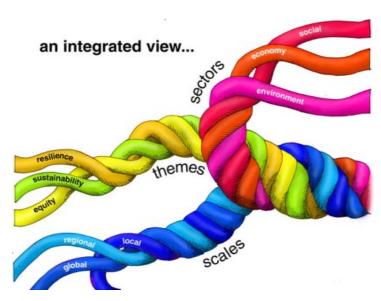

"Local IWRM" & Practical Approaches

Dr V C Goyal

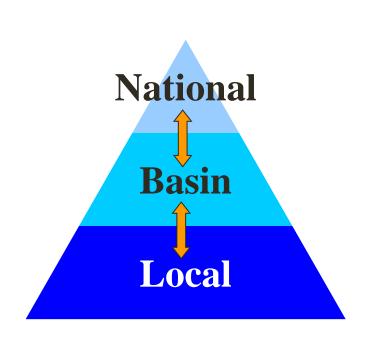
National Institute of Hydrology

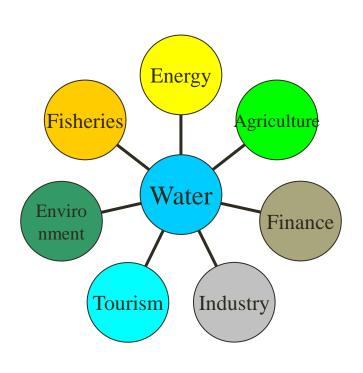
(Ministry of Water Resources, GoI) Roorkee (Uttarakhand, India)

vcg.nihr@gov.in; vcgoyal@yahoo.com


Objectives of Water Management

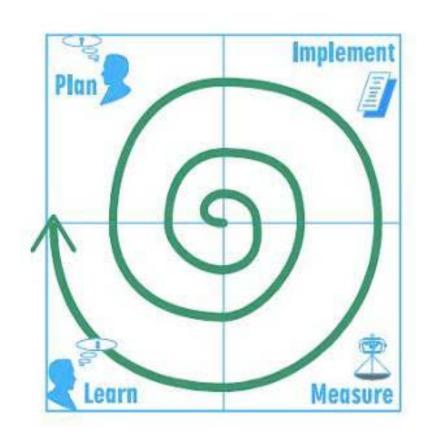
- Efficient and gainful utilization of water and other natural resources
- Healthy living for human and cattle resources
- Livelihood options for all
- Preparedness for disasters/calamities


Integrated Water Resources Management (IWRM)


"is a process that promotes the coordinated development and management of water, land and related resources, in order to <u>maximize</u> the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems" (Global Water Partnership)

- More coordinated development and management of:
 - Land and water
 - Surface water and ground water
 - Upstream and downstream interests

Integrating across scales and sectors



Putting IWRM into practice

IWRM is not a fixed prescription but an iterative process

This means that the specific form IWRM takes will vary from country to country and from region to region.

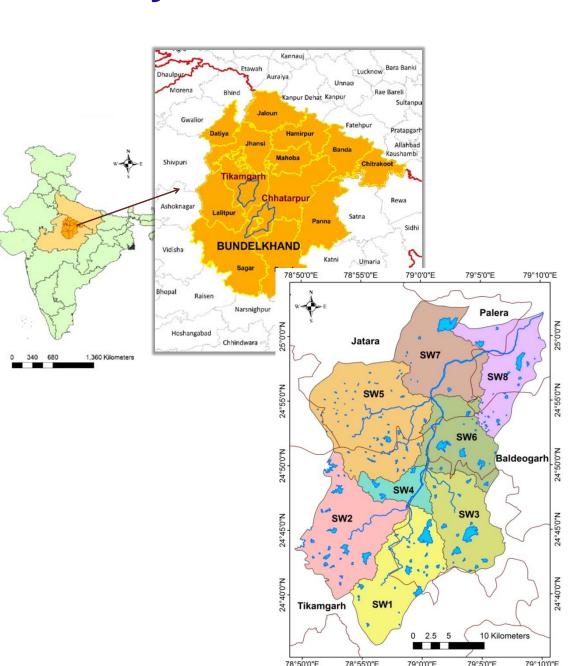
It also means that IWRM is an inherently adaptive approach – one that can accommodate emerging challenges, local constraints and changing social priorities.

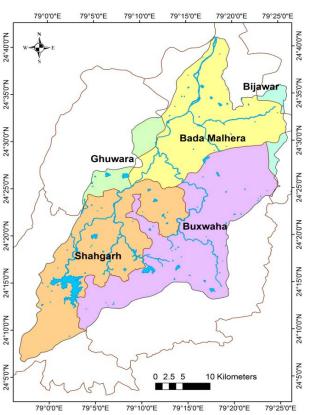
What IWRM Deals with? **Improving** Quality Supply Management Conservation and Managing soil and water health recharge of water **Improving** Managing Livelihood **Demands IWRM** Income generation Reducing total Plan and other facilities water demands Trigger Trigger Trigger Agriculture Water Livelihood (Crops) Resources Food Demand Supply **Utility Supply Water Supply Water Users** Demand Demand TOOLS

IWRM: Action Research Activities

- Water budgeting
- Water demand and availability: gap estimation
- Water allocation planning for different uses
- Water quality assessment
- Wastewater management planning
- Protection and rejuvenation of water bodies (e.g. ponds, lakes)
- Water harvesting measures: identification of suitable sites and appropriate structures
- Groundwater recharge measures
- Crop planning: soil health assessment; water-efficient crops; efficient cropping practices (e.g. SRI)
- Field demonstrations
- Income optimization scenarios
- Capacity building of stakeholders

IWRM Plan at District Level?


- All federal and State government funding is available at districts
- District is the administrative unit where implementation is planned
- "Integration" is best possible at district level (DC/DM is the single authority)
- Conflicts are less/avoidable
- Identified needs are better addressed according to availability of resources
- Institutional frameworks and management instruments are feasible
- Stakeholders' participation is feasible
- "Local/light" IWRM can be adapted as per felt needs
- Upscaling to basin level or downscaling to village government level is possible & feasible


Stages of IWRM Plan (IP) Development

- 1. Stakeholders' consultation-1: identification of needs
- 2. Development of IP modules by GIS/IT professionals
- 3. Creation of database (thru secondary sources and field surveys)
- 4. Data analysis & interpretation by specialists
- 5. Field verification of suitable WH sites & structures
- 6. Pilot field demonstrations of BMPs
- 7. Documentation
- 8. Stakeholders' consultation-2: Draft IP is shared & suggestions obtained
- 9. Capacity building and awareness creation activities
- 10.Stakeholders' consultation-3: Handover of IP to district authorities
- 11. Handholding of district authorities for IP implementation

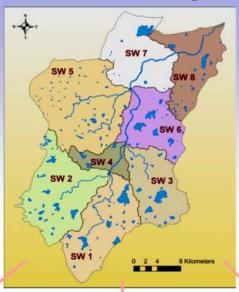
A Case Study from Bundelkhand

Study watersheds in Bundelkhand, India

IWRM Plan for Ur River Watershed

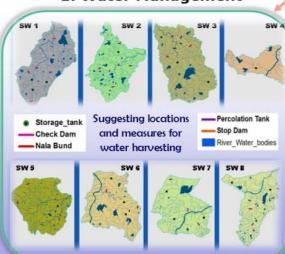
IWRM Plan for Ur River watershed in Tikamgarh district of Madhya Pradesh

Integrated


Water

Resources

Management


PLAN

A process of promoting coordinated development and management of water, land and related resources to sustainably maximize the economic and social welfare

1. Water Management

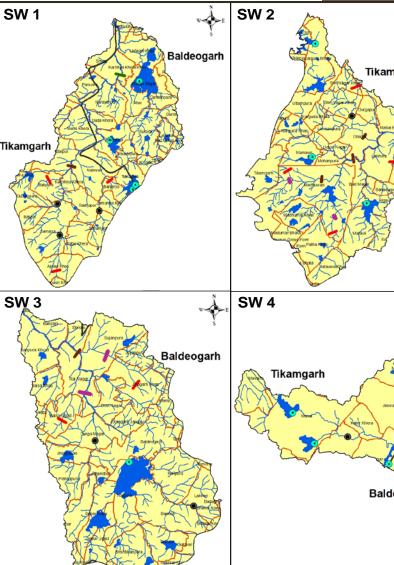

3. Livelihood Management

Identification of the most vulnerable areas and suggesting measures to improve their livelihood

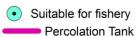
- Promoting Wadi farming through capacity building programs
- Promoting off-farm and non-farm occupations (eg. Poultry farming, pisciculture, bee keeping, handicrafts etc.
- · Raising awareness on climate change

Suggestions regarding land use and agricultural pattern to enhance productivity and maintain soil health

2. Land Management

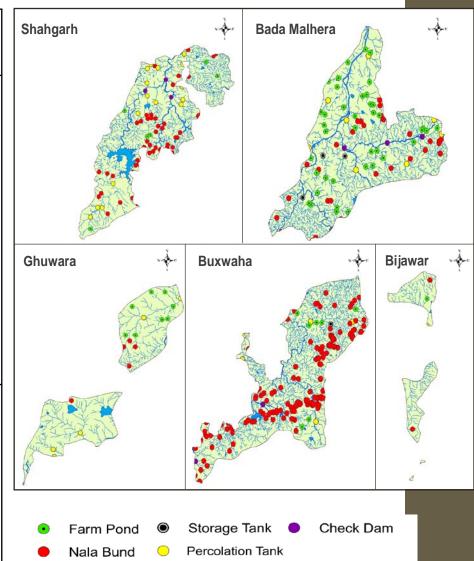

- Efficient irrigation techniques
- Line sowing
- Crop diversification
- Crop rotation

SWI, SRI, SCI, WADI (agri-horti model based), drip irrigation etc.



Water Management

Sub-	Domestic/Drinking	Irrigation/Surface	Aquifer recharge	SW 1
waters	water demands	water harvesting		
hed				
SW1	Rooftop rainwater	Construction of farm	For groundwater	Son
	harvesting in all	ponds at both	recharge purpose, the	*
	schools,	individual and	following structures may	Sucki Khera Chusa
	government	community level to	be constructed:	Tikamgarh
	buildings, hospitals,	support irrigation as	3 Nala bunds	Kantovak Kra
	community centers,	well as for surface	1 Check dam	Out man
	and pucca houses	storage of water	1 Stop dam	1997
		Construction of		damera Caravanera
		3 Storage tanks		Asfast Pros
SW2	Rooftop rainwater	Construction of farm	For groundwater	Saur Kit
	harvesting for both	ponds in rural area	recharge purpose, the	SW 3
	rural and urban	and	following structures may	Sangar Sangar
	household	1 Storage tank	be constructed:	lappura kinya
	population.		4 Nala bunds	Rapissal
	Efficient water		3 Check dams	
	distribution system		2 Percolation tanks	and Barragon I
	to avoid water loss			Singa Ninga
	and wastage			
	Construction of			Pratappura
	STPs (Sewage			J. F.
	Treatment Plants)			7/32
				1



Block	Domestic/Drin	Irrigation/Surfac	Aquifer recharge
	king water	e water	
	demands	harvesting	
Shah	Rooftop	Construction of	For groundwater
garh	rainwater	6 Farm	recharge purpose,
	harvesting	Ponds	42 Gabion
	Efficient	at both	Structures
	water	individual and	16 Percolation
	distribution	community level	Tanks and
	system to avoid	to support	3 Check Dams
	water loss and	irrigation as well	may be
	wastage	as for surface	constructed.
	Constructio	storage of water	Injection wells
	n of STPs		to recharge the
	(Sewage		aquifers through
	Treatment		filter-pit design
	Plants)		
Bada	Rooftop	Construction of	For groundwater
Malh	rainwater	40 farm	recharge purpose,
era	harvesting	ponds and	26 Gabion
	Efficient	4 storage	Structures
	water	tanks	7 Percolation
	distribution	to support	Tanks and
	system to avoid	surface water	3 Check Dams
	water loss and	harvesting	may be
	wastage		constructed.
	Constructio		Injection wells
	n of STPs		to recharge the
	(Sewage		aquifers through
	Treatment		filter-pit design
	Plants)		

Land Management

Water Efficient Irrigation Technologies and	Crop R	otation		
Practices				
SRI (System of Rice Intensification) for Rice	Rice→Cowpea→Blackgram→Chili/Garden Pea→ Rice			
SWI (System of Wheat Intensification) for Wheat				
SCI (System of Crop Intensification) for Maize,	Groundnut→Cowpea→Rice→Wheat→Groundnut			
Sorghum, Mustard, Blackgram				
	Soybean→Wheat→Blackgra	am→Mustard→Soybean		
Drip Irrigation for high value vegetable and fruit crops	Crop Diversification			
Irrigation at critical stages for Wheat (including crown	Kharif	Rabi		
root initiation and flowering stage), Soybean				
Wadi (Agri-Horti based model) for fruit and vegetable	Maize + Blackgram +	Gram + Wheat + Chili/		
crops	Groundnut + Maize + Okra	Garden Pea + Mustard +		
	+ Pigeon Pea	Cowpea + Gram		
Line Sowing for crops such as Soybean, Blackgram, Groundnut, Rice, Wheat, Mustard, Maize				

Also suggests areas suitable for:

- Conversion of wasteland
- Double cropping
- Fuelwood plantation
- Gap plantation
- Agro-forestry
- Agri-horti plantation (WADI model)

Livelihood Management

- Utilize locally available resources to create livelihood opportunities that ensure
 - food security and nutrition
 - curb poverty
 - provide sustainable agricultural practices
 - help in combating climate variability and related impacts, etc.
- Conventional livelihood practice has been agriculture, which as a result of climate variability and other crop failure consequences, has resulted in diminishing employment and financial gains
- A focus shift on non-agricultural, employment generating opportunities will help prevent people from migration, which is one of the biggest social challenges these watersheds are currently facing
- Variety of off-farm livelihood activities promoted: poultry, fishing, handicrafts
- Thru training programs livelihood activities related to handicraft, bee keeping, etc. demonstrated to the villagers

Summing Up

- IWRM is a means of achieving water security & WUE
- IWRM is not a one-size-fits-all prescription and cannot be applied as a checklist of actions
- Concept of "Local" IWRM applied to WCM planning in India
- IWRM Plan provides suggestions on activities of (1) water management, (2) land management, and (3) livelihood management
- Provides useful inputs to the District Irrigation Plan (DIP) of the Government, in terms of water supply and demand management synergized with the land management and livelihood improvement
- Advises district government to include water demand management measures to address water security challenges in DIP
- IWRM planning is shown to be a practical tool in district level planning
- At district level, IWRM can be planned through convergence of various schemes
- Developed through a participatory approach, in consultation with local stakeholders