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ABSTRACT: Solution of transport equation by conventional numerical methods such as finite difference and finite element
analysis exhibit either excessive diffusion and/or oscillations near the concentration front. This is due to the presence of
advection term in the solute transport equation. In the present work, a computationally simple, numerical algorithm is
developed to solve the solute transport equation in groundwater. The governing equation is solved using finite differences
employing the modified Picard iteration scheme to determine the temporal derivative of the solute concentration. The total
solute concentration is expanded in a Taylor series with respect to the solution concentration to linearize the transport
equation, which then solved with conventional finite difference method. The algorithm avoids mass-balance errors and is
numerically stable. The numerical solution is compared with analytical solution. The model is further being used for virus

transport in ground water.

INTRODUCTION

Management of a ground water system involves
assuring quality and quantity of water being provided
for different purposes. It is necessary to develop the
appropriate ground water quality management plan
with proper understanding of physical phenomena of
contaminants movement. Pollution cf ground water
occurs due to mixing of physical, chemical and
bacteriological contaminants from different sources. It
is viruses in drinking water that are an important
source of human enteric diseases. Viruses from sewage
sludges, septic tanks and other sources can transport
with ground water to drinking water wells. So it is
required to find out the source of pollutants which
pollute the aquifers and take appropriate measures to
prevent pollution.

Mathematical modeling has been used as an
effective tool to evaluate the fate of contaminants in
ground water. Many studies have been conducted both
in the laboratory and field to investigate sorption,
inactivation and transport of various viruses in different
porous media. Udoyara and Mostaghimi (1991) have
developed a numerical model, VIROTRANS, for
simulating the vertical movement of water and virus
through soils treated with waste-water effluents and
sewage sludge. Yates and Ouyang (1992) have
developed a model that can be used to predict virus
movement from a contamination source through un-
saturated soil to groundwater. Sim and Chrysikopoulos
(1996) introduced a model for one dimensional virus
transport in homogeneous, saturated porous media

accounting for virus sorption and inactivation with
time dependent rate coefficients. Runkel (1996) solved
the analytical solution of the advection-dispersion
equation for continuous load of both finite and infinite
durations. Jin ef al. (2000) has done the column flow
experiment in both saturated and unsaturated condition
and found that the difference in virus removal and
transport behavior between saturated and unsaturated
condition was likely caused by additional sorption at
solid surfaces and the presence of air water interface in
the unsaturated system. Jin ef al. (2003) iuvestigated
the effect of soil properties on saturated and
unsaturated virus transport through columns by
laboratory experiment. The main difficulty in
obtaining accurate solutions of the solute transport
equation is the presence of advective term which
introduces artificial diffusion in the conventional
numerical scheme. The objective of this study is to
develop a simple and accurate numerical model for the
analysis of virus transport through unsaturated soil.
The governing equation is solved using finite
differences employing the modified Picard iteration
scheme to determine the temporal derivative of the
virus concentration. The total concentration is expanded
in a Taylor series with respect to the solution con-
centration to linearize the transport equation, which
then is solved with a conventional finite difference
method. The algorithm avoids mass-balance errors and
is numerically stable. The accuracy of the model
prediction is tested by comparing the model prediction
with the analytical solution.
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GOVERNING EQUATIONS

The mass conservation equations for the simultaneous
transport of water and suspended virus particles
through variably saturated media under transient flow
condition can be written as,
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Where A = Pressure head; 8 = volumetric moisture
content; Ky = hydraulic conductivity; d4/0z = hydraulic
gradient; ¢ = mass per unit volume of the virus species
residing in the liquid (suspended phase); p = soil bulk
density; s = mass of adsorbed constituents of the virus
species per unit mass of adsorbent; D = hydrodynamic
dispersion coefficient; g = Darcian flux density; A and
A, = first order decay coefficient in liquid phase and
solid phase respectively; ¢ = time; z = vertical
coordinate taken positive upwards.

The dispersion term D, in equation (2) represents
the combined effects of molecular diffusion and
mechanical dispersion,
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Where D,, = molecular diffusion coefficient; V =

interstitial pore water velocity; and a = dispersivity of
the medium which varies according to the scale of
experiment (0.01 < a < 1.0 ecm for laboratory
experiments and 10 < o < 100 m for field experiments)
and depends on the heterogeneity of the medium.

The solution of equation (2) requires expressions for
the distribution of viruses between the adsorbed and
liquid (suspended) phases and the inactivation rate of
viruses in the soil.

Virus Adsorption in Soil

The Langmuir-Freundlich model is used to describe
the adsorption isotherm,
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Where Q = maximum sorption capacity, k = overall
affinity coefficient; p = dimensionless fitting parameter.

For B = 1, Eqn. (5) reduces to Langmuir sorption iso-
therm. The Freundlich isotherm is,

. (5)
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S =kycP .. (6)

Where k, = OkP (D

At equilibrium, K, is the distribution coefficient
defined as the mass of adsorbed virus per unit mass of
the absorbent per unit concentration of viruses in the
liquid phase.

Virus Inactivation

Inactivation of microorganisms plays an important role
in their survival and transport in the subsurface,
especially under unsaturated flow conditions. Several
factors may influence the inactivation of viruses after
their release into the environment. These factors
include pH, temperature, type of virus, and microbial
antagonism. Virus inactivation in the subsurface
environment can be described by a first order reaction
of the following form,

S =kyc,taking =1 + (8)

Substituting Eqn. (8) into Eqn. (2) and consider A, = A
= ), further simplification yields,
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Where R is the retardation factor which accounts for
the apparent decrease in the propagation of a con-

centration front due to sorption and can be adequately
defined by,

rR=1+PKp . (10)
It should be noted that inactivation coefficients are
often expressed in units of In10 per day.

NUMERICAL SOLUTION OF RICHARDS
EQUATION

A backward Euler approximation, coupled with a
Picard iteration scheme, is used to discretize the left
hand side of Eqn. (1), containing the time derivative of
water content as,
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where m denotes the Picard’s iteration and » denotes
the time level.

Using a fully implicit (backward Euler) time
approximation and representing the water content,
""" by the first order approximation,
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The specific water capacity of a soil is defined as
follows,

de
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The time derivative of water content of Eqn. (1) is
approximated as follows,
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The first term on the right side of Eqn. (14) is an
explicit estimate for time derivative of water content,
based on the m" Picard level estimates of pressure
head. In the second term of the right side of Eqn. (14),
the numerator of the bracketed fraction is an estimate
of the error in the pressure head at node j between two
successive Picard iterations. Its value diminishes as the
Picard iteration process converges. As a result, as the
Picard process proceeds, the contribution of the

specific water capacity is diminished,
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The finite difference expressions for the spatial and
temporal derivatives are rearranged by collecting all
the unknowns on the left side and all the known on the
right. Using the above implicit finite difference
approximation, the pressure heads at the n+1" time
level and m+1" Picard level are obtained from solution
of the following system of simultaneous linear
algebraic equations,
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Where coefficients a, b, ¢, d, e, fare defined as,
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Equation (16) applies to all interior nodes; at boundary
nodes this equation is modified to reflect the appropriate
boundary conditions. The resulting set of consistent
linear algebraic equations, for the unknown pressure-
head values, is written in a matrix notation,

Ah=b .. (18)
Where 4 = coefficient matrix, # = vector of unknown
pressure heads and & = known right hand side vector.

The relationship given by Van Genuchten (1980)
are used for 64 and K—9 relationships which are given
as,
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Where o and » are unsaturated soil parameters with,
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Where 6, = saturated water content and 6, = residual
water content of the soil.

K-6 Relationship
2
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Where K| = saturated hydraulic conductivity.

.. (22)

Numerical Solution of Transport Equation

The governing Eqn. (2) can be written in a mixed form
as,
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Where

M = Total concentration of solute per unit volume of
soil



A Modified Picard’s Method for Virus Transport in Ground Water

M =6c+pf(c) .. (29)

The procedures for implementing the Picard iteration
scheme is basically same as that used for water flow
equation. First, the implicit backward time scheme is
applied to Eqn. (23), i.e.,
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Substituting Eqn. (26) into Eqn. (25) yields the
modified Picard iteration formulation for the mixed
form of transport equation as,
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Where
C, = specific solute capacity,
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Equation (27) describes the proposed modified Picard
iteration method for the nonlinear transport equation.

Initial and Boundary Conditions

For Flow Equation
The initial and boundary condition for Richards
equation is,
h(z,0)=-100cm, 0 <z<100 cm
h(0, 1) = hyorom =—100 cm
h(100, f) = by, =10 cm
For Transport Equation
The initial condition is,
c(x,0)=0 s (29)

Here, a constant concentration boundary condition is
used i.e.,

1225

¢(0,6)=C, ... (30)

In Eqn. (30), C, denotes the source concentration.
The downstream boundary condition,

Oc(o,t) 0

... (31
ox G

RESULTS AND DISCUSSIONS

Virus Transport in Saturated Soil

Analytical and numerical solutions are compared to
validate the numerical scheme for the solution of one
dimensional virus transport equation in a saturated soil.

In this problem, a continuous source of virus is
imposed such that the concentration at the upstream
boundary is 100 concentration units (Co = 100). The
pore water velocity is taken as 34 cm/day. Bulk density
of soil p is taken as = 1.11 gm/cm’. Distribution
coefficient k; is taken as 0.02 ml/gm. Inactivation
coefficient A is taken as 0.58 /day. The water content 6
is taken as 0.4. The domain is discretized into 100
grids so that spacing between the grids Ax is equal to
1.0 cm. The governing equation 9 is solved nu-
merically subject to initial and boundary conditions
given in Eqns. (29, 30 & 31). The numerical model is
simulated for Peclet number equal to 1.0 situation.

Figure 1 shows the comparison of concentration
profile predicted the present scheme and those
obtained by the analytical solution given by Ogata
and Banks (1961). It is clearly seen from Figurel that
the numerical solution matches excellently with the
analytical solution.
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Fig. 1: Comparison of analytical and numerical solution
of virus transport in saturated soil

Virus Transport in Unsaturated Soil

The following flow parameters are used in simulations
for the solution of one dimensional virus transport
equation in an unsaturated soil.




1226

Saturated moisture content = 0.368

Residual moisture content = 0.102

van genucheten parameter . = 0.0335 /cm, n = 2.0
Saturated hydraulic conductivity = 796.608 cm/day.

The problem is simulated for 1 day. The results of
the simulation for unsaturated soil are shown in Figure
2 to Figure 4. Figure 2 shows the moisture content profile
and Figure 3 shows the comparison of virus con-
centration obtained by the numerical solution and the
corresponding analytical solution for one dimensional
virus transport in unsaturated soil with P, = 0.25. It can
be seen again in Figure 3 that the numerical predictions
match excellently with the analytical solution. Figure 4
shows the comparison of model predicted virus con-
centrations for different Peclet numbers. It is clearly
evident from Figure 4 that the distance travelled by the
Virus decreases with an increase in the Peclet number.
This is due to the fact that with an increase in Peclet
number the effect of advection decreases. As a result
the virus moves at a slower rate resulting in lower
concentrations at a given time. It can be seen from
Figure 4 that for P, = 1, the maximum distance
covered by virus is about 10 cm while for P, = 0.25,
the maximum distance travelled by the virus is about
30 cm.
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Fig. 2: Variation of moisture content with soil depth
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Fig. 4: Comparison of one dimensional virus transport in
unsaturated soil for different Peclet numbers

CONCLUSIONS

In the present study, a numerical model is developed to
analyse the virus transport in both saturated and
unsaturated soils using modified Picard’s method. The
accuracy of the scheme is studied by comparing the
numerical solution with the available analytical
solution. Then the model is used to compare the virus
movement for different peclet numbers. It is observed
that the distance travelled by the virus decreases with
an increase in the Peclet number. It is concluded that
the modified Picard’s method accurately predicts the
virus movement in both saturated and unsaturated
soils.
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