International Conference “Water, Environment, Energy and Society” (WEES-2009)
New Delhi, 12-16 January 2009

Regional Frequency Analysis of Rainfall in India under Climate
Change Scenarios

P. Satyanarayana and V.V. Srinivas'

Department of Civil Engineering, Indian Institute of Science
Bangalore - 560 012, INDIA
E-mail: 'vws@civil.iisc.ernet.in

ABSTRACT: Recently there is growth in scientific consensus that global climate is changing. In this scenario engineers are
devoting their efforts to explore plausible implications of the climate change on water which is one of the most vulnerable
resources of earth. In India, rainfall is the major source of water to river basins. Effective estimation of the magnitude and
frequency of rainfall is necessary for hydrologic designs. However, often the available at-site information on rainfall is
inadequate to arrive at reliable estimates. This necessitates the use of regional frequency analysis to pool adequate
information from several locations in the region that are similar in terms of their hydro-meteorological characteristics. A few
attempts have been made in the past three decades to identify homogeneous monsoon rainfall regions over India. However,
the regions were not effectively validated. In this study, it is shown that the homogeneous monsoon regions that are in use by
India Meteorological Department (IMD) are statistically heterogeneous. Subsequently, a novel regionalization procedure based
on hydro-meteorological input is presented to form homogeneous rainfall regions in India. Following this, plausible implication
of climate change on the delineated regions is assessed by using simulations from Canadian third Generation coupled General
Circulation model. Results indicate that the proposed approach to regionalization is efficient in delineating homogeneous

rainfall regions, and the future changes projected for the delineated homogeneous SMR regions are insignificant.

INTRODUCTION

Information pertaining to the amount and frequency of
precipitation is necessary for a wide range of hydrologic
applications that include planning of agriculture, design
and operation of irrigation projects, and investigating
frequency and spatial distribution of meteorological
droughts. Traditionally, at-site frequency analysis
methods were used to determine required rainfall
quantile estimates. However, these methods are not
suitable if target locations (sites) have inadequate data.
Practicing hydro-meteorologists overcome this impedi-
ment by pooling information at target site with that
from other locations depicting similar characteristics
of precipitation to arrive at reliable quantile estimates.
The procedure of identifying pooling group(s) or
region(s), consisting of sites having similar characteris-
tics, is known as regionalization. The frequency analysis
based on the pooled information is called regional
frequency analysis. Inherent in this analysis is the
assumption that frequency distributions of data at all
the sites in a pooling group are similar. Research has
shown that even for a moderately heterogeneous region,
quantile estimates based on regional frequency analysis
can be considered sufficiently accurate for practical
purposes (Hosking and Wallis, 1997).
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Over the past four decades hydro-meteorologists have
developed several approaches to regionalization of
precipitation, which include elementary linkage analysis
(e.g., Jackson, 1974; Sumner, 1983), spatial correlation
analysis (e.g., Gadgil er al., 1993), common factor
analysis (e.g., Birring, 1987), empirical orthogonal
function analysis (e.g., Bedi and Bindra, 1980; Kulkarni
et al., 1992), Principal Component Analysis (PCA)
(e.g., Singh and Singh, 1996; lyengar and Basak, 1994),
cluster analysis (e.g., Obregon and Nobre, 2006), and
PCA in association with cluster analysis (e.g., Guttman,
1993; Dinpashoh et al., 2004).

The traditional approaches to regionalization of
precipitation are based on statistics computed from the
observed precipitation, rather than attributes effecting
hydro-meteorology in a region. Therefore independent
validation of the delineated regions for homogeneity in
precipitation was not possible. Herein, to address this
issue, a new methodology is proposed for regionalization
of precipitation. Large scale atmospheric variables
effecting precipitation in a region and !ocation attributes
(latitude, longitude and altitude) are suggested for use
as features for regionalization of precipitation by
cluster analysis. This allows independent validation of
the delineated regions for homogeneity, by using
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statistics computed from the observed precipitation.
The effectiveness of the proposed methodology is
illustrated through application to Summer Monsoon
Rainfall (SMR) data of India for delineating homo-
geneous regions.

The study region is selected because the knowledge
of homogeneous rainfall regions is of great signi-
ficance in India owing to its agro-based economy. The
region receives significant amount of rainfall during
summer monsocn season (June to September). The
SMR regions that are currently in use by India
Meteorological Department (IMD) are based on
political boundaries, and are found to be statistically
heterogeneous. Therefore there is a need to delineate
new homogeneous SMR regions.

Furthermore, recently there is growth in interest on
understanding plausible implications of climate change
on spatial distribution of future rainfall. In this study,
implication of climate change on regions delineated
using proposed methodology was assessed using simu-
lations from T63 version of Canadian third generation
coupled General Circulation Model (CGCM3.1/T63).
The General Circulation Models are numerical models
representing physical processes in the atmosphere,
ocean, cryosphere and land surface which are considered
to depict earth's climate system. These models have
been evolving steadily over the past:few decades, and
are considered as the most advanced tools currently
available to simulate climatic conditions on earth several
decades into the future.

METHODOLOGY

This section describes the proposed methodology to
form homogeneous SMR regions in India. First, a brief
note is provided on the selection of attributes for
regionalization. Next, K-means clustering algorithm
used to form plausible homogeneous rainfall regions
based on the selected attributes is described. Following
this, cluster validity indices considered for determining
optimal number of clusters are presented. Subsequently,
heterogeneity measures that were used to test homo-
geneity of the delineated regions, and the procedure
adopted to adjust the regions are briefly described.
Then details pertaining to estimation of precipitation
quantiles are given. Finally, the procedure used to
assess implication of climate change on the delineated
regions is given.

Selection of Attributes

The selection of appropriate attributes is one of the
most important steps in regionalization of rainfall. In
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general, meteorological variables (e.g., specific humidity,

‘temperature, precipitable water, wind velocity and

wind direction) and location parameters (e.g., latitude,
longitude and elevation) which influence precipitation
in a region can be considered as attributes.

Fifteen large scale atmospheric variables that were
identified as predictors influencing precipitation in
India were chosen as attributes for regionalization. The
selected variables are air temperature at 4 pressure
levels (925, 700, 500 and 200 milli bar (mb)), geo-
potential height at 3 pressure levels (925, 500, and
200mb), specific humidity at 2 pressure levels (925
and 850 mb), zonal and meridional wind velocities at 2
pressure levels (925 and 200 mb), precipitable water
and surface pressure. The location attributes namely,
latitude, longitude and elevation were also considered as
attributes. Latitude and longitude were selected because
geographically nearby sites could have similarities in
precipitation events. Further, elevation is chosen as it
influences precipitation.

K-Means Algorithm for Regionalization of
Rainfall

The K-means algorithm (McQueen, 1967) is an iterative
procedure that is commonly used to identify clusters in
a given data set. Herein, the algorithm to arrive at
homogeneous rainfall regions is described.

Let Y={y,/i=1,...,N} denote a set of N feature
{i.e.,

Yi =[itseoos Vi Vin J€R" }, where y, is the value

vectors in #n-dimensional attribute space

of attribute j in " feature vectory, . Each feature vector
represents one of the N sites (rain gauges) in the study
region. It comprises of large scale atmospheric variables
influencing precipitation at a site (or their principal
components), and geographical location attributes.

Let x; denote the /" rescaled feature vector in the n-
dimensional attribute space {i.e., X; =[X;j,...,%;,...s
x;,]€ R" } obtained by rescaling y; using Eqn. (1),

_ (yy _yj)
8]

X forl<j<n .. ()
J

where x; denotes the rescaled value of Yijs Oy

]
represents the standard deviation of attribute j, and y;
is the mean value of attribute j over all the N feature
vectors. Rescaling the attributes is necessary because
of the differences in their variance and relative
magnitudes. If the attributes are not rescaled, those
having greater magnitude and variance influence the
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formation of clusters. Rescaling of principal components
may not be necessary if they are considered as attributes.

In the K-means algorithm the feature vectors move
from one cluster to another to minimize the objective
function, F, defined as,

_Ziz xU_x'J) - (@)

k=1 j=1 i=l
where K denotes the number of clusters; N, represents
the number of feature vectors in cluster ; xfj denotes
the rescaled value of attribute j in the feature vector i

assigned to cluster £; xf f is the mean value of attribute

Jj for cluster &, computed as,

Nk
3
X j =1— ... (3
ITTN, (3)
By minimizing F in Eqn. (2), the distance of each
feature vector from the center of the cluster to which it
belongs is minimized. We have the option to in-
corporate the knowledge about the global shape or size
of clusters by using an appropriate distance measure
d(-), such as Euclidean or Mahalanobis. Euclidean
distance measure is used in this study.

The steps in K-means algorithm to delineate clusters
for a given value of K are as follows:

1. Set ‘current iteration number’ 7 to 0 and maximum
number of iterations to /_max.

2 Initialize K cluster centers to random values in the
n-dimensional feature vector space.

3. Initialize the ‘current feature vector number’ i to 1.

4. Determine Euclidean distance of i-th feature vector

x; from centers of each of the K clusters, and assign

it to the cluster whose center is nearest to it.

5. If i <N increment i to i + 1 and go to step (4), else
continue with step (6).

6. Update the centroid of each cluster by computing
average of the feature vectors assigned to it. Then
compute F for the current iteration ¢ using Eqn. (2).
If t =0, increase £ to #+1 and go to step (3).

If t > 0 compute the difference in the values of F
for iterations # and /—1.Terminate the algorithm if
change in the value of F between two successive
iterations is insignificant, else continue with step (7).

7. If t <t max update 7 to #+1 and go to step (3), else

terminate the algorithm.

The optimal value attained by F depends on the
assumed number of clusters (K) and initialized values
of their centers. These a priori assumptions are

Water, Environment, Energy and Society (WEES-2009)

necessary, however they do not guarantee optimal
partition. In this study, for each value of K, cluster
centers were randomly initialized 25 times to arrive at
the optimal partition. Further to choose optimal number
of clusters, cluster validity indices were considered.

Cluster Validity Indices

Cluster validity indices are useful to identify compact
and well separated clusters (Halkidi et al., 2001). In
this study, three cluster validity indices, namely, Dunn’s
index (Dunn, 1973), Davies—Bouldin index (Davies and
Bouldin, 1979) and Calinski-Harabasz index (Calinski
and Harabasz, 1974) were used to determine optimal
partition provided by the K-means clustering algorithm.

Dunn’s Index (Vp)is computed as,

8(C,,C,
VD = min min (—) v (4)
l<i<K |1</j<K.j#i| max A(Ck)
1<k<K

where S(C,-,C j) denotes the distance between clusters

C; and C; (inter-cluster distance) computed using Eqn.
(5); A(Cy) represents the intra-cluster distance of
cluster C; defined by Eqn. (6). The value of K for

which Fp is maximized is taken as the optimal number
of clusters,

5(C;,C,)=

max
x;eCy.x jeC;

ACy) = maxc [d(xi,

X;.X

[ d(x,.x J)] .. (5)
x; ] ... (6)

where d(x;,x j)is the Euclidean distance between

rescaled feature vectors x; and x;.

Davies-Bouldin Index (V) is a function of the
ratio of the sum of within-cluster scatters to between-
cluster separation. The scatter within the k" cluster, Sky
is computed using Eqn. (7) and djy,, the Minkowski
distance of order A between the centroids that
characterize clusters C; and C; is defined by Eqn. (8),

/g
1
Ska = N, Z ”xr'_zk"|% .. (D
k x;eCy
. . 1/
i, =z —Zzlll =[Z xfj —xfj 1 ... (8)
J=

where z; represents the centroid of cluster k£ and Sy, is
the ¢" root of the g™ moment of the Euclidean distance
of feature vectors in cluster k£ with respect to its
centroid. First moment (i.e. ¢ = 1) and Minkowski
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distance of order 2 (i.e. A = 2) which are commonly
adopted by practitioners (e.g., Pakhira et al., 2004),
were used in the present study. The Davies-Bouldin
index is computed using Eqn. (9). A small value for
Vs indicates good partition, which corresponds to
compact clusters with their centers far apart,

K Sp o, +S
Vo =lz mae AL 4 .. (9)
K ik 1si<K k2l | dys

Calinski-Harabasz Index (Vo) of a  partition
G= {Cl,...,CK} comprising K clusters is computed as,
_ [trace B/(K - )|

ci = [trace W/(N - K)]

... (10)

where B is a matrix describing dispersion of cluster
centroids and W is a matrix representing within-cluster
dispersion. The traces of the matrices B and W can be
written as,

K
trace B=Y N, |z, =

k=1

K

> izl

k=1x;eCy

..(11)

trace W = ... (12)

where X is centroid of the entire set of feature vectors
{x;/i = 1,...,.N}. Maximum value of Vcy denotes
optimal partition.

L-Moment Based Regional Homogeneity Test

The homogeneity of delineated rainfall regions was
assessed using L-moment based heterogeneity measures
defined by Hosking and Wallis (1997). In a homo-
geneous region all the sites are supposed to have the
same population L-moment ratios. However, their sample
L-moment ratios [LMRs: coefficient of L-variation
(L-CV), L-skewness and L-kurtosis] may be different
due to sampling variability. The regional homogeneity
tests examine whether the between-site dispersion of
the sample LMRs for the group of sites under con-
sideration is larger than the dispersion expected in a
homogeneous region.

Suppose that the region to be tested for homo-
geneity has Ny sites, with site 7 having record length
of rainfall n, Further, let £, 1 and £, denote
L-CV, L-skewness and L-kurtosis of rainfall at site 7,
respectively. The regional average L-CV, L-skewness

and L-kurtosis of rainfall, represented by R, 1} and

tf respectively, are computed as,
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i=1

..(13)

N

R
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where, n; Zni denotes the weight applied to sample
i=1

LMRs at site i, which is proportional to the sites’

record length. The regional average mean llR is set to 1

by scaling monsoon rainfall totals at each site by its
mean.

Three Heterogeneity Measures (HMs) are considered:
(i) weighted standard deviation of the at-site sample
L-CVs (), (ii) weighted average distance from the site
to the group weighted mean in the two dimensional
space of L-CV and L-skewness (V73), (iii) weighted
average distance from the site to the group weighted
mean in the two dimensional space of L-skewness and
L-kurtosis (¥3),

N N 112 1
V:{f:n,-(t(f) —tR)z/ZR:ni}
i=1 i=l

anf . (14)

B [0 _ RV, ) _ Ry2)2
V=3 m i —F) + () )7
i=1

& () JR\2 ) Ry2\M?
Vy=3m @ -7+ -7
i=1

In these dispersion measures, distance of sample
LMRs for site i from the regional average LMRs is
weighted proportionally to the sites’ record length,
thus allowing greater variability of LMRs for sites
having small sample size in a region.

A large number of realizations (Nym = 500) of
rainfall were simulated for each of the regions from
kappa distribution fitted to regional average LMRs:

I y r§ and ;. Each realization constitutes a

homogeneous region, with Np sites having same
record length as their real-world counterparts. Further,
in each realization, the data simulated at any site in the
region is serially independent and the data simulated at
different sites in the region are not cross-correlated.
For each simulated realization, V, V, and V; are
computed. Let uy, gy, and uy; denote the mean and
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oy, oy, and oy ; the standard deviation of the Niim

values of ¥, ¥; and V; respectively. These statistics are
used to estimate the following three HMs,

(V—#V)

H,=>x__*rJ
Oy
_ (V2 _ﬂVz)

O'VZ

G'Vj

... (15)

H, ... (16)

H, e D

A region can be regarded as ‘acceptably homogeneous® if
HM < 1, “possibly homogeneous® if 1 < HM <2, and
‘definitely heterogeneous’ if HM > 2. The values of H,
and H; rarely exceed 2 even for grossly heterogeneous
regions and hence lack power to discriminate between
homogeneous and heterogeneous regions. Consequently,
H, is considered to be superior to H, and Hy (Hosking
and Wallis, 1997).

Adjusting the Regions

The regions are adjusted to improve their homogeneity
following the options suggested by Hosking and
Wallis (1997), which include: (i) eliminating (or
deleting) one or more sites from the data set; (ii)
transferring one or more discordant sites from a region
to other regions; (iii) dividing a region to form two or
more new regions; (iv) allowing a site to be shared by
two or more regions; (v) dissolving regions by
transferring their sites to other regions; (vi) merging a
region with another or others; (vii) merging two or
more regions and redefining groups; (viii) obtaining
more data and redefining regions. Among these, the
first three options are useful in reducing the values of
heterogeneity measures of a region, whereas the
options (iv) to (vii) help in ensuring that each region is
sufficiently large in terms of collective data length at
all the sites in it.

The sites that are grossly discordant with respect to
other sites in a region are identified using the discordancy
measure of Hosking and Wallis (1997) given by Eqn.

(18). The critical value of D; for a region depends on
its size,

D, :gNR(u, ~u)"S7(u, - ) .. (18)

@ @ H]7T. .
where u; :[t By } Is a vector containing the ¢,

13, and ¢, values for site i in the region, the superscript
T denotes transpose, u is the unweighted group average
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of the L-moment ratios computed using Eqn. (19) and
§ is a covariance matrix computed using Eqn. (20),

e ... (19)

NR
S=> (w,—u)u, —u)" ... (20)

i=1
In this study, to adjust a region, firstly the sites that are
flagged discordant by the discordancy measure were
identified. Secondly, the heterogeneity measures (H,,
H, and Hj) of the region to be adjusted were examined
as they changed with exclusion of each site from the
region. In this context, one site is eliminated at a time
with replacement. Thirdly, the discordant site, whose
exclusion reduces the heterogeneity measures of a
region by a significant amount, was identified and
removed from the region after ensuring that the site
discordancy is high. This procedure is followed in Rao
and Srinivas (2008) and Srinivas et al. (2008).

Estimation of Precipitation Quantiles

Precipitation quantile at site i for T-year recurrence
interval was estimated by index flood method
(Dalrymple, 1960) as,

BRT)=P pR(1) i=1,..,N .. (2D
where P, is the sample mean of the SMR at site 7 in

region k; and ﬁf (T) is the growth curve ordinate of
region k for T-year recurrence interval.

Assessment of Implication of Climate Change
on Delineated Regions

Plausible implications of climate change on the
delineated regions was assessed by using simulations
from CGCM3.1/T63 for the period 2001-2030 for four
scenarios namely A1B, A2, Bl and COMMIT. For this
purpose, feature vectors were prepared using location
attributes and the climate data extracted from CGCM3.1/
T63 and clusters were formed using K-means algorithm.
Further details of this analysis are provided in the
following section.

CASE STUDY
Description of the Study Region

The study region India lies between 8°4' and 37°6'
north latitude and 68°7" and 97°25' east longitude, and
has an area of 32,87,263 km® The climate of the
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region can be classified into four seasons: winter
(January and February), summer (March to May),
summer monsoon (June to September), and post-
monsoon (October to December). The region receives
more than 80% of the annual rainfall during summer
monsoon. Heavy rainfall is confined largely to the
Western Ghats and the northeastern parts of the
country. The central region and Gangetic plain receive
moderate rainfall, while the northwestern part of the
country receives low rainfall towards the end of
monsoon season (Sharma et al., 2003). Parthasarathy
et al. (1993) found no systematic trend in the all India
rainfall in a study covering the period 1871-1990.
However, they reported noting large interannual and
decadal variations.

Data Used

For the study high resolution gridded daily rainfall
data for the period 1951-2004 procured from IMD
(Rajeevan et al., 2005, 2006) were considered. Further,
gridded reanalysis data of the monthly mean atmos-
pheric variables for the study region were extracted
from the database of National Centers for Environ-
mental Prediction (NCEP) and National Center for
Atmospheric Research (NCAR) (Kalnay et al., 1996),
for the period 1951 to 2004 from the web site http://
www.cde.noaa.gov. The reanalysis data is prepared
based on historical (past) data assimilated from 1948
to the present. The spatial domain of the extracted data
ranges from 47.5° N to 0° latitude, and 57.5° Eto110°
E longitude at a spatial resolution of 2.5°.

Average elevation of terrain in each of the NCEP
grid boxes was computed from Shuttle Radar
Topography Mission (SRTM) data processed by
Consortium for Spatial Information of the Consultative
Group for Intemnational Agricultural Research (CGIAR-
CSI), available at the web site http://srtm.csi.cgiar.org.

The climate data simulated by CGCM3.1/T63 were
collated at monthly time scale for the period January
2001 to December 2030 for four scenarios namely
A1B, A2, Bl and COMMIT. These scenarios are
prescribed in the fourth Assessment Report (AR4) of
Intergovernmental Panel on Climate Change (IPCC).
They are widely known as SRES scenarios, indicating
Emission Scenarios (ES) prescribed in Special Report
(SR) of IPCC. The CGCM3.1/T63 has a surface grid
whose spatial resolution is roughly 2.81 degrees along
both latitude and longitude, and 31 levels in the
vertical. The spatial domain of the extracted data
ranges from 46.04° N to 1.41° N latitude, and 53.44° E
to 106.88° E longitude.

RESULTS AND DISCUSSION

The IMD currently uses five homogeneous SMR
regions. The statistical homogeneity of each of these
regions were tested with SMR data at all the 1° x 1°
grid points in it using L-moment based homogeneity
test. The location of grid points in the regions is shown
in Figure 1(a). The values of heterogeneity measures
computed for the regions are presented in Table 1,
which indicate that all the regions are statistically
heterogeneous. In particular, the heterogeneity statistics
for Peninsular, West central and Northwest regions are
found to be very high. Herein, a region is declared as
homogeneous or heterogeneous based on H; index
because it has much better discriminatory power than
H, and H; (Hosking and Wallis, 1997, p. 68).

The IMD regions were adjusted to improve their
homogeneity following the procedure described earlier.
The results of this analysis presented in Table 2 and
Figure 1(b) show that excessive number of sites (grid
points) had to be eliminated from the regions to make
them acceptably homogenous. This indicates that the
IMD regions are not useful as the precursors to derive
homogeneous SMR regions, and new regions need to
be formed.

To delineate new homogeneous SMR regions in the
study area, 52 out of 60 NCEP grid boxes covering
India were considered. The discarded eight grid boxes
are in Himalayan mountainous region, and are shown
as crossed boxes in Figure 2. They were not
considered for the analysis because the density of rain
gauges in the Himalayan region is very low (Rajeevan
et al., 2005, 2006), and some of the pressure levels
considered in this study (e.g., 925 mb) are not defined
for several locations in the region.

The spatial domain of 15 atmospheric variables
(mentioned in the subsection “Selection of Attributes”),
which influence precipitation in each NCEP grid box,
was chosen as 16 NCEP grid points surrounding it. For
example, Figure 2 shows spatial domain of the
predictor variables for the hashed NCEP grid box
enclosed by points 6, 7, 11 and 10.

At each of the sixteen NCEP grid points, the mean
monthly values of each of the fifteen atmospheric
variables were computed for each of the four summer
monsoon months (June-September). Thus 960 values
(16 grid points x 15 variables x 4 months) were
obtained for each of the 52 NCEP grid boxes.
Subsequently, from the 960 values, five principal
components (PCs) that preserve more than 97% of the
variance and the corresponding principal directions
(PDs) were extracted. The standardized location
attributes (latitude, longitude, and average elevation of
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Fig. 1: Location of 1° x 1° grid points in Summer Monsoon Rainfall (SMR) regions that are considered homogeneous by
IMD are shown in (a). Homogeneous regions formed by adjusting the SMR regions are shown in (b)

Table 1: Characteristics of the IMD Summer Monsoon Rainfall Regions Determined Using

Heterogeneity Measures Given in Eqns. (15) to (17)
SI. No. Region Name Numgz;”:;; Ghd Hi H> Hs Region Type
1. Peninsular 49 23.28 5.93 0.26 Definitely Heterogeneous
2, West Central 86 10.89 0.64 -1.33 Definitely Heterogeneous
3. Northwest 69 20.96 5.87 -1.08 Definitely Heterogeneous
4, Central northeast 59 4.32 -0.73 | -1.90 Definitely Heterogeneous
5. Northeast 36 4.44 -0.91 1.06 Definitely Heterogeneous

Table 2: Characteristics of the Homogeneous Regions Formed by Adjusting the IMD Summer Monsoon Rainfall Regions

SI.No. | Region Name | Number of Grid m Hetemgene,:,t: Hossures ™ Pgﬂbgz};?nea?gd
1. Peninsular 27 0.75 -0.34 1.35 22
2; West Central 62 0.80 -1.17 -2.03 24
3. Northwest 40 0.84 -0.86 -1.90 29
4, Central northeast 45 0.74 -0.86 -1.47 14
5. Northeast 32 0.45 -1.30 -1.06 04

the terrain in each of the NCEP grid boxes) and PCs

Davies-Bouldin and Calinski-Harabasz indices suggested
were considered as attributes to form 52 feature

K = 20 as optimal partition, whereas Dunn’s index

vectors for K-means cluster analysis.

As the exact number of regions is not known
a priori, the K-Means algorithm was executed by
varying the number of clusters from 2 to 25. The
resulting clusters were plotted on India map for visual
interpretation. Further, cluster validity indices were
computed to determine optimal number of clusters,

suggested K = 22 as optimal partition. The difference
in the value of Dunn’s index for K = 20 and K = 22
was found to be insignificant. Consequently, the
clusters obtained for X = 20 were selected as optimal
partition. Figure 3 shows the location of these clusters
on India map. The statistical homogeneity of each of
these clusters (plausible homogeneous rainfall regions)
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was tested using SMR data at 1° x 1° grid points. The
values of L-moment based heterogeneity measures
computed for each of the clusters are shown in Table
3. It can be seen from the Table that clusters 13 and 17
are acceptably homogeneous, clusters 4, 9 and 14 are
possibly homogeneous, whereas the remaining clusters
are heterogeneous. Herein it is worth mentioning that
the values of heterogeneity measures for several of the
delineated clusters are significantly less than that of
IMD SMR regions (See Tables 1 and 3).

® NCEP grid point[ | NCEP grid boX mmmmm Outiine of India
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Fig. 2: NCEP grid boxes covering India. The uncrossed
boxes were considered for regionalization of summer
monsoon rainfall. Atmospheric variables influencing
rainfall in the hashed box were considered at 16 NCEP
grid points shown as black dots surrounding the box.

The heterogeneous clusters were adjusted to
improve their homogeneity following the procedure
described earlier. Finally 21 regions were obtained.
The adjustment of clusters is necessary because the set
of attributes considered for cluster analysis is not
exhaustive (i.e. the attributes do not comprise the
entire set of causal variables which effect rainfall in
the study region). In practice, the current state of
knowledge and paucity of data are some of the factors
that make it impossible to collate information on
exhaustive set of attributes to perform regionalization.
Nevertheless, the adjustments should not be substantial
if the attributes used for cluster analysis include a
reasonable number of causal variables effecting rainfall
and if a good approach is used for clustering the data.
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Fig. 3: Clusters in optimal partition obtained using
K-means algorithm

Table 3: Characteristics of the Clusters in Optimal
Partition Obtained Using K-means Algorithm

Cluster Cluster Size Heterogeneity Measures
Number | (in number of IMD
grid points) Hi H Hs

1. 15 10.06 3.14 0.80
2. 22 13.36 4.41 1.03
3 26 450 | -0.08 | -0.84
4, 15 130 | 117 | -2.16
5. 18 4.89 023 | -1.23
6. 21 7.13 051 | -1.38
7. ] 24 474 | -1.19 | -1.92
8. 39 223 | -1.02 | -1.34
9. 29 173 | =239 | -2.87
10. 9 447 | -0.80 | -1.31
1. 14 6.04 3.16 0.53
12 18 8.04 213 | -0.48
13. 21 =053 | -1.39 | -1.28
14. 26 162 | —1.26 | -1.46
15. 11 246 | -0.05 | -1.06
16. 15 9.32 2.31 0.35
17. 6 043 | -1.85 | -1.55
18. 4 2.45 0.86 | -0.14
19. 9 427 0.36 | -1.07
20. 9 8.51 6.18 4.55

The adjusted regions are shown in Figure 4 and their
characteristics are presented in Table 4. The results show
that each of the 21 regions are either acceptably homo-
geneous or possibly homogeneous. Overall, 8 out of
the 297 IMD grid points considered for regionalization
were unallocated, as they were eliminated from different
regions to improve statistical homogeneity.
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Table 4: Characteristics of the Regions Formed by
Adjusting Clusters Obtained Using K-means Algorithm

£ Heterogeneity Measures
ri .
& 2=:: Points Hy H> Hs Region Type
Possibly
1. 14 1.32 | 0.38 |-0.18 Homogeneous
Acceptably
2. 14 045 | 222 | 1.69 Homogeneous
Possibly
3. 23 1.94 (-0.70 |-1.05 Homogeneols
4. 21 0.65 |-1.21 |-1.87 ﬁcce"tably
omogeneous
5. 13 154 |-0.82 |-2.00 |50V
omogeneous
6. 14 0.96 |—0.54 |—0.71 |AAcceptably
Homogeneous
i 5 Acceptably
T 22 0.58 |-2.11 2.70 Homogeneous
8. 36 0.79 |-1.08 |-1.36 ﬁcceptab'y
0mogeneous s
F Possibly
9. 30 1.82 |-2.58 |-2.87 Homcgenesus
10. 7 0.26 |-0.91 |-0.79 |Acceptably
Homogeneous
Possibly
11. 16 1.55 |-1.49 |-2.44 Homogeneous
12. 10 |-0.09 |-1.52 |-2.01 ﬁcceptab'y
omogeneous
13. 21 —0.53 |-1.39 |—1.28 |fAcceptably
Homogeneous
14, 26 1.62 |-1.26 |-1.46 Ec’ss'b'y
omogeneous
_ Acceptably
15. 16 0.89 | 0.25 |-0.36 Homogeneous
16. 11 184 | 091 | 0.16 |Possibly
Homogeneous
17. 7 —0.43 |-1.85 |—1.55 |fAcceptably
Homogeneous
Acceptably
18. 8 0.51 | 0.04 |-0.06 Homogeneous
1. 7 0.91 | 2.00 | 2.21 [Acceptably
Homogeneous
Possibly
20. 8 1.07 |-0.19 |-0.45 Homogeneous
Acceptably
21. 4 0.24 (-1.06 |-1.62 Homogeneous

The L-moment based regional GOF test (Hosking
and Wallis, 1997) was used to identify distributions
that are suitable to fit rainfall data in each region.
Among the distributions accepted at 90% confidence
level for each region, the distribution for which the
GOF measure is sufficiently close to zero was selected
for estimation of regional rainfall quantiles using index-
method (Dalrymple, 1960). The growth curve ordinates
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computed for each of the 21 homogeneous SMR
regions delineated in this study are shown in Table 5.
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Fig. 4: Homogeneous rainfall regions obtained by
adjusting the clusters shown in Figure 3

The foregoing results suggest that the proposed
approach to regionalization is efficient in forming homo-
geneous rainfall regions. Rainfall quantiles estimated
for the newly formed SMR regions can be considered
as more reliable than those estimated for SMR regions
currently in use by IMD.

Plausible implication of climate change on the regions
delineated using the proposed approach was assessed
by using simulations from CGCM3.1/T63 for the period
2001-2030 for four scenarios namely A1B, A2, B1 and
COMMIT. For each of the scenarios, the CGCM3.1/T63
data on fifteen atmospheric variables {mentioned in the
subsection “Selection of Aftributes™), were re-gridded
from 2.81 degree resolution to the NCEP/NCAR grid
resolution (2.5 degree) using Grid Analysis and Display
System (GrADS; Doty and Kinter, 1993). The spatial
domain of the re-gridded CGCM3.1/T63 data influencing
future precipitation in any NCEP grid box was
considered as 16 NCEP grid points surrounding it, as
described earlier. At each of the grid points, the mean
monthly values of each of the fifteen re-gridded
CGCM3.1/T63 variables were computed for each of
the four summer monsoon months (June—September).
Thus 960 values (16 grid points x 15 variables x 4
months) were obtained for each of the 52 NCEP grid
boxes considered for regionalization. Subsequently,
five PCs were extracted from the 960 values along the
PDs obtained from NCEP data. The standardized
location attributes (latitude, longitude, and average
elevation of the terrain in each of the NCEP grid boxes)
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Table 5: Growth Curve Ordinates for New Homogeneous SMR Regions Formed Over India. R Denotes Region
Number, Z Represents Goodness-Of-Fit (GOF) Statistic. A Distribution is not Rejected by the GOF Test at 90%
Confidence Level if |Z] < 1.64. GLO: Generalized Logistic; GEV: Generalized Extreme Value; GPA: Generalized Pareto;
GNO: Generalized Normal (also known as three-parameter log-normal, LN3); PE3: Pearson Type 3

R 7 Distribution Nonexceedence Probability
0.50 0.80 0.90 0.98 0.99 0.998 0.999
1, 0.16 GNO 0.344 1.364 1.644 2.241 2.489 3.062 3.310
2. -0.86 GEV 0.359 1.354 1.639 2.266 2.530 3.137 3.396
3. -0.28 GNO 0.479 1.287 1.494 1.922 2.095 2.487 2.654
4. -0.42 GNO 0.490 1.279 1.475 1.873 2.032 2.388 2.538
5. 1.24 GLO 0.598 1.193 1.322 1.610 1.738 2.052 2.196
6. -0.44 GEV 0.354 1.357 1.627 2.193 2.420 2.922 3.128
7. 1.17 GLO 0.542 1.224 1.402 1.843 2.057 2.636 2.925
8. - WAKEBY 0.546 1.216 1.382 1.723 1.853 2121 2223
9. 0.35 GLO 0.628 1.181 1.315 1.635 1.785 2174 2.363
10. -0.94 GLO 0.640 1.175 1.311 1.640 1.798 2.216 2.423
1. 0.41 GEV 0.212 1.434 1.796 2611 2.963 3.790 4.153
12. -0.02 GNO 0.472 1.285 1.469 1.828 1.967 2.268 2.392
13. -0.24 GLO 0.547 1.221 1.400 1.846 2.064 2.658 2.957
14. 0.06 GLO 0.657 1.167 1.298 1.619 1.775 2.188 2.394
15. 0.41 GNO 0.281 1.399 1.709 2.370 2.645 3.283 3.560
16. -1.00 GNO 0.490 1.278 1.466 1.843 1.992 2.320 2.457
17. -0.59 GLO 0.540 1.224 1.389 1.781 1.965 2.441 2.671
18. -0.30 GNO 0.497 1.272 1.450 1.799 1.935 2232 2.354
19. 0.17 GLO 0.416 1.284 1.490 1.977 2.203 2.785 3.063
20. 0.71 GLO 0.623 1.184 1.323 1.656 1.814 2.229 2431
21. 0.51 GPO 0.094 1.584 2.242 3.760 4.409 5.905 6.545

Note: Wakeby is selected if none of the other distributions considered for GOF test are accepted. 'Z' is not given for Wakeby distribution

Table 6: Optimum Number of Clusters Suggested by
Validity Indices for Different Climate Change Scenarios.
The Selected Optimal Number of Clusters is shown in
Bold Font

g BOUIJ'){;;:ISI’-!G'GX I?gggxs Haracgg’sfl;:dex
COMMIT 22 22 22
A1B 25 21 21
A2 25 22 22
B1 25 24 24
and PCs obtained using regridded data were

considered as attributes to form 52 feature vectors for
K-means cluster analysis. Table 6 shows optimal
number of clusters determined for each of the
scenarios using the three cluster validity indices, and
Figure 5 shows the location of the same on India map.

Comparison of Figures 4 and 5 indicate that the future
changes projected for the homogeneous SMR regions
are insignificant.

SUMMARY AND CONCLUDING REMARKS

The traditional approaches to regionalization of pre-
cipitation are based on statistics computed from the
observed precipitation, rather than attributes effecting
hydro-meteorology in a region. Therefore independent
validation of the delineated regions for homogeneity in
precipitation is not possible. To circumvent this it is
proposed to form regions using large scale atmospheric
variables and location attributes, so that independent
validation of regions is possible with precipitation
data. The effectiveness of the proposed approach is
demonstrated through application to SMR data of India
for delineating homogeneous regions.
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The SMR regions that are in use by IMD were
found to be statistically heterogeneous. Subsequently,
the regions were adjusted to improve their homo-
geneity. The number of sites that had to be eliminated
from the regions for improving their statistical homo-
geneity was found to be excessive, indicating that the
IMD SMR regions are not useful as precursors to derive
homogeneous SMR regions. Following this, new SMR
regions were delineated using the proposed methodology.

Large scale atmospheric variables influencing
precipitation in the study region were identified. Feature

Water, Environment, Energy and Society (WEES-2009)

vectors prepared using standardized location attributes
and principal components extracted from the selected
atmospheric variables were clustered using K-means
algorithm to arrive at clusters (plausible homogeneous
regions). The optimal number of clusters in the data
was identified as 20 using cluster validity indices.
These clusters were subsequently adjusted to arrive at
21 acceptably/possibly homogeneous SMR regions.
The results suggested that the proposed approach to
regionalization is efficient in forming homogeneous
rainfall regions.
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Fig. 5: Plausible homogeneous SMR regions projected using CGCM3.1/T63 data for the period 2001-2030
for four scenarios namely A1B, A2, B1 and COMMIT

Plausible implication of climate change on the
regions delineated using the proposed methodology
was assessed by using simulations from CGCM3.1/T63
for the period 2001-2030 for four scenarios namely
A1B, A2, Bl and COMMIT. The future changes
projected for the homogeneous SMR regions are found
to be insignificant.
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