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Rainfall-Runoff Modelling (March 11-15. 2013)

DEVELOPMENT RADIAL BASIS FUNCTION ARTIFICIAL
NEURAL NETWORK AND ITS APPLICATION
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Introduction

Radial basis function artificial neural network RBANN is very similar in
topology to the multi layer BPANN. Unlike, multi layer BPANN in which the
dimensionality of the data is reduced by projecting a large input space on to a smaller
number of hidden units and forcing the data through a bottle neck, the RBANN does
precisely the opposite. In RBANN network the function nodes replaces the hidden nodes
of BPANN. These function nodes do not implement the same multiply-and-add
(weighted summation) as the hidden nodes in a BPANN but computes a respective field
and the respective fields from individual function overlaps.

Artificial Neural Network (ANN) models are being widely used in many
hydrological applications in recent years by many researchers. However, the study of the
internal characteristics of radial basis type ANN model is very limited. The internal
characteristics are the data domain (length and statics), optimal ANN structure, suitable
learning rate and optimal number of iteration. An improper selection of these parameters
leads to error in model development. This lecture investigates the suitable selection of
optimal ANN structure, learning rates and optimum number of iteration required for
RBANN to model the rainfall-runoff process. The daily rainfall and runoft data of
Vamsadhara basin, Andhra Pradesh, were used to develop the model. The optimum
number of iteration was identified through appropriate selection of learning rates ALR
and ALRG values and the model for the rainfall-runoff process was developed. The
performance of the RBANN rainfall-runoff model was compared with back propagation
artificial neural network BPANN and support vector machines (SVM) model. It is has
been found that the ANN has potential for successful application to the problem of runoff
modelling. The back propagation artificial neural network BPANN model was best
among all.

Mathematical Modelling

A RBF network with input, function, and output layers of nodes respectively with
J, 1, and k are shown in figure 1. The structure of RBFANN shows jj-dimensional input
pattern (x) being mapped to kk-dimensional output (0). The values j and k arc problem
dependent, the value i is to be determined by the network designer.
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Figure 1: Structure and notations in a radial basis function ANN.

=1 to jj i=1

In RBANN operation input of o pattern with each pattern made up of jj variables
represents a point in the jj-dimensional input space. It enters the network at the input
layer such that one variable is fed into one node. The input layer does not transform the
pattern, but forward an image of variables to each node in the function layer. The nodes
in the function layer are each specified by a transfer function f(d), which radially
transforms the incoming information.

For n input patterns x having jj dimensionality (x"j). the response of O; of hidden
layer through radial transformation describe can be expressed in mathematical terms as;

0; = f(d)
where, O; is the output of function layer and f(d) a nonlincar function.

The non-linearity with in a radial basis function network can be chosen from a
few typical nonlinear functions as explained below;

(a) Thin plate spline function:
f(d)= d* log(d) : When, d= 0 then f(d) =0
d=> o then f(d) = «
(b) Gaussian function:
f(d)= exp—[d/c°];When, d= 0 then f(d)=1
d= o« then f{d) = 0
(¢) Multi quadric function:
f(d)= [d*+0c°]" ;When, d= 0thenf(d)=0
d= o then f(d) —> o=
(d) Inverse multi quadric function:
f(d)= [d*+06°]" ;When, d=> 0 thenf(d)= l/c
d=> oc then f{d) = 0

The most commonly used transfer function of the RBF network is radially
symmetric or Gaussian function shown in figure 2.

In above equation o is a measure of spread of data x; in cluster association also
called normalization factor. Typically five alternatives for estimation of & are considered
and the FORTRAN programme is developed for each cased for calculations.
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Figure 2: A view of Gaussian function.

CaseI:

It is commonly described as the average distance between the cluster center and
- - - y c
training instances (number of input variables) in that cluster.

1
2_ |1 . 32
Cj = —Z (ijij—(_j )
R |
where, wj; is receptive weight of interconnection and C; is respective center of variable.

Case II:
In this approach, the width value is calculated from the input data points itself. So
for all the iteration, the width value will be same.

&% = Z(xf _)_c)2

n

where, X is the mean of input data x, and n is the total number of input variables.

Case I11:

This approach consists in taking the widths equal to a constant for all Gaussian
functions for example, the widths are fixed as follows:
d

= max
NCYY:
where, M is the total number of ceniers and d,,, is the maximum distance between those
centers. Since, the maximum distance between centers reduces with increasing
optimization, the value of ¢ becomes low and finally the condition of math floating point

error is obtained during calculation.

CaseIV:

In this method, the width is calculated from the maximum and minimum
value of input data points. The width value will not get changed in further iteration. But
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the width value will change when the cluster will move from one hidden neuron to
another hidden neuron.
The standard deviation (i.e. width) of the " neuron is;

du

max

i+1

i
where, d_, is maximum distance between training data set.

Case V:

In this case, the spread value is fixed constantly. A hidden neuron is more
sensitive to data points near its center. For Gaussian RBF this sensitivity may be tuned by
adjusting the spread (o), where a larger spread implies less sensitivity and smaller spread
implies good sensitivity. In general, the value of spread 207 is taken as 1.

The Euclidean distance (d) between the set of inputs and respective center of
variable is given as,
dj= || x~C; |

An RBF is represented by a center (C) where the function value is highest and a
spread (o) that is indicative of the radial distance from the RBF center, within which the
function value is significantly different from zero. Of the several possible radial
functions, the most common choice is the Gaussian function. The Gaussian RBF center
of the i™ function node can be specified by mean C; and deviation o; also known as
measure of spread of the respective field of the function.

The performance of radial basis function network critically depends upon the
chosen center. A radial basis function network for exact interpolation would interpolate
every data point and the number of nodes in the function layer would be equal to the
number of input-output patterns resulting in large complex network. In order to reduce
the complexity of the network the centers of the variable are chosen as to be a subset of
the data set. The selection of center could be through an arbitrary selection from the data
points of the subset or the mean of data points of the subset or ordinary least square of
subset or orthogonal least square of subset. The center obtained through the mean of data

point of the subset can be given as,
1

W
Ci= =t
=1 1)
Each RBF center i then compute through a radially symmetric function usually
Gaussian, with the output a maximum value when the input patterns x; is near Euclidean
distance. The response O; of the function unit i is calculated by using equation;

O exp — [d*/267 ]

i

expf[{z |l x;—C; 117} 7 26¢]

O
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In case the center C; is considered as the value of respective weight the above
equation may be written as,

il
O = cxp—[{z HXj—W’ij ||2}/2012]

In leamning strategy, the weights between input and function layer are updated
using supervised or unsupervised training. In supervised training a standard gradient
descent procedure can be used. This involves the minimization of an objective function
with respect to the parameters C and o. However, such procedures are liable to be
trapped in local minimum of the parameter space. The other method is the orthogonal
least square technique. The procedure starts with the single basis function network. All
the input vectors are trained for the center, and one resulted the best performance is
retained. The number of basis function is increased incrementally in steps of one. A
search is conducted for the best center among the remaining input vectors. This procedure
can be repeated until a desired level of performance is achieved.

The other method is the clustering algorithm. Clustering technique attempts to
find centers for basis function in a manner that it reflects the distribution of input vectors
over the input space. This can be accomplished in unsupervised fashion using a variant of
nearest neighbor analysis or by the Kohonen self organizing feature maps. The Kohonen
self organizing feature maps are used for projecting patterns from high dimensional to
low dimensional space. At the beginning of training process, these weights are randomly
initialized. Present a set of input x; and compute the magnitude of Eucilidian distance for
each neuron i. Select the neuron having minimum distance. All connecting weights
adjacent to the winner node are adjusted by making a weight movement proportional to a
Mexican hat function.

The second derivative of Gaussian function (exp-(d%/2)) is f(d) =
(d”2 —1)*exp — (dif/2) as Mexican hat function as shown in figure 3.
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Figure 3: Training activity using Mexican hat function

The proportional movement related to the Mexican hat function may be explained
with the third derivative of the Gaussian function as shown in figure 4.

(- )d)= Aw, = (3d,” ~d,") *exp —(d,*12)
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Figure 4: Proportional movement using Mexican hat function

The function is reduced to zero to one range, so that the relative movement from
the function will be zero to one.

(- )d)= Aw, =( 12d1_i2 ~64d;") *exp ~(8d,")

The Mexican hat function has the effect in moving near neighbors close or no
movement while neurons slightly away moved closer and the neurons still further away
will have their weights moved away from the input space as shown in figure 3.

Based on the change in weight from the Mexican hat function, the move is
calculated.
move;; = (xj-wij)* Aw;i*a

The new updated weight for the next iteration,
wij (t) = wj; (t-1)+ move;;

Training of weights between the function and the output layer nodes are weighted
according to their strengths. The responses of the function layer neurons are summed up
according to theses output layer weights by the nodes in the output layer. Therefore,
optimization of weights between function and output layer and often de-coupled and
accomplished independently.

[earning in radial basis network can be divided into two stages. For any iteration,
first the learning is carried out in function layer that is followed by learning in output
layer. The learning in function layer is performed using unsupervised method, such as the
k-means clustering algorithm. While learning in the output layer uses supervised
methods. After the initial solution is obtained by this approach, a supervised learning
algorithm (back propagation) could be applied in both the layers to fine-tune the weights
of the network as an optional strategy.

Study Area and Data Used

The area selected for the study is the Vamsadhara river basin situated in between
well known Mahanadi and Godavari river basins of south India. The total caichment area
to the point where the river joins the Bay of Bengal, is 10830 km” and is situated within
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the geographical coordinates of 18°15° to 19°55" north latitudes and 83°20° to 84°20°
cast longitudes (Figure 5). However, the catchment upstream to the last gauging and
discharge measurement station of the river at Kashinagar, comprises of 7820 km? is
considered as the study area. The basin is narrow and highly undulated. A greater part of
the catchment falls on the left side of the river. The temperature variation in the plains of
basin is in between 10°C to 43°C and humidity during the monsoon is above 95 percent.
The daily rainfall data (mm) and runoff (m’/s) of the active period (June 1 to October 31)
for years 1984 to 1989 and 1992 to 1995 were available and collected by India
Meteorological Department (IMD) and Central Water Commission (CWC). The detailed
description about the study area and data used has been reported by Agarwal et al.,

(2005).
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Figure 5 Index map of Vamsadhara river basin showing hydrological details.

Model Development

In this study, the RBANN model is trained by both k-means clustering algorithm
and gradient descent algorithm by considering the best trained input to the network
consists of a combination of daily rainfall and discharge values. Considering different
inputs the following model is finalized using correlation matrix method and to maintain
the parsimony of the model.

Q: :f(Rx "Rt—l ’Ql-i ’Q:-Z 301-3)

where, Q, represents the runoff at time (t); R, represents rainfall at time (t).
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The daily rainfall, runoff data of monsoon period (June 1™ to October 21 ") for the years
1984-1989 and 1992-1995 were used for the development of rainfall-runoff models. In which,
the data from 1984 to 1987 were used for the calibration of the model where as the data
from1988-1989 and 1992-1995 were used for the cross validation and verification of the model
respectively. The best performance of model is obtained by choosing proper learning rate ALR
and ALRG and optimum number of iteration required.

Selection of ALR

The first step in development of RBANN model is to select the values for
learning rates as ALR, ALRG and optimum number of iteration. In literature, it has been
mentioned that learning rate ALRG as 0.5 for the gradient decent algorithm is good for
the proper convergence of the network (Agarwal A, 2002) and hence the learning rate in
output layer (ALRG) is fixed as constant value of 0.5 for all cases in the beginning. In
present case the learning rate (ALR) in function layer is varied from 0.5 to 15 with
keeping constant spread value of 1.0 and 500 iterations. The performance results for
network 5-4-1, 5-16-1 and 5-32-1 is presented in table 1.

Table 1: Performance of model for fixed ALRG as 0.5, fixed iterations as 500 spread 1.0
and for varying ALR as 0.5 to 15.

o Model performance in different period
Structure
ALR Calibration Cross Validation Verification
(1984-1987) (1988-1989) (1992-1995)
CC CE EV €CC CE EV CC CE EV
(%) (%) (%) (%) (%) (N) (%) (%) (%)
0.5 65.9 13.3 =262 75.5 -9.9 503 757 -2.7 -57.2
| -76.6 -32.3 282 748 -63.7 604 -462 -62.0 -71.0
2 85.8 70.9 39 84.8 66.2 -12.8 885 68.6 -17.4
5-4-1 5 86.0 72.9 43 84.6 68.6 -104 885 68.6 -17.4
10 86.2 69.0 26.6 84.1 69.7 7.8 87.5 71.8 -3.5
15 783 -1363.3 4294 739 -674.0 2362 747 -231.1 151.1
0.5 65.4 10.9 -31.0 754 <143  -535 757 -2.8 -57.3
1 -75.9 -39.0 498 -73.9 -794 2729 462 -62.0 -71.0
2 85.8 70.9 3.6 84.8 66.2 -13.1 88.5 68.6 -17.4
5-16-1 5 86.0 72.6 33 84.7 68.0 -11.6 88.5 68.6 -17.4
10 85.9 73.6 4.1 84.7 70.5 -9.0 87.5 71.9 -3.5
15 85.2 65.4 4.5 84.8 60.5 -16.1 74.8 -231.2 1512
0.5 66.0 13.7 255 756 9.3 499 758 2.3 -56.9
| -75.7 -41.2 -547 -73.6 -83.2 -75.7  -409 757 -82.2
2 85.8 70.9 32 84.8 66.1 -13.4  &8.6 67.9 -18.5
5-32-1 5 86.0 72.6 32 84.7 68.0 -11.8  88.6 67.9 -18.5
10 85.8 73.6 3.0 84.7 70.6 9.3 88.3 73.0 -14.2
15 85.3 066.2 4.5 34.8 61.3 -15.6  89.0 60.6 -23.5

It can be clearly seen that the performance of learning rate (ALR} is good for the
value of 2 to 10 and results reasonably good for correlation coefficient, coefficient of
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efficiency with minimum volumetric error for the network 5-4-1. The coefficient of
efficiency is consistently good for the ALR value of 10 in all calibration, verification and
cross validation periods giving the value of 73.6%, 70.5% and 71.9% for the network 5-
16-1. The performance of model is very poor for the value of ALR as 0.5, 1, and 15. In
network 5-32-1, the ALR wvalues higher or lower than 10 affecting the model
performance drastically and leads poor model convergence and results in the similar
response as the network 5-16-1. Finally, it suggests that the model performance is best
from the lower network (5-4-1) to higher network (5-32-1).

Selection of ALRG

The next step of the model development is identification of learning rate in output
layer (ALRG), which is initially taken as 0.5 referring the literature. To identify the
proper value of output layer leaning rate (ALRG), the function layer learning rate (ALR)
is fixed constant to a value of 10 as identified previously and the network is varied from
5-4-1 to 5-32-1 with varying ALRG. Initially the ALRG is fixed to a value of 0.5 and
that increased up to 10 for a fixed 500 iterations and spread as 1.0. The model
performance is analyzed and is presented in table 2.

Table 2: Performance of model for fixed ALR as 10, fixed iterations as 500 spread 1.0
and for varying ALRG as 0.5 to 15.

Network ALRG Model performance in different period

Structure Calibration Cross Validation Verification
(1984-1987) (1988-1989) (1992-1995)

CC CE EV CcC CE EV CC CE EV

() (%) (%) (%) (%) (%) (%) (%) (%)

0.5 86.2 69.1 267 842 698 7.8 87.5 719 -35

1 86.2 734 1.6 843 707 -26 878 718 -10.7

5-4-1 2 86.2 74.1 4.3 844 702 -76 879 713 -14.2

5 86.2 74.2 1.7 844 699 92 879 712 -15.2

10 86.2 74.2 1.3 843 699 94 879 713 -15.2

0.5 859 736 4.1 84.7 70.5 9.0 883 722 -14.6

1 85.8 736 0.6 8§47 699 -11.3 883 720 -16.1

5-16-1 2 85.7 729 53 847 67.8 -163 885 698 -20.3

5 855 69.7 -14.0 847 621 -243 888 4.1 -27.5

10 854 655 -192 846 554 -298 890 572 -33.2

0.5 85.8 73.6 3.0 847 706 -93 883 73.0 -14.2

1 858 735 0.3 8.7 699 -11.5 883 722 -16.1

5-32-1 2 85.6 727 -5.6 847 677 -16.6 885 698 -20.5

5 854 695 -142 847 62.0 -245 888 64.1 -27.6

10 853 653 -193 846 552 -300 890 572 -33.3

It can be seen that the performance of model 5-4-1 is good for ALRG varying
from 2 to 10 and the value of ALRG as 5 could be the best selection based on CC and CE
values (Table 2). The error in volume (EV) is not varying high. Other two values of
ALRG as 0.5 and 1.0 results in lower performance and calibration error of volume are
also high for these cases. For the network 5-16-1, based on the values of CC, CE and EV
the performance of the model is good for the ALRG value of 0.5 to 1.0. The model
performance is poor for the ALRG value as 1 to 10. The value of CC is almost constant.
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The value CE is decreasing with increasing ALRG and LV is increasing for all
calibration, cross validation and verification period. The performance of model for the
higher network (5-32-1) is better for the lower value of ALRG in comparison with higher
value of ALRG. For the value of ALRG as 0.5, the coeflicient of efficiency is good
during calibration, cross validation and verification as 73.6%, 70.6% and 73%. It can be
seen that the selection of ALRG as reported in literature as 0.5 is not suitable in present
case and is found varying with network selection. For a lower network 5-4-1, the value of
ALRG is 5.0. However, for network 5-16-1 to 5-32-1, the value of ALRG is equal to 0.5
as reported in literature.

Selection of iteration required

After fixing the value of ALR and ALRG, the performance of the model was
checked for the number of iteration which was taken initially as 500 fixed. The models
with suitable ALR and ALRG were developed for varying iteration from 100 to 1000 and
are reported in table 3. For the network (5-4-1) during the calibration period, the model
efficiency is increased from 73.0% to 74.2%. On the other hand the cross-validation and
verification efficiencies of the model getting reduced from 70.8 to 69.9% and 72.1 to
71.2%. This is due to the over learning of the system. Thus the performance of model is
good for a 100 iteration. For increased iteration 500 and beyond it, there is no significant
variation for 5-4-1 network and showing equal performance as obtained in 500 iteration.
Further in higher network (5-16-1) and (5-28-1), the model performance is optimized in
500 iteration and increase of iteration does not show any remarkable variation in model
efficiency (Table 3).

Table 3: Performance of model for fixed ALR as 10 spread 1.0, varying ALRG as 0.5 to
5 and for varying iterations as 100 to 1000.

Network - .
Structure Model performance in different period
ALRG Iter- Calibration Cross Validation Verification
ation (1984-1987) (1988-1989) (1992-1995)

CC CE EV CC CE EV CC CE EV

(%) (%) (%) (%) (%) (%) (%) (%) (%)

100 8.2 730 138 843 708 -07 877 721 92

5-4-1 5 500 862 742 1.7 844 699 92 879 712 -152
1000 862 742 1.5 844 699 -94 879 712 -153

100 855 628 90 848 579 -14.1 891 56.1 -239
5-16-1 0.5 500 859 736 4.1 847 705 -9.0 883 722 -14.6
1000 859 73.7 3.1 847 706 -92 533 728 -143

100 859 722 69 848 689 -95 886 69.1 -16.6
5-28-1 0.5 500 858 73.6 3.0 847 706 -93 883 730 -142
1000 8.8 73.6 29 847 706 -93 883 730 -14.2

Selection of spread

In literature, it has been suggested that the RBANN behaves better for the spread value
of 0 to 1 (Shahsavand and Ahmadpour, 2005). In this study, the initial selection of spread
value was 1.0. In order to finalize the spread value, the network 5-4-1, 5-16-1 and 5-28-1
were selected for fixed ALR as 10 and suitable ALRG as identified earlier for the
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structures. The range of spread value varied from 0.8 to 1.2 and the results obtained are
reported in table 4. Based on CC, CE, and EV values it can be very well assessed that the
performance of all three model is the best for spread value of 1.0. A spread value less
than or higher than 1.0, results in lower performance of the model in all calibration, cross
validation as well as verification period.

Table 4: Performance of model for fixed ALR as 10, varying ALRG as 0.5 to S, fixed

iterations as 500 and for the varying spread as 0.8 to 1.2.

;::“zfﬂz Model performance in different period
ALRG Spread Calibration Cross Validation Verification
(1984-1987) (1988-1989) (1992-1995)
CC CE EV ¢€C CE EV C€C CE EV
() (%) (%) (%) (%) (%) (%) (%) (%)
0.8 852 702 174 836 692 56 865 683 -33
5-4-1 5 1.0 862 742 1.7 844 0699 -92 879 712 -152
1.2 86.0 73.0 30 847 084 -112 B86.0 685 -18.0
0.8 86.1 727 69 846 686 -89 884 682 -16.5
5-16-1 0.5 1.0 859 736 41 847 705 9.0 883 722 -14.6
1.2 856 732 36 848 707 -92 885 736 -14.0
0.8 84.1 71.0 I 845 702 -93 88.0 71.6 -14.8
5-28-1 0.5 1.0 858 736 30 847 706 -93 883 73.0 -14.2
1.2 855 721 1.2 845 702 -92 886 71.8 -15.0

Selection of final RBANN models
Based on the finding, eight RBANN models with different network varying 5-4-1
to 5-32-1 are developed for fixed ALR as 10 spread 1.0 and varying ALRG as 0.5 to 5

and are reported in table 5.

Table 5: Performance of model for fixed ALR as 10, varying ALRG as 0.5 to 5, the
constant spread as 1.0 and for iteration 100 to 500

Medel performance in different period

l\::::]e' ;:;; Calibration Va(l;zi(;stsion Verification
Network ALRG (1984-1987) (1988-1989) (1992-1995)
Structure CC CE EV CC CE EV CC CE EV
(%) (B) (%) (%) (%) (%) (%) (%) (%)
RBNNS5- 5 100 862 730 138 843 708 -07 877 721 -92
4-1 '
RBNN 5- 4.5 200 86.2 742 39 844 70.1 -8.0 880 71.2 -
8-1 14.4
RBNN 5- 4 300 856 63.0 -95 846 520 - 88.8 424 -
12-1 25.7 35.6
RBNN 5- 2 500 857 729 -52 847 678 - 88.5 69.8 -
16-1 16.3 20.3
RBNN 5- 0.5 500 859 737 36 847 705 -9.0 883 724 -
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20-1 14.5
RBNN 5- 0.5 500 858 73.6 30 847 706 -93 8832 730 -
24-1 14.2
RBNN 5- 0.5 500 858 736 30 847 706 -93 8832 73.0 -
28-1 14.2
RBNN 5- 0.5 500 858 736 30 847 706 -93 8832 730 -
32-1 0.5 750 905 816 -1.9 863 73.7 -94 90.1 727 142
BPNN 5- 86.3 73.7 %903 727 -
10-1 175
SVM

From the network (5-4-1 to 5-8-1), there is a slight increase in performance during
calibration period but cross validation and verification results are biased. Further, the
function node is increased to 12 and the results show that there is a lesser performance
compared to previous network. From the network (5-16-1) to (5-32-1), the performance
of the model increased and producing suitably good results in calibration as well as in
cross validation and verification periods. In all network structure, during cross validation
and verification, a negative value of volumetric error shows the difference of data domain
of the system. From the whole observation, the network initially needs higher learning
rate (ALRG as 5) and lesser number of iteration when the numbers of function nodes
increased, it needs lesser learning rate (ALRG as 0.5) and higher iteration. Based on the
results it can be seen that the model performance is better for a lower network structure.
With increase in network structure, the performance of model is biased and indicates for
an over learning of system and that is supported by a higher efficiencies during model
calibration.

BPANN and SVM Models

Considering the methodology described in section 2.2 and 2.3, the models were
developed and available in literature (Agarwal A, 2002; Debasmita Misra et al., 2009) for
the same area using the same data utilized for the development of RBANN.

Conclusion

In this paper, the selection of suitable learning rates and optimum number of
iteration for training static RBANN has been proposed. Function layer needs higher
learning rate may be due to the k-means clustering algorithm performed in unsupervised
fashion and not depends on observed value to minimize the error function. Qutput layer
needs higher learning rate for the lower network and lower learning rate for the higher
network. In accordance with iteration, the lower network needs less number of iteration
and higher network needs more number of iteration. The simulation results suggest that
the selected learning rates and iteration provides fast and stable learning and modelling.
The RBANN models are compared to BPANN and SVM models available in literature
for the same area (Agarwal A, 2002; Debasmita Misra et al., 2009) presented in table 5.
‘A comparison of three methods suggests that BPANN and SVM models are superior te
RBANN. The best model is the BPANN considering the easiness of model.
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SOLVED EXAMPLE

The input patterns for a RBANN and respective weights are given tabular form.
Find out structure of RB and find first update of weights for first pattern, first
iteration of the process.

Input/Output variables as: Weight as:
In Out wii | Wi | wip | Wi Wi Wi | Wi
puts | puts Wy | .243 | .145].139 Wy |.469 | .444
Wo |.127 |.399 ] 212
Pattern 1 | 6 | 1 319 Wi |1 b
Pattern2 [4 [ 12 |5 |11 ;
Pattern3 |8 | 6 18 | 16 | Solution: For the normalization of Input and
Pattern4 | 6 | 1 2 |7 | Output for four numbers of patterns, the maximum and

minimum values are first estimated and by using these values the normalization of input
and output is done.

Max 8 12 18 16 o Out

w5 ! 2 / puts puts
Pattern1 | .75 | .08 | .17 | .56

Normalized values of input and output are as follows: Patten 2 | .50 | 1.0 | .28 | .69
Pattern 3 | 1.0 | 0.5 1.0 [ 1.0
Pattern 4 | .75 | .08 | .11 | .44
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Input Function Output
laver (j) layer (1) layer (k)
6 or.75
1 or.08 -_—
Input (x) Output (O)
3or.17
i=110]j i=lto ii k=1 to kk

Figure 6: Structure and notations and values in a radial basis function ANN
analysis.

In RBF ANN patterns are given one by one. Here the first pattern is given for
analysis and the analysis sequence is presented. The calculaticn for the first ease is

discussed here.

Case I: (i) Input layer to hidden layer calculation
A W
Ci= — ¢ =(.243 +.145+.139)/3=.527 /3 =.1756
i=1 JJ
Mx, - %)

(ROS1)? o’ =

H

612 = (0.75%0.243 - 0.1756)*2+ (0.08*0.145-0.1756)*2+ (0.17 *0.139

~0.1756) 2

= (0.00665)>  +(-0.164) >+ (-0.15197)
= 0.0000442225 + 0.026896 + 0.02309488
=0.050035/3  =0.016678

(EDy) d= Il x-C; |l

(EDy)) d,, = ABS (0.75 — .1756) = 0.5744

(ED)») d;» = ABS (0.08 — .1756) = 0.0956

(ED;3) dy2= ABS (0.17 — .1756) = 0.0056

SUM = (0.5744) * + (0.0956) > + (0.0056) °
= 3299 + 00914 +.00003 =.3391
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O, = sxpf[{i % —wy 112} /207]

=1
0 = exp- [dE/ZGz]
= exp- (20.34)
=0.000038
EDN,] = ABS (EDU - Wi_i)
EDN,; = ABS (.5744 - .243) = 3314
EDN;; = ABS (.0956 - .145) = .0494
EDN; = ABS (.0056 - .139) = .1334

Change in weight,

Aw, ={(12EDN,? —64EDN,’) *exp — (8EDN, )}/ 1.371
Awy={(12*0. 33147 -64*0. 3314°)*exp-(8*0. 3314%)}/1.371 = 0.4991
Aw 5= {(12%0. 04947 -64*0. 0494 *y*exp-(8*0. 0494%)}/1.371 =0.4185
Awiy= {(12%0. 13347 -64*0. 1334 )*exp-(8*0. 1334%)}/1.371=0.9166

move;; = (xj-w;;)* Awi*a
move;; = (.75-.243)* (0. 4991)*0.5= 0.1265
move;, = (.08-.145)* (0. 4185)* 0.5= -0.0136
move;z = (.17-.139)* (0. 9166)* 0.5=0.0142
New weights in the second iteration
wij(1) = wii(t-1)+ move;;
wi (1) = .243+.1265= 3695
wio(t) =.145-.0136=.1314
wia(t) =.139+.0142=.1532
(1) Hidden layer to output layer calculation
The output from the Gaussian function in hidden layer is as follows:
There are two neurons in the hidden layer
0, =0.000038
0,=.021868
wi=0.469
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wii=-0.444
weighted sum, S={(0.000038*0.469)+( 0.02868* -0.444)}
Oy =-0.01272
Finally, the output from the output layer
Oy = (1/1+exp(-S))

Ou= (1/1+exp(-(-0.01272))=0.4968
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