax)2 

or 

At < At (4.22) 

with 

At - x  

2 L)  + V Ax 

At is called the critical time step, and the approximation is said to be 

stable, conditionally to eqn.(4.22). 

With central or forward differences, At
a  is different of course. 
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Computation of At  is obvious in all cases. 

In general the use of an explict scheme for the integration of 

dispersion equation requires the simultaneous satisfaction of two stability 

criteria, 

A t 
C 1 A x 

(4.23) 

4.2.1.2 Implicit scheme 

Discretizing in the same manner, we obtain: 

DAt VAt VAt DAt A t - ) + C. (1+ + 2 —2 ) + Ci+i,n+1(-D 
x Ci-1,n+1(- 

Ax2 Ax 1,n+1 Ax Ax A 

or, under matrix form: 

NC(tn+i) = C(t) 

(4.24) 

(4.25) 

N being the trangular matrix: 

(4.26) 

with 

el
. DAt VA 

61 
At = VAtDAt 
Ic 2 I  Tr(

. 
 z a3

' DAt 

Ax Ax Ax2 

The iteration matrix in then N
-1. From Gerschgorin theorem, the 

eigenvalue of N lie in the interval [1,1+2(VA t/ A x)+4(DA t/ A x2 )] which 

implies that they are greater than 1. Thus eigen values of N
-1  have 
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their absolute values smaller than 1. From the general convergence theo-

rem, the iterative process converges. 

We say that the implicit scheme is uncondionally stable, which 

does not imply that the solution given by numerical computation fits the 

true solution. For given mesh size and time-step, the accuracy of the 

numerical solution depends on the 'smoothness' of the boundary and initial 

functions. The solution depends continuously on these functions; if they 

vary slowly, the discretization will not introduce a large error. 

4.2.1.3 Crank-Nicolson scheme 

It is also possible to use values at both time levels, with a gene-

ral form for the second derivative 

- 2C + C. C. - 2C. + C. Ci-1 ,n+1 . n+1 1+1 , n+1 ,n 1,n 1+1,n + (1-A) 
(Ax)2 (Ax)2  

(4.27) 

where A E [0,1]. If A is +, the derivative is centered in time: it is the 

Crank-Nicolson approximation of the second derivative. For the first 

derivative 

- C. C. - C. Ci n+1 1-1 ,n+1 1,n 1-1,n X ' + (1-  \) Ax Ax (4.28) 

So using the same discretization as previously we have: 

- 2C. + C. Ci-1,n C. - 2C. + C4-1 i,n+1 1+1,n+1 1-1,n 1,11. i+1,n 1-.)[ A  + (1-A) 
Ax2 A x2 

C. - C. 
ft 

- C. C. -C. i,n+1 1-1,n+1 
+ (1-A) 

i
'
n 1-1,n 1,n+1 1,n -V( l= Ax Ax At 

(4.29) 

34 



or 

DAt VAt VAt DAt DAt 
C
i-1 . n+11-1(— + —)]+ 1 C . 

++(— + 2 —)]+ C.  
Ax2 Ax i,n+1 Ax 1+1,n+1 Ax2 Ax2 

DAt VAt VAt DAt 
= C. {1(— + —)1+ C. [1-4(irc  + 29)]+ C {/ —] 

1-1,n 1,n )( i+1.n 
Ax Ax Ax Ax2 (4.30) 

written under matrix form as 

MC(t 1) = NC(t) (4.31) 

where M and N are tridiagonal matrixes, the coefficients on a line being 

the coefficients, respectively, of 

Calling P the tridiagonal matrix a line of which is made up of the 

coefficients: 

DAt VAt VAt DAt DAt 

Ax2 Ax ' ' 
Ax2  Ax2  

We notice that P, M = 1-IP and N = 1+4 P have the same eigen 

vectors, which implies that (1-P/2)
-1 
 and M

-1N have the same eigen 

vectors as P. 

p being the corresponding eigen value of P, 1-p/2 and l+p/2 are 

the corresponding eigen values, respectively, of M and N. Thus the 

corresponding eigen value a of the iteration matrix 54-1N is 

a - 1+p/2 
1-p/2 

According to Gerschgorin's theorem, the eigen values of P lie in 

the interval {-2{ (VAt/Ax) + 2(DAt/Ax
2 ) ,0] and are negative, which 

shows that a is smaller than 1. 

The Crank-Nicolson approximation is unconditionally• stable. 
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4.2.1.4 The alternating direction implicit procedure (ADIP) 

This method has been developed for the bidimensional and genera-

lized cases. Two equations are solved per time-step in the bidimensional 

case, one of the derivatives appears in the implicit form, whereas the other 

appears in the explicit form in each equation. This method has a great 

advantage: instead of computing the inverse of a general matrix, one com-

putes the inverses of two tridiagonal matrices. This is done by the 

simplified Gaussian elimination method and is very quick in terms of com-

puter time. There are many alternating direction methods. We present 

the Peaceman and Rachford scheme in the case of the dispersion equation 

without convection. 

Consider the dispersion equation 

32 C 32C C BC 
L + D v = -- 3 x 3t 3x2 T 

3y2 (4.32) 

An approximation of this equation during one time-step consists 

in dividing up this time-step into two and expressing the derivatives with 

respect to x implicity and the derivative respect to y explicity during the 

first half time step. During the second half time step the derivatives with 

respect to x are expressed explicity and the derivative with respect to y 

implicitly. 

C+(i+1,j)- 2C÷(i,j)+ C+(i-1,j) C 
2 

+(i,j)- DL x . A x  

C+(i,j)- Ci(i,j) C1  (i,j+1)- 2C
1(i,j)+ C1(LH) 

At/2 DT  
Ay2 (4.33) 

C2 (i,j+1)- 2C
2 (i,j)+ C2 (i,j-1) C

2 (i,j)- C+(i,j) 
D

T 
Ay2 At/2 

C+ 
'(i+1 j)- 2C+(i,D+  C+(i-1,j) 

 + v 
Ax 

C+(i,j)- CI-(1-1A) 
(4.34) 

- D 
Ax2 
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Ci(i,j) and C2 (i,j) are the concentrations at time t1  and t2  (t1-t2=At), 

at points (i,j) and C+(i,j) is an intermediate value which has no physical 

meaning. The solution progresses by computing C
+ 

for all lines i by 

tridiagonal Gaussian elimination, assuming CI. 
is known, and then by com-

puting C2  for all columns j by tridiagonal Gaussian elimination. The ADIP 

is convergent and unconditionally stable. 

4.2.2 Some difficulties of the finite-difference approximations 

Finite-difference methods are easy to handle, sometimes fast and 

usually fairly well known. But in the case of dispersion models, two di-

fficulties arise, which are not completely solved upto now: overshoot and 

numerical diffusion. 

4.2.2.1 Overshoot 

Consider the injection of a unit concentration step-input function 

in a one-dimensional flow governed by the dispersion equation 

ac_ ac 
D

A 
- V - Bx t 

3x 

Comparison of the analytical solution and the computed solution 

at time t is given in Fig.4. 

C 

1   COMPUTED SOLUTION 

ANALYTICAL SOLUTION 

FIG.4 OVERSHOOT 
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ANALYTICAL SOLUTION 

COMPUTED SOLUTION 

FIG.5 NUMERICAL DIFFUSION 

It very often appears that computed concentration exceeds one 

near the C-axis. This discrepancy is known as 'overshoot'. It may be 

explained as follows. Time-steps and spatial dimensions are not well ad-

justed and the aquifer cannot 'adsorb' numerically the injected mass of 

pollutant. The time-steps should be chosen carefully and adapted to the 

problem. Often the choice of the time increment as the general term of 

the geometrical series (A tri= a A tn_ i , with 1< a <2) is found to erase the 

overshoot. For instance, Shamir and Harleman (1967) have used a = 1.3 

in some of their problems. 

We recommend testing any model with a unit-concentration step-

input function to• adjust time-steps and grid spacing before using it for 

general boundary conditions. 

4.2.2.2 Numerical diffusion 

Consider the injection of a unit concentration step-input fun-

ction in a one-dimensional flow, governed by the dispersion equation 

Take, D=0. Analytical and computed solutions at time t are given 

in Fig. 5 
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The shape of the computed curve explains why the name 'nume-

rical diffusion' has been given to the phenomenon: it behaves as if the 

finite difference approximation of the convenction equation 

V(2 C/Dx) = BC/St was some diffusion equation 

2C C D D — V -- = ac  3x Bt 

the coefficient D having no physical meaning. Some explanations have 

been given by Lantz (1969,1970) : numerical diffusion is a truncation emir, 

the finite difference approximation to the first-order derivatives (both 

time and space) give rise to error terms proportional to second-order de-

rivatives, the proportionality constants depending both on space and time 

increments. 

Take our simple example, the space first derivative being app-

roximated by a backward difference 

Ax  a  2 C V = V  x x v 2 D  x2 

A numerical dispersion coefficient -VAx /2 is thus introduced, 

which may be of the order of the physical-dispersion coefficient D. This 

artificial dispersion is a matter of concern in the domain of dynamic dis-

persion (when D=aV) for values of the order of x/2. No real solution 

has yet been found for this anomaly, except by testing a mean longitudi-

nal dispersion coefficient of the form ( QAT - VA x /2) allowing some erasing 

of the numerical dispersion. 

4.2.3 The method of characteristics 

In order to reduce or suppress the above-mentioned difficulties 

Garder et al (1964) have introduced a tentative improvement of the classi-

cal finite-difference resolution schemes which they call the method of 
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characteristics. The problem is still approached by finite differences but 

physical considerations on the evolution of dispersion lead to establishing 

a first-order partial differential equation equivalent to the dispersion 

equation and to determining its characteristics lines. 

where 

The problem is defined by the dispersion equation 

3 2C C B C ac - = —Dt 
DL 2 DT By2 v x Dx v y 3y 3x 

Dh k t ap_ I x pg ?) /7 r.___S(32+pga-rd, — q;--- k By BY Bx Y 

(4.35) 

(4.36) 

k is the intrinsic permeability coefficient. p is the dynamic vis-

cosity, O is the porosity, p is the pressure, h is head, p is density and 

g is gravity. 

Considering that dispersion may be neglected with respect to 

convection, they assimilate the equation to a first-order partial-differential 

equation and look for its characteristics, solving the ususal system 

dx/dt = V dy/dt = V x' Y 

dC .r., B 2C
+ 1.1  

, B 2C 
- = 11

Cldi L TB y2 a x 

(4.37) 

(4.36) 

The characteristics (Garabedian, 1964) span the solution. A 

moving point (xp,yp) is associated with each characteristics p, which is 

given by its parametric equation x (t), y (t) where t is time. 

The experimental domain, which is assumed to be rectangular, is 

divided by a conventional stationary grid into rectangles of dimensions Ax 

and Ay. Each point (i,j) is made the center of the rectange R. .. Initially 

the moving points per grid interval being sufficient (a greater number 
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does not really improve the accuracy of the method), with initial coordi-

nates x (o) y (o) and an initial concentration C (o). 

Ciwn  being known at the grid points, the viscosity and densi-

ty at each point are known, and the pressure is determined from the 

equation ( cb is taken as constant) 

div[(k/p)(grad p + pg grad (h)] = 0 (4.39) 

using the Peaceman and Rachford method. From the set (4.37) the velo-

city components are determined at the centers of the grid intervals and 

everywhere by bilinear interpolation. The new positions of point (x ,y ) 
P P 

are obtained from (4.35) as 

xp,n+1
= xp,n+Atn

Vx(xp,n ,yp,n) 

Yp,n+1= 
 y

p n
+ At

n
V

y
(xp,n ,ymn) (4.40) 

All point are then examined to determine which rectangle R. . 

they lie in. Each rectangle R.. is assigned a concentration C— equal 
Id 1.,lin 

to the average of the concentration Cp,n 
of all the points in their new 

positions in R. The change in concentration due to dispersion in each 

rectangle is derived from Eqn.(4.36) as 

2 
CA i 

(. = At/p)(D
L 

 AxC
2

.
+ 
 . +DT 

 Ayc.
+  
. ) (4.41) 

wn 

where Ax and and Ay2  are the approximations of 3
2 C/B x

2 and
2 c/a y

2 . 

Each moving point is then assigned a new concentration 

= C + AC. . cp,n+1 p,n 
(4.42) 

The change in concentration due to dispersion is the same for 

all moving points falling in the same rectangle. 
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The concentrations at the stationary grid points at the new 

time-step are then given by 

Ci,j',n+1 + i C . i  ,j,n (4.43) 

This procedure is then repeated for each subsequent time-step. 

This method prevents numerical dispersion: if dispersion is zero 

(D
L

= D
T = 0) there is no change in concentrations 

Cp,n:  thus any dis-

continuity in concentration is preserved and translated. 

Although numerical dispersion does not appear, overshoot is not 

easily overcome (Reddell and Sunada, 1970). This method may be of 

interest for very particular problems (Robertson, 1974) but is hard to 

generalize, its uses being very tedious computer-time requirements are 

high. 

4.2.4 Finite element methods (FEM) 

There are two fundamental problems in calculus: (i) examining 

the area under a curve, i.e., integration and (ii) examining the tangent 

of a curve at a point, i.e., differentiation. Both of these concepts were 

fairly well understood by the 17th century. In 1667 Isaac Barrow, the 

teacher of Newton, discovered that integration and differentiation are 

essentially inverse to one another, which is the fundamental theorem of 

calculus. Whereas FDM approximates differential equations by a differen-

tial approach, FEM approximates differential equations by an integral 

approach. 

The FEM actually refers to the numerical method whereby a re-

gion is subdivided into subregions called elements, whose shapes are 

determined by a set of points called nodes. The flexibility of elements 
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enables consideration of regions with complex geometry. For transient 

problems, the time domain may also be approximated using finite elements. 

In general, however, most studies use finite difference approximations for 

the time derivatives. 

The unknown function C is approximated by a trial solution 

of linear form 

= E ajui  
i=1 

(4.44) 

wIteretheu. are linearly independent selected functions, which exist over 

the domain and its boundaries and a1  are unknown parameters to be deter-

mined subsequently. In the subdivided domain n nodes are chosen, 

usually at element vertices and at particular geometric locations. The 

trial solution is represented in a piecemeal fashion across the domain, ele-

ment by element, in terms of the space variables and the nodal values of 

the solution and its derivatives. 

There are mainly two type of methods, namely residual and va-

riational methods, using trial functions like b. 

If C verifies some equation L(C)=0, the trial solution e verifies 

some equation L(e)=R, where R is the residual. The problem 

is to minimize R in some way, usually by minimizing a weight 

function of R in a well chosen vector space. The minimizing 

conditions yield a set of algebraic equations that can be solved 

classical linear system methods. 

In a variation method, the solution C gives an extremum value 

to some functional F(C). The technique is then to substitute 

in F and to minimize F(e) which yield a set of algebraic equa-

tions and the solution of this set, by classical linear system 
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methods, yields the coefficient ai  (Norrie and DeVries, 1973). 

A possible application of the residual method, called Galerkin's 

method, has been proposed by Pinder (1973) to solve the dispersion sche-

me and applied to a chromium pollution of an aquifer. 

The dispersion scheme is defined by the equations 

9 C L
e(C) = div(D grad C) - div(vC) - t  + QC' = 0 

a h Lh(h) = div(T grad h) - + Q = 0 t 

(4.45) 

(4.46) 

with the usual notations. Q is a sink function incorporating well dis-

charge and leakage into a contining layer and C' is the pollution concen-

tration in the source fluid. Trial solutions are 

n n 
C = E Ci(t)ui(x) h = Hi(t)wi(x) 

1=1 i=1 
(4.47) 

where x means (x,y,z,  ) , u. and wi  (i=1,2,  ,n) are basic fun- 

ctions satisfying the boundary conditions for each equation. These basic 

functions are linearly independent and represent first n functions of com-

plete systems in the domain. The objective is to determine the coefficient 

f tunctions C.(t) and H.( ) that minimize the linear forms L
c(C) and Lh(h). 

The minimization of L
c(C) is obtained by setting n integrals of the 

weighted residual L(C) equal to zero. 

I L (6)u.dA = 0 i = 1,2, n (4.48) 
A c 1 

The weighting functions are the basic functions u.. In  the same way 

we have 

I Lh  (h)w.dA = 0 i = 1,2, n (4.49) 
A 

The suitability of the Galerkin technique for computer application 
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depends upon the choice of basic functions and elements. Pinder uses 

the curved isoparametric quadrilateral (Fig. 6) linear, quadratie, cubic 

polynomial basis functions may be defined along the edges of the elements 

GLOBAL COORDINATES 

FIG. 6 DEFORMED MIXED ISOPARAMETRIC QUADRILATERAL 
ELEMENTS ON GLOBAL x AND 4 COORDINATES 

( PINDER, 1973). 

and different order functions may be used along each side to accommodate 

the geometry of the boundaries or the anticipated form of the unknown 

solution. To facilitate integration; a dimensionless and curvilinear local 

( 0 coordinate system is introduced in which the elements appear as a 

square with the side nodes located at mid points (quadratic side) or one 

u(x) point (cubic side). The functions u.( ) and w(x)  are written in 

terms of and are selected such that they fulfill the basic requirements 

of a basis function end relate the global and local coordinate systems. 
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From the dispersion scheme and Eqns.(4.48 & 4.49) two sets of 

algebraic equations can be obtained 

[N] {C} + [M] {dc/dt} + { F = 0 (4.50) 

[P] {H} + [R] {dHidt} + { U} = 0 (5.51) 

where N,M,P,R are (n-m)x(n-m) matrices(m being the number of passive 

nodes due to Dirichlet boundary conditions), and C,FI,dC/dt and dH/dt 

are vectors containing the undermined coefficients and their time deriva-

tives. The coefficients of the coefficient matrices are expressed in terms 

of integrals over the domain of the basis functions and their derivations. 

The computation of these integrals are performed in the local rather than 

the global coordinate system, with limits of integration of -1 and +1 and 

Gaussian quadrature is used. According to experience, exact solutions 

must be obtained from these integrals. The coefficients depend on the 

boundary conditions. 

Systems (4.50) and (4.51) are solved by approximating the time 

derivatives of concentration and hydraulic head by a finite difference 

scheme with a backward difference in the dispersion equation 

{C}t+At-IC}t 
[N] = 0 (4.52) Clt+At+ [M] At + {F} 

{H}t+At-{H}t [P] {U} = 0 (4.53) {11}t+At+ [R] 
At + 

These equations are solved sequentially for each time step, for given ini-

tial and boundary conditions. 

The method of finite elements is more difficult to understand and 

program than finite differences. It also requires, in general, more com-

puter storage and is more time consuming. Its main advantage is the 

flexibility of the shape of the elements. This is particularly so when a 
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moving interface has to be modelled. Another advantage of FEM is the 

ease of handling anisotropy of model parameters. The method suffers 

from numerical dispersion and overshoot in the some way as the finite di-

fference method. 

4 . 3 Boundary and Initial Conditions 

In order to obtain a unique solution of a partial differential 

equation corresponding to a given physical process •(as solute transport), 

additional information about the physical state of the process is required. 

This information is described by boundary and initial conditions. For 

steady state problems only boundary conditions are required, whereas for 

unsteady state problems both boundary arid initial conditions are required. 

Mathematically, the boundary conditions include the geometry of the boun-

dary and the values of the dependent variable or its derivative normal to 

the boundary. The boundary conditions are generally of three types: 

i) Dirichlet type, where the value of the dependent variable, i.e. 

concentration, is specified along the boundary. 

Neumann type, where the flux or the gradient of concentration 

is specififed normal to the boundary. 

Mixed type, where the flow rate of concentration is related to 

both the normal derivative and the value at the boundary. 

The initial conditions are simply the values of the dependent va-

riable specified everywhere inside the boundary, at some specified time 

before the beginning of actual operation. 

4 . 4 Data Requirement and Model Verification 

The data requirements for transport models are prodigious. Lack 

of data is perhaps the severest limitation on the type of model which can 
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be used and its capabilities. Two classes of data are required. 

Firstly, data associated with boundary conditions, such as 

aquifer geometry, fluxes, heads concentrations, abstractions etc. In 

regional scale studies, fluxes associated with water transfers, and land 

use can involve large amounts of data, especially if several solutes are 

involved. Two types of boundary conditions may be identified. Internal 

boundary conditions require the specification of contaminant concentrations 

in water entering the aquifer. Such inputs may be localized, as from 

landfills, surface water bodies, septic tanks and chemical spills. The input 

concentrations of the contaminant will often not be known with any certa-

inty though the total mass input may be known. The equation of solute 

transport is usually linear, however, so that sensible adjustments to the 

model inputs to achieve an acceptable match between the computed results 

and observations are straight forward. External boundary conditions re-

quire the specification of contaminant concentrations or fluxes at the model 

perimeter. If the model boundary is a ground water divide, then the con-

taminant flux may be set to zero. In all other cases, the type of boundary 

conditions selected will depend on local constraints. 

A constant ground water potential, due to contact between the 

aquifer and a river or lake will usually result in a constant concentration 

boundary condition to the transport model. It may be possible to locate 

the model boundaries far from the areas of interest in which case the bou-

ndary conditions can be of minor importance. 

The second class of data consists of parameters characterising 

the aquifer and the various processes which are occuring. These include 

storage coefficients, hydraulic conductivities, dispersivities, porosity and 

reaction -, adsorption - and diffusion - rate constants. These parameters 
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are usually defined from field and laboratory experiments and model cali-

bration. In particular, transport models are found to be very sensitive 

to aquifer porosity and hydraulic conductivity because of their importance 

in defining the pore water velocity. Also, dispersivities are found to be 

scale dependent because of the influence of averaging. For example,values 

measured on core samples in the laboratory are several orders of magni-

tude smaller than values appropriate to region scale. This problem does 

not arise in lumped models. 

Verification of a model usually consists of comparison of compu.2  

ted results with historical observations. It is desirable during the stage 

to test the model for parameter sensitivity. This, of course, is easier to 

accomplish on the simpler models. 
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5 . 0 REMARKS 

The development of a mathematical model begins with a conceptual 

understanding of the physical system. Once these concepts are formulated 

they can be translated in to a mathematical framework resulting in equations 

that describe the process. A variety of analytical and numerical techni-

ques can be applied to solve the equatinns, resulting in practical tools such 

as type curves or finite difference And finite element computer programs. 

The solute transport equation is used with the ground water flow 

equation to address pollution problems. These problems are not as well 

understood, especially the characterisation of source terms and dispersion. 

One may choose a solute transport model according to need and Conveni-

ence. In selecting a model for a particular application, it is obviously 

sensible to keep the model as simple as possible and in any case not to 

have a more sophisticated model than is warranted by the available data 

and knowledge of the system. Lumped models are probably most appropri-

ate to large scale problems, particularly where the solute originate from a 

distributed source. Two and three dimensional model are probably most 

appropriate to small scale problems where a detailed description of solute 

movement is needed. 
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