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INTRODUCTION

Predicting response of an aquifer to a pumping pattern, whose transmissivity and storage
coefficient are known a priori, is classified as a direct problem. Estimating the aquifer parameters
from a set of observed response of the aquifer to a known pumping pattern is an inverse problem.
An inverse problem could be solved provided the corresponding direct problem has been solved
a priori.

Using Theis’ basic solution i.e. by matching the time drawdown curve with Theis’ type
curves, we can determine the parameters of an aquifer which is confined, homogeneous,
isotropic, and is of infinite area and the pumping well has small radius. The aquifer is to be
initially at rest condition, and the aquifer test is conducted under constant pumping rate. These
are the assumptions on which Theis” solution is based.

Mishra Chachadi’s type curves (Mishra, Chachadi, 1986) could be used for determining
parameters of a confined aquifer if the test is conducted in a large diameter well. These type
curves include both the pumping phase and recovery the recovery phase

To avoid human error while curve matching, the inverse problem could be solved
conveniently using Marquardt Algorithm (Marquardt, 1963). Berg (1971), and Chander
et.al.(1981) have used the algorithm to predict parameters of aquifers in different hydro
geological settings.

In a hard rock region in Jodhpur city, aquifer tests have been conducted in small radius
tube wells and in large diameter wells locally known as Bowaris. In this study, for the aquifer
test conducted in the wells with small radie, the inverse problem has been solved using the Theis’
basic solution treating the aquifer to be confined. For the tests conducted in large diameter wells,
Hantush’ basic solution for well with finite radius has been used considering well storage effect
on drawdown data. Unit pulse kernel coefficients are generated and used in a Marquardt
Algorithm as described below. The convolution technique described here is quite versatile. The
aquifer test may be conducted under constant pumping rate, or under variable pumping rate as in
step draw down test. One could also determine the aquifer parameters using the recovery data.

THE MARQUARDT ALGORITHM

The Theis’ solution, which provides evolution of drawdown in a confined aquifer in
response to constant continuous pumping from a fully penetrating well with small radius having
negligible well storage, is
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where s(Q,T,;zﬁ, r,t) = is the draw down in piezometric surface at distance » and time 7 after the

onset of pumping ; (J = constant pumping rate; 7" = transmissivity of the confined aquifer, and
¢ =storage coefficient.
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Partial derivative of s(Q,T.¢,r,t) withrespectto 7 is
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Partial derivative of s(Q,7T,¢,r,t) with respectto ¢ is
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K (Q,r,t,T,;ﬁ),P; (Q,r,t,T,gﬁ),F; (Q,r,r,T,¢) are functions of 7 ¢ Q, r, and t.

Let 7" and ¢" be the approximate values of transmissivity and storage coefficient near
to the true values of transmissivity and storage coefficient. Initially, T" and ¢ are to be
guessed. Let AT and Ag be incremental values in transmissivity and storage coefficient so that
T"+AT and ¢ +A¢ are nearer to the true values. AT and Ag are unknown and are to be
predicted by Marquardt algoritm.  Performing Taylor series expansion of drawdown
s(O,T,$,r,t) about 7" and ¢’ , and neglecting the higher order terms
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The pumping rate O and the distance 7 of the piezometer from the pumping well being
constants, we abbreviate s(Q,7,4,r,0)bys(t,T.¢), K (Q,r,r,T‘,gﬁ') by K (I,T‘,qﬁ' ),

F'Z(Q,r,t,T*,;é')by Fz(t,T*,qﬁ*) and F3(Q,F,I,T',ﬂﬁ*)byﬂ(I,T‘,qﬁ*).

Let s, (1) be the i observed drawdown in piezometric surface in the piezometer at time

t,. The predicted drawdown , s, (t,,T* +AT, 4" + A¢) ,at observation time f, from equation (4)
is
5. (6,7 + AT, ¢’ +A4)=F (r,.,T“,;zb‘)Hﬁ'2 (r,,T',¢')AT+F3 (1.7°.6")0p  (5)

The error in the i" prediction, E(i), is

E(i)=s,(i)=s, (t,1" + AT, 4" +Ag)
=5, () ~{F(4.T".¢")+ (1,76 )AT + F, (1,.7" 6" ) g (6)
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The Marquardt algorithm minimizes sum of the squares of error for a set of N observations and
the minimization problem is

Min{i[so() {F(6.T".6")+ B (1,7 ) AT + F (1,.T", ¢)A¢H} )

AT, A¢ | 4

Differentiating sum of the squares of the error with respect to AT and equating it to zero
N
Z[—2[so ()-{R (.7 )+ B, (1.7 ¢ )AT + F, (1,7 ¢ )Agz}}] (6,16 )1 0 (8)

i=1

Simplifying, equation (8) reduces to

{i[ﬁz (0,78 ) By (1,7 4" )}}AT+{”[ (.10 B (1,1 ¢)]} ¢
207 62 [RT ) B )] ®

i= i=l

=

Differentiating sum of the squares of the error with respect to A¢ and equating it to zero

Zvij{ [ R (4.7 )+ (1,78 ) AT + B (1,,T" ¢)A¢}:l (6,1 ¢)}=0(1e)
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Simplifying, equation (10) reduces to
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Equations (9) and (11) are written as

a(LDAT +a(1,2)Ag =c(1) (12)
a2,D)AT +a(2,2)A¢ = c(2) (13)

Solving for Ag and AT, we get
) _ @)
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and
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_e) _a(l2),,
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where
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The improved transmissivity and storage coefficient are given by
/ol row =T - +AT (16)
¢‘ e * old +A¢ (17

This iteration procedure is to be repeated till A7" and A¢ tend to very small values.

Evaluation of the Functions F (II,T‘,;#') and F, (ri,T*,gﬁ')

The functions F](Q,r,t,,T',gb*) and F, (Q,r,t,,T*,gﬁ‘) are evaluated for different

observation time 7, using a convolution technique. Let the observation time span be discretized

by uniform time steps. In case of aquifer test, a convenient time step size is one minute as
observations are generally made at different intervals of minutes. Accordingly, in the

functionsF{(Q,r,t,,T*,gﬁ'),FE(Q,r,t,,T*,qﬁ*) and E(Q,r,ti,T*,;ﬁ'), the unit of pumping
rate is m° per minute, and unit of transmissivity is m’ per minute. Let Q(z’) be pumping rate
during " time period. During recovery period, the pumping rate is zero. Under variable
pumping rate,Q(t), the drawdown S(Q(i),T*,(ﬁ*,r,n) at the end of » minutes is derived as
follows (Morel- Seytoux, 1975)
s

Q(T) 41"'(n—1)d
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T 0 ?’) (n-1) 9(n) —”f;‘:'_—r)
j4;7:3" "(n-7) . +I4xT (n-7) a

-0 p(n-r+) as

The unit response function coefficient & (m) is given by:
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2 * 2 * 2 *
W il Eﬁ is Theis’ Well function with argument L ? 4 4 ?
4T 4T m 4T m

} is an exponential integral.
m

For argument X, the exponential integral,W(X ), is computed using the following polynomial

approximation.

For X <1
W (X)=-In(X)-0.57721566 +0.99999193X —0.24991055X>
+0.05519968* X° —0.00976004X* +0.00107857X° (20)
For X >1
4 3 2
Xe W (X) = X'+8.5733287X 3+18 .059017X 2+8 .6347608X +0.26777373 @
X* +9.5733223X" +25.632956X> +21.099653X +3.9584969

An Example

A set of synthetic observation data generated using 7'=0.1m’ /min and storage coefficient
¢ =0.001 are as given in Table 1. Predict the 7', ¢ making an initial guess 7" = 0.01m> / min

and ¢" =0.003. The piezometer is located at a distance of 20m from the pumping well. The
pumping rate is O = 0.2m" / min.
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Tablel: Synthetic Drawdown Data Generated Using Equation (18)

Time of observation | Observed Time of | Observed
(min) Drawdown(m) | observation | Drawdown(m)
(min)

1 0.035 60 0.562
2 0.089 70 0.587
3 0.132 80 0.608
4 0.166 90 0.626
5 0.195 100 0.643
6 0.219 120 0.671
7 0.24 140 0.696
8 0.258 160 0.717
9 0.275 180 0.736
10 0.29 200 0.752
12 0.317 230 0.774
14 0.339 260 0.794
16 0.359 290 0.811
18 0.377 320 0.827
20 0.393 350 0.841
25 0.427 380 0.854
30 0.455 410 0.866
35 0.478 440 0.877
40 0.499 470 0.888
50 0.534 480 0.891

Table 2: Convergence of T" and ¢* with Successive Iteration

Iteration T ¢* AT A¢ C(1) C(2)

no
1 0.020507 0.004138666 1.05E-02 | 1.14E-03 | 0.00E+00 3.64E-12
2 0.040832 0.003697811 2.03E-02 | -4.41E-04 | -1.14E-13 0.00E+00
3 0.07088 0.001491592 3.00E-02 | -2.21E-03 | 1.42E-14 0.00E+00
4 0.092492 0.001075698 2.16E-02 | -4.16E-04 | 0.00E+00 -1.14E-13
5 0.099488 0.001004064 7.00E-03 | -7.16E-05 | 0.00E+00 1.42E-14
6 0.099998 0.001000018 5.10E-04 | -4.05E-06 | 0.00E+00 0.00E+00
7 0.1 0.001 2.42E-06 | -1.81E-08 | 0.00E+00 0.00E+00
8 0.1 0.001 5.43E-11 | -4.07E-13 | 0.00E+00 2.12E-22

Determination of Aquifer Parameters Applying Marquardt Algorithm to Observed
Drawdown at a Piezometer During Pumping

Thus using synthetic drawdown data, we have checked that Marquardt Algorithm
successfully predicts the true transmissivity and storage coefficient when the initial guess was
different from the true value.

Location: Jodhpur, Paota. Pumping Rate, Q = 0.21 m’ /min .

Distance of Observation Well from Pumping Well =24.5m
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Starting transmissivity value, 7" (m° /min )= 0.010; starting storage coefficient, ¢ = 0.0003.

Table 3 Observed drawdown

Time of Observed Time of Observed
observation (min) | Drawdown(m) | observation | Drawdown(m)
(min)

1 0 60 1.65
2 0.08 70 1.719
3 0.13 80 1.762
4 0.23 90 1.802
5 0.33 100 1.836
6 041 120 1.902
7 0.48 140 1.938
8 0.55 160 1.974
9 0.64 180 2.004
10 0.71 200 2.03
12 0.82 230 2.052
14 0.93 260 2.082
16 1.02 290 2.102
18 1.08 320 2.122
20 1.14 350 2.132
25 1.26 380 2.142
30 1.35 410 2.17
35 1.42 44() 2.172
40 1.46 470 2.172
45 1.5 480 2.172
50 1.58

Table 4 Transmissivity and Storage Coefficient as Obtained through Successive Iteration

Iteration T ¢* AT Ag C(1) C(2)

no
1 0.017997 0.000373 8.00E-03 7.33E-05 | 0.00E+00 0.00E+00
2 0.028653 0.000338 1.07E-02 | -3.55E-05 | 0.00E+00 0.00E+00
3 0.036955 0.000276 8.30E-03 | -6.21E-05 | 0.00E+00 0.00E+00
4 0.039092 0.00027 2.14E-03 | -5.46E-06 | 0.00E+00 0.00E+00
5 0.039129 0.000272 3.65E-05 1.32E-06 | 0.00E+00 0.00E+00
6 0.039133 0.000271 4.43E-06 | -9.17E-08 | 2.78E-17 8.88E-16
7 0.039132 0.000271 -5.05E-07 | 1.11E-08 | 0.00E+00 0.00E+00
8 0.039133 0.000271 6.01E-08 | -1.31E-09 | -4.34E-19 0.00E+00
9 0.039133 0.000271 -7.14E-09 | L1.56E-10 | 5.42E-20 0.00E+00

Iterated Transmissivity, T = 0.03913 m” / min = 56.35 m* / day

Iterated Storage Coefficient, ¢ = 0.000271
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Table 5 Comparison of Observed Drawdowns with Simulated Drawdowns

Time(min) | Observed Computed Time(min) | Observed Cemputed
drawdown(m) | drawdown(m) drawdown(m) | drawdown(m)

1 0 0.0875 60 1.65 1.4921
2 0.08 0.2287 70 1.719 1.5569
3 0.13 0.3417 80 1.762 1.6132
4 0.23 0.4326 90 1.802 1.6628
5 0.33 0.5081 100 1.836 1.7073
6 0.41 0.5725 120 1.902 1.7845
7 0.48 0.6285 140 1.938 1.8498
8 0.55 0.6781 160 1.974 1.9064
9 0.64 0.7226 180 2.004 1.9564
10 0.71 0.7629 200 2.03 2.0011
12 0.82 0.8337 230 2.052 2.0605
14 0.93 0.8945 260 2.082 2.1127
16 1.02 0.9477 290 2.102 2.1591
18 1.08 0.995 320 2.122 2.201
20 1.14 1.0376 350 2.132 2.2392
25 1.26 1.1285 380 2.142 2.2742
30 1.35 1.2035 410 2.17 2.3066
35 1.42 1.2672 440 2.172 2.3366
40 1.46 1.3227 470 2.172 2.3647
45 1.5 1.3717 480 2.172 2.3737
50 1.58 1.4158

Square root of sum of square of error = 0. 82m
Average error = 0. 02 m

25
2 -
E
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3
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o© s
E 1 e Observed drawdown
Q —— Simulated drawdown
0.5
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0 100 200 300 400
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Fig. 1 Observed and Simulated drawdowns for T =0.03913 m’ / min =56.35m” / day
and Storage Coefficient, @ = 0.000271




Application of GIS to Groundwater Modeling and Management

Determination of Transmissivity and Storage Coefficient Using Data of an Aquifer Test
Conducted in a Large Diameter Well

In hard rock region, the shallow aquifers have low transmissivity ranging from 25 to 100
m*/ day Therefore, in hard rock region, wells with diameter ranging from 1 to 2 m are

constructed to have reasonable yield. An aquifer test can be conducted in a large diameter well
and the recovery data can be used for a reasonable estimate of storage coefficient and
transmissivity.

Solution to unsteady flow to a dug-cum-bore well, that takes well storage into account,
has been derived by Papadopulos and Cooper (1967). According to them, the well storage

dominates the time-drawdown curve up to a time, 7, given by 7= (2542 ) /T where r, is radius

of the well casing, and T is transmissivity of the aquifer. If a short duration aquifer test is
conducted in a large diameter well, the transmissivity can be estimated reasonably well, but the
storage coefficient may differ by an order of magnitude. This is because, the type curves
presented by Papadopulos and Cooper contain straight line portions, which are parallel, and a
short duration time-drawdown curve if matched with one of the straight lines, it could be
matched as well with either of the adjacent straight lines. Discretising the time domain by
uniform time steps, and generating unit response function coefficients from Thies’ basic solution
for unsteady flow to a well with small radius, Patel and Mishra (1983), Mishra and Chachadi
(1985) have derived simple analytical solutions to unsteady flow during pumping, and during
recovery respectively. These solutions, as well as that by Papadopulos and Cooper are applicable
for a bore well with small radius having large casing.

Hantush has derived an analytical solution to unsteady flow to a well with finite radius
assuming that all the water pumped is from aquifer storage. The effect of well storage on time
drawdown curve has not been taken into account in the solution. Discretising the time domain by
uniform time steps, and generating unit response function coefficients from Hantush’s basic
solution, we derive a simple analytical solutions to unsteady flow to a large diameter well during
pumping and recovery. The well storage contribution during pumping, and well storage effect on
drawdown have been accounted. After solving the direct problem, the inverse problem has been
solved using the Marquardt Algorithm as described below. Pumping as well as recovery data
could be used for estimating the aquifer parameters.

Let the total time of observation including pumping and recovery periods be discretised

to N units of equal time steps of size Af . Let the pumping continued until the end of m” time

step. During any time step n, the quantity of water pumped is sum of the quantity drawn from
aquifer storage and the quantity drawn from well storage. Therefore,

0, {(n-1)Ar}+0, (nAr) a2 {(n-1)At} +Q, (nAt) g {(n-1)A1}+Q, (nAt)

Ar (22
2 2 2 =

in which, O, (nAI) . 0, (nAt) and Q, (nAr) are withdrawal rates from aquifer storage and

well storage, and pumping rate respectively at time # = nAr . The time step size Af can be chosen

conveniently incorporating 2 {(n _I)A;} +0, (n1) =0,(n)
0, {(n—l)A;} +0, (ndr) 5. () and 0, {(n—l)A;} +0, (nAr)

0, (n) inEq. (22),
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0,(n)+0,(n)=0,(n) (23)

Let the well discharge be constant equal toQ), .FornSm,Qp (n)=Qp ;and

forn > m, Qp (n)=().

Drawdown, s, (n) ,at the well face at the end of time step 7 is given by (Patel and Mishra, 1983)

1 &
s, (nAt) = — ZQW () At (24)
}/:

¢

in which, O, (y) is average withdrawal rate from well storage during time step . Qw (,‘V)
values are unknown a priori. A negative value of Qw ( ]/) means replenishment of well storage
from aquifer storage during time of recovery. r. is radius of well casing. For some well7, is

equal to well bore radius 7, .

Following Duhamels’ principle and method of convolution, drawdown at the well face at
the end of time step n (r = nAt) due to abstraction from aquifer storage is given by (Morel-

Seytoux, 1975)

n

s, (r,,nAt)=>"0,(7)5(r,.At,n—y +1) (25)
1

¥=

where ¢ ( r,,At, N ) is a unit pulse response function coefficient derived from unit step response

function using a time step size A7 (Morel-Seytoux, 1975) , and N is an integer. The kernel
coefficient & (r At,N ) is given by

w2

8(r,. A N) =§{U(rw,NAr)—U(rw,(N—l)At)}; N>1 (26)
For N =1, 8(r,,A1,1)= —Al—rU(r“_,At).

For well with small radius U (r,] At) is the drawdown corresponding to unit pumping

rate which could be computed using Theis’ solution. The time step size Af can be chosen
conveniently. In an aquifer test, draw down observations are made at different intervals of

minutes. Therefore, for solving an inverse problem, it is convenient to choose Ar=1 minute.

Accordingly, pumping rate is to be chosen in m’ per minute and transmissivity in m’ per

minute. For a well with finite radius, the unit step response function has been derived by Hantush
as given in Appendix L

Assuming that there is no surface of seepage at the well face, the drawdown in the well is
equated to the drawdown in the aquifer at the well face ie. s, (n) =5, (rw,n) . Equating
equations (24) and (25)
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no_
ZQ )=2.0.(r)8(r.A.n—y+1) @n
Te vl 7=l
From equation (23)

0,(n)=0,(n)-0,(n) (28)

Incorporating (7) in (6)

,f (0,()-8.(")} =20, ()6 (1. Asn—y +1) (29)

¢ =l r=1

h
Splitting each temporal summation into two parts, the first part up to (n—l)“ step, and the

second part the #n” step, inco orating Ar =1 minute and solving for Q (n)
p p Ip a

n-1

ZQ ZQ (7) m‘zzQ (7)8(r,,At,n—y +1)

0.(m =2 1+x¢?5(m,m ) oP
In particular for time step n =1
0, (N)=— %) 31
RS B 5( JAr1)
Assuming Q, (0) to be very near to zero,
o.()= = (1) (32)

1+7rrf§(rw,Ar,1)

Qa(n),n=1,...,N are solved in succession. After solving@a(n), for n=1, 2,....N, the
drawdown in the aquifer at any distance r is found generating the corresponding kernel

coefficients 5(! At, N){ {U(r NAI) (r,(N—I)AI)}} and applying the convolution
technique.

Having solved the direct problem, the inverse problem is solved next.

SOLUTION TO THE INVERSE PROBLEM

Let 7" and ¢ be approximate values differing by A7 and A¢ from the true

transmlss1v1ty and storage coefficient of the confined homogeneous and isotropic aquifer which
was at rest prior to the aquifer test. For solving the inverse problem, the objective function to be
minimized is sum of the squares of the error, ie., squares of the differences in observed

drawdowns and predicted drawdowns corresponding to 7" and ¢
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Min {‘Z{ 50 (i) =5, (1,7 +1,¢° +A¢)} } (33)

AT, Ad

An initial guess is made for 7°,¢" and AT and A¢ are solved through minimizing the error.

The Taylor series expansion of s, (r,.,T,qﬁ) at T=T"and¢ =¢", and neglecting higher

order terms,

5 " Bs‘(r‘,T,gfﬁ) os (t.,T,n;ﬁ)
T +AT, ¢ +Ad)=5(1,T.8) . .+——F —~ A Ag (34
s, (t, +AT, ¢ + ¢) s, (1, ¢)‘T pt— o . + o ., ¢ (34a)
The partial derivatives are to be determined numerically as follows:
os, (1, 1.0)| (6T +5.6")=s. (1,74 o)
oT _ &
aSC (tl"T’¢) SC (IHT‘,¢‘ +€2)_SC (tj’T*’¢*) (340)
o¢ "y £,

where £,&, are small increments in transmissivity and storage coefficient.

Incorporating sc(t,,T*+AT,¢'+A¢) i.e. equation (34a), in equation (33), the

minimization problem reduces to

| & . 0s, (t,,T,;é)
%ﬁ Z so(z)—[sc(t,,T,gﬁ)‘T_,ﬁ,+_6T__

i=1

0s, (t‘,T,qu)
o¢

AT +
g

]
A¢J (35)
-

Equating the partial derivative of the above objective function with respect to AT with zero

{id {So (i)- [Sc' (4.7, )‘m' * w

i=1
2
} T
.4

|$ (6sc(t,-,T:¢)| asc(r,,T,eé)% J Ag
'y

op ., or

- 0s, cad ey & 0. ¢ t;aTa
_ Z{SO (,-)E*‘c%h_“’j) } ‘Z{Sc(’wmﬁ)‘r-ﬁ- _S(_aT_‘é)m
4

o, (1.7.9) M} 5.(1.7.9)
g or

AT 2!
o op

s

} =0 (36)
Simplifying

i 65 t,,T ¢)
32l

=1

i=1

} (37a)
"y
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or
a(LDAT +a(1,2)A¢ =c(1) (37b)

where
Os, (t,,T,(ﬁ)‘ ]} and
'y or ‘T’,é‘

a(l,1) = Z{{as o l4) ‘ ” a(1,2)= Z{[as o ¢)*

N 85 t,T,¢ 1,,T,¢
c(l) = Z {so 8. (,7.9) } Z{ (t.T.9),. , 4T )
o oT
.4
Similarly, equating the partial derivative of the objective function with respect to A¢g with zero

T i=1

[ﬁ_z{se(i)_[sc(f,,r,¢)|r._¢.+5Sc(;f=¢) a7+ &:0:T9) A¢]}L‘(i’j’¢) }0 (38)
P o a i ad .
Simplifying
(05, (,7.9)  05.(0,7.9) (o, (r9) |
B 2 o g
T, Ty T,
=i {SD (i)asf(g;f,sﬁ) W} 2{ (T.9),., asc(g;f,fzﬁ)w} (308)
a(2,DAT +a(2,2)A¢ =c(2) (39b)
where
L[ 05 (1.T.9)| 5. (1.T.8)| X | 85, (1,,T,9) 2
(2,1) sa(2,2)=>) 4| =~/ nd
¢ Zl{[ o 1., o |, )PP %) o e [
y os, (1.7, v os, (1T,
c(2)=Z{SO(z‘)¥ } Z{ (6.T.9),. SC(;; d }
i=1 74 i=1 g

The unknown AT and A¢ are solved from the algebraic equations (37b) and (39b).
Solving for A¢ and AT we get

@) _ @)
alLl) a(2,1)
a(l,2) _a(2,2)
al,l)  a(2,1)

Ag = (40)

and

_ @) a2)
AT_a(l,I) a(l,D) A Y
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An Example

A set of synthetic observation data generated using 7' = 0.015m° /min and storage
coefficient ¢ =0.3 are as given in Table 6. Predict the 7,¢ making an initial guess

7" =0.01m* /min and ¢ =0.2. The drawdown is measured in the large diameter well of

radius 1.725m. The pumping rate is Q = 0.225m” / min.

Table 6: Synthetic Drawdown Data

Time of observation | Observed Time of | Observed
(min) Drawdown(m) | observation | Drawdown(m)
(min)
2 4 .39E-02 30 5.12E-01
3 6.47E-02 35 5.81E-01
4 8.50E-02 40 6.47E-01
5 1.05E-01 45 7.10E-01
6 1.24E-01 50 7.70E-01
7 1.43E-01 60 8.85E-01
8 1.62E-01 70 9.92E-01
9 1.80E-01 80 1.09E+00
10 1.98E-01 90 1.19E+00
12 2.33E-01 100 1.28E+00
14 2.67E-01 120 1.44E+00
16 3.00E-01 140 1.59E+00
18 3.33E-01 160 1.73E+00
20 3.64E-01 180 1.86E+00
25 4.40E-01 200 1.98E+00

Table 7: Convergence of T" and ¢' with Successive Iteration

Iteration T ¢* AT Ag C(1) C(2)

no
1 0.01 02 0.002018 | 0.160276 | 0.00E+00 2.32E-09
2 0.012018 0.360276 0.002534 | -0.05646 | 0.00E+00 -6.99E-09
3 0.014552 0.303812 0.000435 | -0.00361 | 8.88E-16 3.81E-10
4 0.014987 0.300203 0.000012 | -0.00018 | 0.00E+00 -2.10E-11
5 0.014999 0.300024 0.000001 | -2.2E-05 | 1.73E-18 -2.50E-12
6 0.015 0.300002 0 -2E-06 | 0.00E+00 5.66E-13

Thus using synthetic drawdown data in a large-diameter well, we have checked that
Marquardt Algorithm successfully predicts the true transmissivity and storage coefficient starting
with an initial guess different from the true value.

Determination of Aquifer Parameters Applying Marquardt Algorithm to Observed
Drawdown in a Well during Pumping [the aquifer test is conducted in a large diameter well
(Baori)]

Location: in Jodhpur at Subhash Chowk; Pumping Rate, Q = 0.225 m’ [ min.

Radius of the Well = 1.725m
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Table 8 Observed drawdown

Time of observation | Observed Time of | Observed
(min) Drawdown(m) | observation | Drawdown(m)
(min)
2 4.00E-02 30 4.45E-01
3 5.50E-02 35 5.10E-01
4 7.00E-02 40 5.70E-01
5 8.50E-02 45 6.35E-01
6 1.00E-01 50 7.00E-01
7 1.15E-01 60 8.00E-01
8 1.30E-01 70 9.80E-01
9 1.45E-01 80 1.03E+00
10 1.60E-01 . 90 1.13E+00
12 1.90E-01 100 1.24E+00
14 2.25E-01 120 1.43E+00
16 2.45E-01 140 1.58E+00
18 2.75E-01 160 1.71E+00
20 3.00E-01 180 1.83E+00
25 4.00E-01 200 1.97E+00

Table 9 Transmissivity and Storage Coefficient as Obtained through Successive Iteration

Iteration no T ¢' AT Ag C(1) C(2)
1 0.024 0.01 -0.0518 | 0.117059 | 5.70E-06 3.44E-06
2 0.024 0.127059 -0.03277 | 0.418365 | -7.69E-06 -6.00E-07
3 0.024 0.127059 -0.03485 | 0.423725 | -7.69E-06 -6.00E-07
4 0.024 0.127059 -0.03485 | 0.423725 | -7.69E-06 -6.00E-07

Iterated Transmissivity, T=0.024 m’ / min =24.56 m* / day
Iterated Storage Coefficient,¢ = 0.127

25

—s+— Obsened drawdown

Drawdown (m)

‘ —— Simulated drawdown

—a— Difference between obsened and
simulated

0 . -
,L 20 80 100 120 140 160 180 200

Time (min)

Fig. 2 Observed and Simulated drawdowns for T =0.0347 m” / min =49.97 m” / day
and Storage Coefficient, @ = 0.046 with Marquardt Algorith

193

A




Training Course, NIH Roorkee (March 28 - April 08, 2011)

Table 10 Comparison of Observed Drawdowns with Simulated Drawdowns
for T=0.024 m* / min =24.56 m’ / day and Storage Coefficient,§ =0.127

Time(min) | Observed Simulated Time(min) | Observed Simulated
drawdown(m) | drawdown(m) drawdown(m) | drawdown(m)
2 0.04 0.0444 30 0.445 0.5196
3 0.055 0.0656 35 0.51 0.5884
4 0.07 0.0862 40 0.57 0.6539
5 0.085 0.1063 45 0.635 0.7164
6 0.1 0.126 50 0.7 0.7763
7 0.115 0.1453 60 0.8 0.8887
8 0.13 0.1643 70 0.98 0.9926
9 0.145 0.1829 80 1.03 1.0892
10 0.16 0.2012 90 1.13 1.1793
12 0.19 0.237 100 1.235 1.2638
14 0.225 0.2717 120 1.43 1.418
16 0.245 0.3054 140 1.58 1.5557
18 0.275 0.3383 160 1.71 1.6798
20 0.3 0.3703 180 1.83 1.7924
25 0.4 0.447 200 1.97 1.8952
Appendix 1

Discrete Kernel, §(rw, At, N)

Hantush(1964) has derived the well function for computation of drawdown in an
artesian aquifer due to pumping from a fully penetrating well of finite radius starting from the
basic solution given by Carslaw and Jaeger (1959) for an analogous heat conduction problem.
Let the unit step response function for piezometric rise at the well face of a fully penetrating

recharge well and a confined aquifer system be designated as U (rw,l AI). According to Hantush
(1964) it is given by:

1 |47
U(r,, Nat)=—|— Qj{l —exp(~7x")} f;(x)dx (1)
in which,
T =lt?;t =NAt;  fi(x)= Jl(x);/o(}zgx)_.](](fx}}ﬁ(x) : P =L o1 50, W
or, 22 (x)+ 12 (%) o

—Bessel functions of first kind of zero and first order respectively; Yo(x) Y:1(x)= Bessel functions
of second kind of zero and first order respectively; T= transmissivity (m’/day), and ¢=storativity
of the aquifer; r,, = radius of the well or shaft(m).

The integral in (1) is an improper integral as the upper limit of integration is infinite. The
improper integral is reduced to a proper integral as described below.
s8]

I= j[l = exp(~1x2 )]fl(x)dx
0
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l Q0

- [h-exn-o | e fi-exp-oc? )| e
0 1

=L+l

|

_ 2
[{1_6@{%14_+w }J PRLLI
1

1

s j[l - exp(—rxz)]f] (x)dx=0.5
0 -

2

Expanding the exponential term, and applying L’ Hospital’s rule, it can be shown that as
v tends to -1, the integrand tends to 0. The integral I, is a proper integral and can be evaluated
numerically using Gauss qudrature.

o 1
= f[l—exp(—zxz)]ﬁ(x)dx= j[l —exp(—t/v?) fl(l/v)d—;
! 0 v

_ ‘ ~ 47 2 . 4dy
0'5.![1 exp{(l+y>zHﬁ(1+y)a+y>2

Limit of the integrand at the lower is found as described below.

Asy— -1, [l—exp{ _4T2}]—>1
(L3t

W2 o2 )-doto-2 me-2)
4 2 4 Tl L LTl LT
L 1+ v)? 1 1+y {1 2:| +y2 - 2 +y2 -
P R (I ()
1+y 1+y 1+y

2 2 2 2
T2 o(p—)=Jo(p—= (-~
1(1+y) 0(01+y) o(PHy) 1(1+y)

5, 2, o0 B
I:Jl (1+y)+Y1 (1+y)}

2 2 2 2
Ji(- 5 y(p—— Jo(p-= Jn(—=
1(1+y) 0(P1+y) ) o(PHy) 1(1+y)

YERNTIEIN N RN )
[J] (1+y)+Y1 (1+y)} []1 (1+y)+Y] (l_'_y)}

As y—-1, Y](i) —0 ; hence,
1+y
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2 2
I olp-=
1(1+y) o(Pl+y)

[le(zmﬁz(z)}
1+y 1+y

2 2 (l1+y) .[2p =7
Ji(—— )Yo( p- o — -
](l+y)0(pl+y) Yo(p ) - Sm(1+y 4J
- 7] 2

J2 =) Bi——) A3 o f 2 3%

1+ I+y m 1+y 4
=1 (since p=1)
Similarly,
fo(P*' ) (—)
—1
{Jﬂ(-l ——)mz()}
+y 1+ y

Thus I, can be evaluated using Gauss qudrature.
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