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PREFACE 

 

The overland flow simulation is essential component in the distributed hydrological models 
(HM) widely used in various Land Surface Modelling (LSM) system to address various 
challenges in the water resources assessment and management including the climate change 
impact on the water resources.  Basically, overland flow simulation is required to handle various 
hydrological and environmental issues such as flood estimation and inundation mapping, flood 
regulations, drought studies, design and management of surface drainage system, urban storm 
water management system, climate change impact assessment, waste water management, and 
transport of sediment and chemicals and so on.   

These days, there are plethora of overland flow simulation models are available to simulate one-, 
two- or even three dimensional overland flow. However, it is essential to know in details about 
the hydraulic as well as simulation characteristics of each of these overland flow simulation 
scheme used in the HM in order to utilize these scheme effectively in the LSM system. In this 
context, the present study entitled as “Performance Evaluation of 2D-VPMM and 2D-Explicit 
Schemes for Two-Dimensional Overland Flow Simulation” which attempt to develop the 
computer code for simulating the two dimensional overland flow by using the two dimensional 
diffusion wave method based on the numerical explicit scheme and its comparison with the two 
dimensional Variable Parameter Muskingum McCarthy (2D-VPMM) model is very essential as 
well as important. 

This report has been prepared by Dr. Ravindra V. Kale, Scientist C, WHRC, NIH Jammu, 
Dr. M. K. Goel, Scientist G and Head, WRSD, NIH, Roorkee and Prof. M. Perumal, Professor, 
DoH, IIT Roorkee. 
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ABSTRACT 

 

Estimation of overland flow is essential in addressing many hydrological and 
environmental problems such as flood estimation, soil erosion and non-point source pollution.  
Modeling of overland flow can be done using the equation of continuity and motion. The 
literature is replete with modelling of overland flow using one-dimensional flow description. But 
a one-dimensional model generally may not be able to simulate runoff generation on land 
surfaces characterized by irregular slopes. To overcome this problem, attention is focused in the 
recent times on the development of two-dimensional overland flow model. Two-dimensional 
overland flow modelling require the use of continuity equation describing the flow variation in x 
and y directions and the flow depth variation in time. Generally simplified forms of the 
momentum equation describing momentum variation in x and y directions are employed. For all 
the practical purposes these equations are solved using the numerical methods. One of the 
solution procedures is based on the two-dimensional explicit finite difference scheme. 

To address these issues, the present study attempts to develop a computer code for two 
dimensional diffusion wave (DW) overland flow simulations using the explicit solution scheme 
(2D-DW-Explicit Model) in MATLAB R2013a software. In case of V-catchment in which two 
overland flow plane joining the channel at middle of these two planes, the channel routing is 
carried out by using 1D-VPMM method. The two-dimensional Variable Parameter Muskingum 
McCarthy method named as 2D-VPMM method which is developed by Perumal and co-
researchers (PI of this study is also main contributor in the 2D-VPMM model development) for 
the simulation of two-dimensional overland flow (Shakya, 2015) and computer code written in 
MATLAB is used to verify the results by 2D-DW-Explicit Model and to compare the predictive 
abilities of these two computational schemes. A tilted V-Catchment used by Di Giammarco et al. 
(1996) and the data collected from the rainfall - runoff study of laboratory catchment of the 
University of Illinois, Urbana Champaign, USA has been used to verify as well as to compare the 
results by these two methods. Based on the conducted study, it was found that the 2D-VPMM 
method is performing better than the 2D-DW-Explicit Model in terms of accuracy and execution 
time.  
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CHAPTER - 1 

INTRODUCTION 
 

1.1 General 

 A thin sheet of flow which occur at the upstream end of slope before concentrating in 

the well-defined channel at the downstream end of slope is referred as Overland flow (Chow 

et al., 1988). Many hydrological problems such as overland flow modelling, flood routing, 

soil erosion prediction, river management and civil protection work due to occurrence of 

meteorological event requires prediction of water levels and discharges at particular locations 

(Kale, 2010). To solve these hydrological problems overland flow is one of the important 

components. The characteristics and spatial variability of rainfall has considerable impact on 

hydraulic characteristics of the overland flow. The characteristics of the overland flow 

generation are not only influenced by rainfall characteristics but also by soil and topographic 

characteristics. Modeling of overland flow can be done using the governing equation of 

continuity and motion known as Saint-Venant equations and its various simplified variants. 

Mostly the literature replete with one dimensional description of the overland flow, but it has 

shortfall in case of the overland flow generation on the land surfaces characterized by 

irregular slopes (Zhang and Cundey, 1989; Liu et al. 2004).  

 Two-dimensional overland flow modeling is the appropriate choice to overcome this 

circumstance. The study of two dimensional overland flow over a land surface refers either 

to flood plain inundation or overland flow resulting from intense rainfall and the mechanism 

governing overland and channel processes is characterized by the presence of a free surface, 

and the elevation of which may vary in space and time (Di Giammarco et al., 1996).  Further, 

due to highly non-linear nature of these governing equations, the global analytical solutions 

are not available except for limited simplified situations. This situation warrants the use of 

the appropriate numerical techniques to solve the two-dimensional dynamic wave continuity 

and momentum equations for overland flow modelling required for flood predictions and to 

decide on policies for minimization of the flood hazards. The numerical techniques used for 

solving the two-dimensional overland flow problem are highly complicated and always 

encounter the problem of instability and convergence because of nonlinear nature of the 

governing equations (Tayfur et al., 1993).  
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 Therefore, over last four decades several numerical schemes are proposed to solve 

Saint-Venant equations and its different simplified variants viz., kinematic wave (KW)and 

diffusion wave (DW) models.  The close review of literature suggest that the numerical 

techniques developed so far can broadly classified into two broad categories namely 

approximate and numerical methods. The KW models, storage routing schemes such as 

Muskingum schemes and diffusion analogy based techniques are referred to the approximate 

methods whereas the direct method such as finite difference, finite element, finite volume and 

the Method of Characteristics (MoC) falls under the numerical methods category. The direct 

methods are further categorized as either implicit or explicit schemes based on either the 

unknown values are solved simultaneously or sequentially along a time line from one 

predefined distance point to the next, respectively (Subramanya, 2009). The implicit scheme 

although unconditionally stable as compared to the explicit schemes, but their use implies 

solving big systems and hence the explicit scheme is widely preferred numerical scheme in 

case of overland flow modelling. For example, the widely used rainfall-runoff model such as 

CASC2D model (Downer et al., 2002; Ogden and Julien, 2002) and the  Gridded  Surface  

Subsurface  Hydrologic  Analysis  model  (GSSHA)  (Downer  et  al.  2005) employs the 

explicit finite difference scheme for solving diffusion wave equations for two-dimensional 

overland flow simulation. Furthermore, the Rainfall-Runoff-Inundation (RRI) model 

developed by ICHARM-PWRI (Sayama et al., 2012) is also use explicit scheme to solve the 

a two-dimensional diffusion wave equation for overland flow modeling However, explicit 

numerical scheme possess a longer execution time, numerical stability and the mass 

conservation problem in the overland flow modelling.  

To overcome these problems, recently, Perumal and co-researchers have developed 

approximate scheme to solve two-dimensional overland flow problem using the Variable 

Parameter Muskingum McCarthy method named as 2D-VPMM method (Shakya, 2015). 

However, there is no any attempt to scientifically evaluate the performance of these two 

schemes namely explicit as used in the CASC2D model and the approximate schemes using 

2D-VPMM method for solving the two-dimensional overland flow modelling problem in the 

literature. Therefore, there is a need of comparing the predictive abilities of these two 

computational schemes using different experimental data from two-dimensional overland 

flow runoff cases available in the literature to emphasize the main strengths and weaknesses. 
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1.2 The Scope of the Study 

Use of appropriate numerical model seems to be necessary to simulate the overland 

flow and flows in channels and rivers in order to predicting the flood prone areas necessary to 

prepare an efficient disaster management action plan to minimize the risk associated with 

potential extreme meteorological events at basin scale. By considering the very complex 

nature of numerical modeling of overland flow modeling due to involvement of several 

phenomenon, the sophisticated model based on simplifying assumption and procedure is 

always preferred over complex numerical models. The explicit numerical schemes are usually 

preferred over implicit schemes for simulating runoff in a natural catchment except when 

there is necessity of considering downstream boundary condition. The scope of this study is 

limited to development of a computer code for simulating 2D overland flow using well 

accepted numerical explicit scheme and testing its performance by comparing the simulation 

results with those obtained with GSSHA model and recently developed an accurate, efficient 

and numerical stable and robust method named as 2D-VPMM method which is seems to be 

capable of replacing the numerical methods employing smaller spatial and temporal 

discrtitizations and complicated boundary using observed rainfall-runoff events over small 

experimental catchments.     

1.3 The Objectives of the Study  

 This study has been taken up with following objectives 

a. Development of computer code for the explicit solution scheme for two 

dimensional overland flow simulation 

b. Performance evaluation of the simulation results by 2D-VPMM and 2D-explict 

schemes for two-dimensional overland flow simulation using experimental plot 

data available in the literature. 

1.4 The Limitations of the Study 

 As described in section 1.3, in this study an attempt has been made to develop an 

computer code for simulation of two dimensional overland flow based on well accepted 

explicit scheme and its comparison with results obtained using GSSHA model and 2D-

VPMM model using observed rainfall-runoff events over small non-infiltrating experimental 

catchment. The main purpose is to test the performance these two numerical techniques and 

the development of code to apply this methodologies to larger natural catchment will be out 

of the scope of this study. The main limitation of this methodology is that it does not take into 

account the backwater effect due to exclusion of downstream boundary condition. 
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CHAPTER - 2 

LITERATURE REVIEW  
 

 

2.1  General 

Surface flow routing, including the overland flow and channel routing, refers to the 

process of transporting precipitation-generated (due rain and other forms of precipitation) 

surface runoff from source area to outlet. The interest in the development of efficient 

hydraulic/hydrologic model Surface flow models is more than evident to accomplish many 

planning and management tasks such as flood-event forecasting, river swelling effect 

simulation, influence of urbanization and agriculture activities on water quantity, quality and 

availability in space and time, simulation of other phenomenon such as bank erosion, 

sedimentation process and ground water transport etc.   

The flow that traverses across the land surfaces refereed as “overland flow runoff” 

plays an essential role in natural ecosystems and is the main source of transfer of living and 

mineral elements in the landscape. In areas modified by human activities (e.g. soil sealing), or 

during extreme climatic events, excess water runoff can lead to serious environmental issues 

such as the flooding of urban areas (Borman et al., 2006; Evarard et al., 2007), or the 

pollution of water bodies. In order to prevent or to mitigate such events, it is necessary to 

accurately predict the dynamic as well as the spatial extent of runoff production and transfer 

(Souch`ere et al., 2005).  

Natural hillslopes on which overland flow is generated are seldom planer surfaces 

with homogeneous physical and hydraulic properties. Microtopography, surface roughness, 

and soil hydraulic properties vary over distances of centimetres to meters, and they strongly 

influence runoff characteristics along the hillslope, and hillslope hydrographs (Zhang and 

Cundy, 1989). These spatial variations have significant impacts on soil erosion and 

contaminant transport. To predict the hydraulic and hydrologic behavior of overland flow, 

soil erosion, and contaminant movement, and to examine the relationship between surface 

flow processes and hillslope soil and vegetation features, physically based, multidimensional 

models, which incorporate spatial variations in hillslope characteristics, are necessary. Such 

overland flow models should be capable to accurately determine the flow depths and 

velocities, and, hence, the capacity of the flow to entrain and transport sediment and 

chemicals (Moore and Foster, 1989). Considering all these essential factors influencing the 
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flow propagation in open channel and on overland, it is important to develop simplified as 

well as accurate solutions for the governing equations of flood waves which plays important 

role in area of hydrology and hydraulics. Consequently, there have been many research 

studies for modeling these flows which are briefly reviewed in following sections. 

2.2  Development and Limitations of Physically Based One-Dimensional Overland 

Flow Models  

Development of rational method for estimation of peak discharge resulting from a 

rainfall event with uniform intensity and duration equal to or greater than the time of 

concentration by Mulvany in 1850 marked the development of rainfall-runoff models. The 

development of equations for modeling surface flow by St. Venant de (1871) now called as 

St. Venant equations (SVE) marked the initiation of development of physically based models. 

The SVE are adapted to describe channel flow as well shallow water flow such as overland 

flow. They are derived from the Navier-Stokes equations by averaging over depth, and 

assuming several hypotheses due to nonlinear terms (Gerbeau and Perthame, 2001). 

However, the numerical solution of SVE is very complicated and can be solved analytically 

or semi-analytically only under certain restrictive conditions. Further, the instabilities and 

convergence problems encountered during solution of SVE by numerical methods due to high 

nonlinear nature of the governing equations (Liggett and Woolhiser 1967) provided impetus 

to simplification of SVE by modifying the momentum balance equations whenever justified 

by the physical conditions (Vieira 1983, Singh, 1996, Singh 2017a,b,c). Most of these 

simplifications have involved two of the common models resulting from such simplifications 

are the kinematic and the diffusion wave models (Morris and Woolhiser 1980). The 

widespread application of diffusion and kinematic wave approximation of surface water flow 

routing in physics-based watershed models can be attributed to the fact that, numerical 

solutions of the full shallow water equations, under complex topography and transient, 

distributed forcing (e.g., rainfall and infiltration), are computationally intensive; furthermore, 

it suffers from numerical stability and convergence problems. Indeed, in rainfall-

runoff/overland flow simulations, the full dynamic wave equations are rarely applied and, 

when applied, they are limited to small-scale geometry (experiment plots or single hillslopes) 

(for an example, see Chow and Ben-Zvi, 1973; Zhang and Cundy, 1989; Fielder and 

Ramirez, 2000). Therefore, making a careful and judicious choice regarding the numerical 

method for a dynamic wave model is critical.  
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Depending on the simplifications in the SVE, five types of flow waves are identified 

to simulate surface flow as:  dynamic waves, steady dynamic waves, gravity waves, diffusive 

waves, and kinematic waves, and hence five types of models (Singh, 1996; Singh 2017a,b,c). 

Further, Perumal and Ranga Raju (1999) introduced new wave type known as Approximate 

Convection Diffusion (ACD) equations based on simplification of momentum equations in 

stage as well as in discharge formulation which govern the transition between the diffusion 

and the kinematic waves (including the latter). An attempt has been made to analyze the 

characteristics of these waves using various techniques by plethora of researchers (Lighthill 

and Whitham, 1955; Woolhiser and Liggett, 1967; and Ferrick, 1985). They found that most 

of natural flow cases can be sufficiently handled by using the diffusive and kinematic wave 

approximations. Furthermore, an analytical solution for diffusion waves in rivers is derived 

by Hayami (1951) using a disturbance function as the boundary condition upstream. Later, 

Kazezyılmaz-Alhan and Medina (2007) presented an analytical solution for diffusion waves 

to overland flow with variable rainfall intensity. In this analytical solution, the inverse of 

Laplace transform was obtained by using the Stehfest algorithm and this solution is restricted 

to constant hydraulic diffusivity and wave celerity. Kazezyılmaz-Alhan (2012) attempted to 

improved solution for diffusion waves for variable hydraulic diffusivity and wave celerity by 

employing the De Hoog algorithm and proposing an iterative technique. 

The derivation of kinematic wave number by Woolhiser and Liggett (1967) proved to 

be useful in deciding on applicability limit of kinematic wave approximation and also acted 

as catalyst for propagation and wide acceptance of kinematic wave approximation (Singh, 

1996) . An remarkable research work such revision of kinematic wave number with use of 

Froude number (Morris and Woolhiser, 1980), division of the Froude number versus 

kinematic wave number diagram into several zones by Vieira (1983), error differential 

equation for judging the accuracy of kinematic wave and diffusive wave approximations 

(Singh, 1994) and a comprehensive analysis of the accuracy of kinematic wave and diffusion 

wave approximations by Moramarco et al. (2008a, b) gave the real impetus to the popularity 

of kinematic wave and diffusion wave approximation. The studies Moramarco and Singh 

(2002) and Tsai (2003) are also focused on the applicability of Kinematic and Diffusion wave 

approximation in various conditions. revised the kinematic wave number with kinematic 

wave  (Perumal and Sahoo, 2007, Kale, 2010) have also showed that the Variable Parameter 

Muskingum Discharge (VPMD) and Variable Parameter Muskingum Stage (VPMS) methods 

developed using ACD equations have capable to simulate the flood wave in transition 

between the diffusion and the kinematic waves (including the latter).  
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Dunne and Dietrich (1980) have shown that while one-dimensional models may 

successfully predict or fit the average flow depth and hydrograph on a real hillslope, they are 

unable to simulate the spatial variability of the flow fields. This spatial variability can be 

significant. For their experimental plots on Kenyan hillslopes, the coefficient of variation of 

the cross-slope depth ranged from 0.5-0.8. Yet they are limited by the kinematic wave 

assumptions. For example, the method does not allow backfacing slopes in the flow fields. 

Furthermore, the simulation error by the kinematic wave equation is rather significant when 

the kinematic number k, as defined by Woolhiser and Liggett (1967), is less than 10. 

Kinematic and diffusion wave equations are the simplified forms of the dynamic wave 

equations. Diffusion waves are obtained by neglecting the acceleration terms and kinematic 

waves are obtained by neglecting both the acceleration and the pressure terms in the 

momentum equation. The kinematic wave model represents unsteady flow through the 

continuity equation while it substitutes a steady uniform flow for the momentum equation 

(Lighthill and Whitham, 1955). A kinematic wave does not subside or disperse as it travels 

downstream while it changes its shape. The diffusion waves are obtained by introducing 

physical diffusion into the kinematic wave equation which results mathematically in a 

second-order term. Diffusion occurs most in natural unsteady open channel flows and in 

overland flow (Hayami, 1951; Lighthill and Whitham, 1955; Ponce, 1989; Perumal and 

Sahoo, 2007). Diffusion waves may be preferred in simulations of the flood waves in rivers 

and on flood plains with milder slopes that changes between 0.001 and 0.0001 (referred from 

Kazezyilmaz-Alhan, 2012).  Solving the full Saint-Venant equations by using numerical 

techniques (finite difference or finite element) leads to problems of instabilities and lack of 

inertial terms. Diffusion wave theory applies to the milder slopes (0.00 – 0.0001), for which 

the kinematic wave theory is insufficient (Kazezyillaz-Alhan et al., 2005). 

The solution of the fully-dynamic shallow water equations is computationally 

demanding, which restricts the high-resolution simulation over a large area. As a 

consequence, various simplifications were more commonly used in the past, including the 

kinematic wave, diffusive wave models and other simplified forms (Woolhiser and Liggett 

1967; Di Giammarco et al. 1996; Feng and Molz 1997; Kazezyilmaz-Alhan and Medina 

2007; Gottardi and Venutelli 2008; Costabile et al., 2009; Moramarco et al., 2008; Kale and 

Perumal, 2014). The diffusive wave model neglects the inertia of the fluid in the momentum 

equations. The kinematic wave model further neglects the effect of pressure gradient on the 

water motion. The various researchers based on verification of the accuracy and error 

estimation of diffusion and kinematic waves overland flow on a plane by numerical 
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experiments concluded that diffusion wave approximation is fairly accurate for most overland 

flow conditions (Govindaraju et al., 1988, 1990; Singh and Aravamuthan, 1996; and 

Moramarco and Singh; 2002).   

The plethora of research studies devoted to investigate the application of the galerkian 

finite element method to solve the kinematic wave problems for overland flow (Gottardi and 

venutelli, 1993; Motha and Wigham, 1995; Jaber, 2001). Most of these studies reported some 

oscillations and the necessity of using small time steps in order to get stable and accurate 

solutions (Jaber and Mohtar, 2003). Further, the application of Galerkian formulation of the 

consistent finite element method and finite difference techniques to solve steady overland 

flow over permeable surface using externally coupled surface (kinematic wave 

approximation) and a subsurface flow model to overland flow by Motha and Wigham (1995) 

have also reported numerical oscillations in a finite element model. Further, the study carried 

out by Jaber (2001) has also reported occurrence of oscillations while using conventional 

consistent finite element scheme for certain time step ranges. Although the lumped and 

upwind finite element schemes are proposed as alternatives to the consistent schemes, the 

upwind scheme did not show the improvement while the lumped scheme show some 

improvement in terms of stability and accuracy of the solution. Further, the study by Singh et 

al. (2002) have brought out hat routing overland flow with explicit finite difference kinematic 

wave model tends instability problem. Kazeyzilmaz-Alhan et al. (2005) investigated the 

realiability of several finite difference numerical formulations for solving one-dimensional 

kinematic and diffusion wave equations that describe overland flow. They compared the 

numerical solutions with the corresponding analytical solutions considered as the benchmark 

solutions. The McCormack numerical scheme has been shown to be more accurate and more 

efficient than the classical explicit and implicit finite difference schemes.  

There are plethora of studies which deals with the simulation of overland flow in one 

dimension. However, an actual hillslope is not smooth as assumed in one-dimensional flow 

modelling for simplicity. Therefore, to model the complex flow processes over undulating 

topographic conditions, the two dimensional overland flow models is obvious choice over 

one-dimensional flow. The brief review on the development of two dimensional overland 

flow models is provided in the following section. 
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2.3  Two Dimensional Overland Flow Models 

As described earlier one dimension overland flow models which assume a homogeneous 

plane surface and thus ignore the real, measurable spatial variation in the overland flow field 

due to significant errors, in the distributions of velocity, depth (Dunne and Dietrich, 1980). 

For their experimental plots on Kenyan hillslopes, the coefficient of variation of the cross-

slope depth ranged from 0.5-0.8. In period between early 70’s and 80’s, various researchers 

such as Chow and Ben-Zvi, (1973) have applied Lax-Wendroff scheme,, a characteristic 

method,  a finite element scheme and Lax-Wendroff scheme to model overland flow by using 

a two-dimensional hydrodynamic equation, respectively. All these studies had used a much 

simplified version of the hydrodynamic equation in which all the terms related to the 

convective acceleration were dropped from the hydrodynamic equation which are significant 

to represent spatial variations in hillslope characteristics. Zhang and Cundy (1989) were the 

first researchers to solve the two dimensional (2D) fully-dynamic shallow water equations 

with a finite difference scheme. The study by Zhang and Cundy (1989) has proved to be 

guiding step for the development of various two dimensional overland flow modeling 

schemes as it has brought out the importance of ground micro-topography. This study has 

shown that representation of the highly irregular microtopographic earth surface with a 

smooth surface does not lead to significant differences in the simulated discharge 

hydrographs because the continuity requirements are met in both cases. However, the grid 

spacing of 1 m used in their study for the simulation did not allow for detailed understanding 

of its effect. Practically, it is much more realistic to model the flow (flow depth and 

velocities) over the actual varying microtopography surface for erosion and flood inundation 

calculations.    

Therefore, the concept of the kinematic cascade for representing real earth surface 

with a series of plane surfaces having different gradient has been adopted to incorporate 

variable slopes in an overland flow model (Borah et al., 1980). Stephenson, (1981) was 

probably the first researcher to present the kinematic wave model based on this concept for 

two-dimensional overland flow modelling. Govindaraju et al. (1992) presented a new 

methodology based on the simplified semi-analytical solution using the eign function 

expansion which is then combined with the kinematic wave approximation. They showed that 

the simplified semi-analytical solution procedure is advantages over the standard numerical 

solution of the two-dimensional overland flow equations in terms of computational effort and 
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the amount of data required. This method predicts only an average flow depth and cannot 

recognizes the local variations of microtopography. Liu et al. (2004) developed a two 

dimensional kinematic wave model for simulating runoff generation and flow concentration 

on an experimental infiltrating hillaslope receiving artificial rainfall. Experimental results 

showed that the geometry of the topography of the slppe surface causes overland flow 

contrations and one-dimensional model is not able to simulate flow line concentration of the 

overland flow on irregular slopes. Also, a fully dynamic model is difficult to apply due to 

complex surface boundaries of a hillslopes, hence, a quasi-2D kinematic wave model is found 

adequately reflect the runoff concentration processes. 

Hromadka et al. (1987) developed a diffusion hydrodynamic model, in which both the 

convective acceleration and local acceleration terms were dropped from the hydrodynamic 

equation. Further, Tayfur et al. (1993) compared numerical solutions of dynamic, diffusive 

and kinematic wave models for two dimensional overland flow on rough surfaces with an 

average steep slope of 0.086. In this study, the full St. Venant equations and the kinematic 

wave and diffusion wave approximations were used to route flow over experimental plots, 

and numerical results were compared with the observed hydrographs. The influence of the 

microtopography on convergence of the flow equations and deviations in local flow depths 

and velocities are discussed qualitatively. This study brings out the limitations of the surface 

flow equations when applied to irregular topography. The kinematic wave approximation is 

unacceptable in such cases since the characteristics move in the forward direction only. The 

implicit numerical procedure for the full St. Venant equations and the diffusion wave 

approximation also breaks down when the flow surface changes rapidly. It appears that while 

the numerical procedure may require a fine mesh dictated by computational accuracy, 

measurements need to be made at a larger scale yielding smoother surfaces to satisfy the 

gradually varying assumption in the flow equations. Di Giammarco et al. (1996) proposed a 

control volume finite element (CVFE) method to solve the mass conservation and momentum 

equations in simplified form (ignoring the contribution of the inertial terms) which is a 

locally conservative formulation of the better known finite element approach, to deal more 

efficiently with overland flow. From the point of view of conservation of scalar quantities 

such as mass and energy, the CVFE approach is an extension of the classical finite difference 

conservative staggered grid approach to irregular domains. The possibility of easily imposing 

as well as physically interpreting fluxes along lines and boundaries makes the method 

attractive in the overland flow generations. They have considered various hypothetical cases 
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to conduct numerical experiments. One of the experiment was the case of the tilted V-

catchment (with slopes in two directions (x and y) of overland plane and channel slope of the 

plane along the length of the channel. This case study were adopted in various studies 

conducted later on to demonstrate the capabilities of the newly developed two-dimensional 

overland flow models (e.g. Pandey and Huyakorn, 2004; He et al., 2008 and Lai, 2009; Sulis 

et al., 2010; Yu and Duan, 2014. Gottardi and venitelli (2008) presented a simplified DW and 

KW models for simulating overland flow over impervious surfaces, with analytical time 

integration of the ordinary differential equations. The one- and two-dimensional overland 

flow generations indicated good stability and efficiency of the numerical-analytical approach 

with unsteady rainfall rates and spatial variation of the surface roughness. The new solution 

scheme proposed by Lai (2009) based on conservative finite-volume formulation was tested 

with the results of analytical solution, Di Giammarco et al. (1996) and CASC2D (Sanchez, 

2002) and found comparable. This study attempted to compare the stability range of explicit 

and implicit solver and found that the explicit solver allow more flexibility in selection of 

time step as compared to the implicit solver. In recent years, there has been an increasing 

trend of extending the application of the shallow water equations to the city and catchment 

scales (e.g., Unami et al. 2009; Mügler et al. 2011; Caviedes-Voullième et al., 2012; 

Costabile et al., 2013; Simons et al. 2014). Cea et al. (2014) have presented a validation of a 

2-D overland flow models using empirical laboratory data. Instead of evaluating the 

performance of models to predict the observed hydrograph, they have used spatially 

distributed 2D water depth and velocity data to verify that how model the spatial distribution 

of these variables. They have considered several overland flow conditions over two 

impervious surfaces of the order of one square meter with different micro and macro-

roughness characteristics. Based on the results of the study, Cea et al. (2014) concluded that 

even if the resolution of the topography data and numerical mesh are high enough to include 

all the small scale features of the bed surface, the roughness coefficient must account for the 

macro-roughness characteristics of the terrain in order to correctly reproduce the flow 

hydrodynamics. 

Raneef (2014) has attempted to extend the Variable Parameter Muskingum Discharge 

(VPMD) method developed for one dimensional overland flow (Kale, 2010) to two 

dimensional overland flow plane sloping in both 𝑥  and 𝑦   directions 𝑆଴௫  and 𝑆଴௬, 

respectively. They have assumed that the flow direction is controlled completely by the 

landform i.e the sheet of the flowing water may take the path having higher magnitude of 



13 
 

slope, which is the resultant direction with slope of magnitude 𝑆଴ = ට𝑆଴௫
ଶ +  𝑆଴௬

ଶ . Then the 

VPMD method was applied to the one-dimensional plane having a slope gradient of 𝑆଴, 

oriented along the direction of 𝑆଴௫  or  𝑆଴௬, whichever is larger. The results of this 

approximation were also compared with the tilted V-Catchment as employed by Di 

Giammarco et al. (1996). Although this approximation gives the comparable results, 

however, the simulation results was realistic only when  𝑆଴௫ ≫  𝑆଴௬. How this approximation 

gives erroneous resuls when 𝑆଴௫  ≈  𝑆଴௬. Approximate methods such as the one based on the 

Variable Parameter Muskingum Discharge (VPMD) routing method is also capable of 

modelling the one-dimensional overland flow as it has been demonstrated by Kale (2010). 

But the VPMD method is not a fully mass conservative method. In order to overcome this 

problem, Shakya (2015) and Perumal et al. (2018) have developed a fully volume 

conservative two-dimensional Variable Parameter McCarthy-Muskingum (VPMM) overland 

flow routing method using one dimensional VPMM channel routing method (Perumal and 

Price, 2013). They have concluded that the method is numerically stable, substantially 

accurate and easy to solve at same time free from numerical convergence problem and can be 

applied for wide range of computational cell size without loss of accuracy.   

2.4  Concluding Remarks 

In last decades since 1960, the surface runoff models based on the numerical solution 

of the shallow water equations known as Saint-Venant equations or their approximations 

emerged as the effective tools for water resources planning and management. The traditional 

flow models have avoided using microtopography into modelling framework not only 

because of the complications arising in the numerical procedure, but also because of the extra 

effort involved in obtaining the microtopography data at the grid scale dictated by the 

numerical model. With advancement of remote sensing and GIS techniques obtaining spatial 

and temporal microptopographic data is no more a constraint while complications in the 

application of the numerical solution schemes particularly for two dimensional flow 

simulation has continued to be considerable constraint although computational facilities are 

dramatically improved over last four decades.   

 It is also fact that the model user community mostly not aware about the different 

hypothesis lying behind these development and simplifications and hence encounters the 

problem during judging its adaptability to fulfill their set objectives and test case 
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configurations. Further, various research study emphasize the sufficiency of diffusive wave 

model for overland flow modeling. Therefore, there is need of a study which aims at 

comparing the predictive abilities of different models and evaluating potential gain by using 

advanced numerical scheme for modelling runoff based on diffusive wave formation in two 

dimensional domains to emphasize their main strengths and weaknesses.  
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CHAPTER - 3 

   METHODOLOGY  

In this chapter the basic equations used for the development of the computer code for 

two dimensional explicit and VPMM overland flow solution schemes are presented.  Firstly, 

the explicit scheme for solving the two dimensional diffusive wave overland model is 

presented which is followed by the two dimensional VPMM solution method. For the sake of 

brevity, these method are briefly presented however it is advised to refer the original 

references for more details. 

3.1  Two-dimensional Explicit solution for Overland Flow Routing 

The two-dimensional overland flow can be expressed by the continuity and 

momentum equation for each of the planar coordinate directions 𝑥 and 𝑦. These equations 

can be written as (Zhang and Cundy 1989; Chow and Ben-Zvi 1973) 

𝜕ℎ

𝜕𝑡
+

𝜕(𝑢ℎ)

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
= 𝑅௘(𝑥, 𝑦, 𝑡) − 𝑖(𝑥, 𝑦, 𝑡) cos(Ψ) cos (𝜙) (3.1) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ cos(Ψ) cos(𝜙) 𝑔

𝜕ℎ

𝜕𝑥
=  𝑔𝑠𝑖𝑛(Ψ) − 𝑔𝑆௙௫ −

𝑞௅𝑢

ℎ
 (3.2) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ cos(Ψ) cos(𝜙) 𝑔

𝜕ℎ

𝜕𝑦
=  𝑔𝑠𝑖𝑛(𝜙) − 𝑔𝑆௙௬ −

𝑞௅𝑣

ℎ
 (3.3) 

where  

ℎ(𝑥, 𝑦, 𝑡) = overland flow depth; 

𝑢(𝑥, 𝑦, 𝑡) = depth − averaged flow velocity in the x − direction; 

𝑣(𝑥, 𝑦, 𝑡) = depth − averaged flow velocity in the y − direction; 

𝑅௘(𝑥, 𝑦, 𝑡) = Rainfall intensity; 

𝑖(𝑥, 𝑦, 𝑡) = infiltration rate; 

𝑞௅(𝑥, 𝑦, 𝑡) = net lateral inflow rate (Rainfall − infiltration); 

Ψ = angle of the slope with respect to x − direction; 

ϕ = angle of the slope with respect to y − direction; 

g = acceleration due to gravity; 

S௙௫  and S௙௬  = the friction slopes respectively in x and y − directions; 

The friction slope in Manning’s equation can be written as 
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𝑆௙௫ =
𝑛ଶ𝑢√𝑢ଶ + 𝑣ଶ

ℎସ/ଷ
 (3.4) 

𝑆௙௬ =
𝑛ଶ𝑣√𝑢ଶ + 𝑣ଶ

ℎସ/ଷ
 (3.5) 

where  

𝑛 = Manning′s roughness coefficient; 

 

In the simplified diffusive wave form the above equation (3.1) to (3.3) by ignoring the 

infiltration term can be expressed for each square grid cell as in a raster GIS system as (Boll, 

2001) 

𝜕ℎ

𝜕𝑡
+

𝜕𝑞௫

𝜕𝑥
+

𝜕𝑞௬

𝜕𝑦
= 𝑅௘  (3.6) 

For simplification, the two acceleration terms in the energy equations (equation 3.2 and 3.3) 

that are typically small are neglected, then equation (3.2) and (3.3) can be reduced to   

𝑆௙௫ = 𝑆଴௫ −  
𝜕ℎ

𝜕𝑥
 (3.7) 

𝑆௙௬ = 𝑆଴௬ −  
𝜕ℎ

𝜕𝑦
 (3.8) 

where the terms 
డ௛

డ௫
 and 

డ௛

డ௬
  represent the slope of water surface in the x- and y-directions, 

respectively. 

The unit-width discharge for turbulent flow in the x- and y-directions, respectively, is 
described by the Manning equation  

𝑞௫ =  
1

𝑛
 ට𝑆௙௫  ℎହ/ଷ (3.9) 

𝑞௬ =  
1

𝑛
 ට𝑆௙௬ ℎହ/ଷ (3.10) 

Where, 

  ℎ = flow depth,  

𝑞௫ and 𝑞௬  = flow discharge in x and y direction,  

 𝑡 = time, and all other variables are previously described above. 
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3.1.1  Numerical Representation in Explicit Finite Difference Form 

The explicit numerical scheme to solve the two-dimensional diffusive wave equation 

(Equation 3.6) in the finite difference form can be expressed as 

∆ℎ

∆𝑡
+

∆𝑞௫

∆𝑥
+

∆𝑞௬

∆𝑦
=  𝑅௘ (3.11) 

Using above Equation (3.11), the flow at time increment t+1 can be estimated using previous 

known information about flow depth at time t as  

∆ℎ = ൤𝑅௘ −
∆𝑞௫

∆𝑥
−

∆𝑞௬

∆𝑦
൨  (3.12) 

The Equation (3.12) can be expressed as 

ℎ௧ାଵ − ℎ௧ = ቈ𝑅௘ −
𝑞௫௢௨௧

௧ − 𝑞௫௜௡
௧

W
−

𝑞௬௢௨௧
௧ − 𝑞௬௜௡

௧

W
቉ ∆t  (3.13) 

where the subscripts "in" and "out" describe flow into and out of a given cell, respectively. 

W is the cell length in the x- or y-direction.  

When the Cartesian grid cells in the watershed are defined by the i and j coordinates 

in x and y-direction respectively as shown in Figure 3.1, the Equation 3.12 

ℎ௜,௝
௧ାଵ = ℎ௜,௝

௧ + 𝑅௘∆t − ቈ
𝑞௫(௜,௝ାଵ)

௧ − 𝑞௫(௜,௝)
௧

W
−

𝑞௬(௜,௝ାଵ)
௧ − 𝑞௬(௜,௝)

௧

W
቉ ∆t  (3.14) 

Similarly, the equations (3.7) and (3.8) can be written as 

𝑆଴௫(௜,௝) =  
𝐸௜,௝ିଵ −  𝐸௜,௝

𝑊
 (3.15) 

𝑆଴௬(௜,௝) =  
𝐸௜ିଵ,௝ −  𝐸௜,௝

𝑊
 (3.16) 

Based on the above expansion, the energy equation of the diffusive-wave approximation can 

be expressed as  

𝑆௙௫ 
௧ =  𝑆଴௫(௜,௝) −  

ℎ௜,௝
௧ − ℎ௜,௝ିଵ

௧

𝑊
 (3.17) 

𝑆௙௬ 
௧ =  𝑆଴௬(௜,௝) −  

ℎ௜,௝
௧ − ℎ௜ିଵ,௝

௧

𝑊
 (3.18) 
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Figure 3.1. Representation of a cell grid system and notation convention for any flow or 

other quantity calculation that crosses cell borders (Adopted from Boll, 2001). 

 

The computed unit discharge in x and y directions when 𝑆௙௫(௜,௝) 
௧ ≥ 0 and 𝑆௙௬(௜,௝) 

௧ ≥

0 are given by the following equations 

𝑞௫(௜,௝) =  
1

𝑛௜,௝
ൣℎ௜,௝

௧ ൧
ହ/ଷ

ට𝑆௙௫(௜,௝) 
௧  (3.19) 

𝑞௬(௜,௝) =  
1

𝑛௜,௝
ൣℎ௜,௝

௧ ൧
ହ/ଷ

ට𝑆௙௬(௜,௝) 
௧  (3.20) 

However, when 𝑆௙௫(௜,௝) 
௧ ≥ 0 and 𝑆௙௬(௜,௝) 

௧ ≥ 0  condition does not met then the unit 

discharge in x and y directions are given by the following equations 

𝑞௫(௜,௝) =  
−1

𝑛௜,௝
ൣℎ௜,௝

௧ ൧
ହ/ଷ

ට−𝑆௙௫(௜,௝) 
௧  (3.21) 

𝑞௬(௜,௝) =  
−1

𝑛௜,௝
ൣℎ௜,௝

௧ ൧
ହ/ଷ

ට−𝑆௙௬(௜,௝) 
௧  (3.22) 

It should be noted that the stability of the explicit scheme for the finite-difference 

solution can be achieved by using small time steps. The selection of time interval depends 

upon the grid size, precipitation characteristics (rainfall intensity and duration), surface 

conditions (slope, roughness), and infiltration characteristics.  

3.2  Two Dimensional VPMM Model for Overland Flow Modelling 

The 2D VPMM model is developed using the governing equations of the two 
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dimensional flow, the diffusive wave approximation of the Saint-Venant equations 

represented by continuity and momentum (energy) equations (Equations 3.6 – 3.8). The brief 

theoretical background is presented here in the following section. 

3.2.1  Concept of Variable Parameter Muskingum Discharge (VPMD) Routing 

Method  

The basic development of 2D-VPMM method is started based on the development of 

1D-VPMD method (Kale, 2010; Kale and Perumal, 2014). The basic concept of the VPMD 

overland flow method is that there exists one-to-one relationship between the flow depth (or 

the cross sectional area) of the flow and the discharge at the same location defining the 

steady state flow rating curve. While in unsteady flow condition, the unique relationship 

exists between the above mentioned variables not at the same location but somewhere 

downstream from that location as shown in Figure 3.2. 

 

Figure 3.2.  Definition sketch of the VPMD method governing the flow over an impervious 

surface (Kale, 2010). 

3.2.2  Mathematical Development of 2D-VPMM Method  

In order to reduce the mass conservation problem in the VPMD method for overland 

flow simulation (Kale and Perumal, 2014), the 1D-VPMM method for overland flow 

modelling has been developed based on the VPMM channel routing method (Perumal and 

Price, 2013). The extension of the 1D-VPMM method into 2D-VPMM for two dimensional 

overland flow modelling by Shakya (2015) and Perumal et al., (2018) is briefly presented in 

the following section. 

The two-dimensional overland flow plane is considered to be formed by a grid 

network of seamlessly interconnected cells of size ∆𝑥 × ∆𝑦. Figure 3.3 shows the details of 

the considered grid network of cells. 
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Figure 3.3. Computational grid used in the development of 2D-VPMM method for overland 

flow modelling (Perumal et al., 2018).   

3.2.2.1  The Assumptions Employed in the 2D VPMM Method Development 

The assumptions employed in the development of the 2D-VPMM  model for two-

dimensional overland flow propagation over a grid cell subject to rainfall excess eR , as shown 

in Figure 3.3. 

i. The flow plane in the respective flow direction is assumed to be a wide rectangular 

channel. 

ii.  The overland plane is assumed to be fully impervious and, therefore, the applied 

rainfall is considered as the rainfall excess (effective rainfall).  

iii. The longitudinal gradient of water depth, h x   and h y   respectively, in   x and y 

directions are not negligible relative to the bed slopes S0x and S0y, respectively. 

iv. As the Muskingum storage equation is derived from the momentum equation of the 

Saint-Venant equations (Perumal and Price, 2013), it can be considered as the 

manifestation of the momentum equation governing the flow dynamics. 

3.2.2.2  Brief Description of the 2D-VPMM Model 

  By multiplying Equation (3.6) by the cell area of grid ∆𝑥 × ∆𝑦, one can get 

yx
e

qqh
x y R x y x y x y

t x y


       

  
  (3.23) 
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  It can be inferred from equation (3.23) that both the grid discharges xQ and 
yQ are 

influenced by the grid storage S which is the manifestation of momentum equation governing 

the dynamics of flow in the direction of flow. As both xQ and 
yQ are influenced by the same 

grid storage in conjunction with the grid cell rainfall during the routing time interval t , the 

two-dimensional flow continuity equation expressed by equation (3.23) can be considered as 

the equation governing the proposed two-dimensional overland flow model. If steady flow 

prevails over the two-dimensional overland flow plane, then the storage S over the grid cell 

can be expressed as  

x MxS xA  y MyS xA   (3.24 a, b) 

where the notations xS  and 
yS  individually denote the same grid storage S of the grid 

cell and MxA  and MyA  denote the cross-sectional flow area at the mid-section of the grid cell 

along x  and y  directions, respectively. The subscripts x and y attached with the storage 

notation S, is simply meant for qualifying the storage controlling the flow in x and y 

directions which in turn represent the momentum equations governing the flow dynamics in x 

and y directions. 

The grid storage S  given by equation (3.24) may be expressed in terms of normal 

discharge and normal velocity along x and y directions as 

0

0

x
x

x

xQ
S

v


 0

0

y
y

y

yQ
S

v


  (3.25 a, b) 

Again, the normal discharges 0xQ  and 0 yQ may be re-expressed in terms of unsteady 

discharges and its variations in the respective flow directions as 

0

0 0

x x
x x

x x

a Qx
S Q

v c x

 
   

0

0 0

y y
y y

y y

a Qy
S Q

v c y

 
    

 (3.26 a, b) 

where   

0
0

02
x

x
x

Q
a

S y



0

0
02

y
y

y

Q
a

S x



 (3.27 a, b) 
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The notations 0 xa and 0xc , and 
0 ya and 

0 yc , respectively, denote the diffusion 

coefficient and normal wave celerity along x and y flow directions. They are estimated at the 

midpoint of the grid cell corresponding to the flow depth Mh .  

Accordingly, the equations governing the dynamics of flow in x and y directions 

expressed by equation (3.23) are modified using equation (3.26) as 

0

0 0

yx x x
x e

x x

Qa Q Qx
Q R x y x y

t v c x x y

     
             

 (3.28 a) 

 
0

0 0

y y y x
y e

y y

a Q Q Qy
Q R x y y x

t v c y y x

     
                

 (3.28  b) 

In order to arrive at the overland flow routing equation in the classical Muskingum 

method formulation, Equation (3.28) is applied at the center point M of the finite difference 

cube as shown in Figure 3.4, formed by encompassing the grid cells at the time levels of t and 

t+∆t (denoted, henceforth, as t+1), where ∆t is the routing time interval. The (i, j)th grid cell 

corresponding to a given time level with inflow and outflow discharges, respectively, denoted 

as 
, ,x i jQ  and 

, , 1x i jQ  , and 
, ,y i jQ and 

, 1,y i jQ  , for flow along x and y directions , respectively, is 

also shown in Figure 3.3. The subscripts (i, j) denote the spatial index variation along y and x 

directions, respectively. First, the routing equation governing the estimation of 
xQ  at the 

outlet of any grid cell is developed in detail using the VPMM routing method (Perumal and 

Price, 2013).  

 

Figure 3.4. Finite difference scheme employed for discretization of the governing equation of 

2D-VPMM method (Shakya, 2015). 
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Accordingly Equation (3.28 a) is expressed in finite difference form to arrive at the 

equation governing overland flow propagation along x   as 

11 1 1 1
, , 1 , , , , 1 , ,0

1
0 , 02

tt t t t
x i j x i j x i j x i jx

t
x M x M

Q Q Q Qax

v c x

   
 



           
 

, , 1 , , , , 1 , ,0

0 , 02

tt t t t
x i j x i j x i j x i jx

t
x M x M

Q Q Q Qax

v c x
 

            
 

1 1
, , 1 , , 1 , , , ,

2 2

t t t t
x i j x i j x i j x i j

e

Q Q Q Q
tR x y t

 
   

       
 

 

1 1
, 1, , 1, , , , ,

2 2

t t t t
y i j y i j y i j y i jQ Q Q Q

t
 
   

   
 

 

(3.29) 

The variables with superscripts t and t+1 represent that variable at t and t+1 time 

level. In a similar manner, the equation governing flow along y direction may be expressed. 

Equation (3.29) may be reformulated to express it in the form of governing equation of the 

Muskingum method, respectively, as  
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Using the following notations, 
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The flow propagation equation (3.30) can be reformulated in the form of the 

governing equation of the Muskingum method as 
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(3.33) 

Since two independent momentum equations are employed to represent the flow 

dynamics along x and y directions of the two-dimensional overland flow process, it may be 

considered that Equation (3.33) is the equation governing flow along x direction duly 

accounting for its dynamics. The parameters Kx and x  denote the travel time and the 

weighting factor of the Muskingum storage equation governing flow dynamics in the x 

direction. It may be noted that there are two unknowns 1
, , 1

t
x i jQ 

 and 1
, 1,

t
y i jQ 

  
in the equation (16) 

and, therefore, to arrive at the explicit solution of 1
, , 1

t
x i jQ 

 using the Muskingum routing 

equation, the inflow and outflow of yQ  corresponding to time ( 1t  ) are assumed to be the 

same as the known estimates of yQ corresponding to time t . Based on this consideration, the 

Muskingum routing equation for estimation of flow at the outlet of the grid cell along x  

direction is arrived at from equation (3.33) as  
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(3.35 a,b,c,d) 

Similarly the routing equation for estimation of flow at the outlet of grid cell along y 

direction is obtained as 



25 
 

 1 1
, 1, 1 , , 2 , , 3 , 1, 4 2t t t t

y i j y y i j y y i j y y i j y eQ C Q Q C x yC Q C R 
       4 , , 1 , ,2 t t

y x i j x i jC Q Q
     

 

(3.36) 
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where, 
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3.2.3  Runoff Routing Procedure  

The step-by-step 2D-VPMM model overland flow routing procedure of overland flow 

propagation in x and y directions of each cell is presented in the flow chart shown in Figure 

3.5. The runoff due to effective rainfall over the cell is considered as the lateral flow in the 

overland flow routing process along x and y directions.  But the runoff entering into the cell 

from the adjacent cell or cells and leaving from the cell to the adjacent cell or cells are treated 

as inflow and outflow, respectively, for the routing equations employed in the model. The 

steps 1 to 14 as shown in Figure 3.5 are repeated for the next grid cell and subsequently for 

all the grid cells at the current time level. After estimating outflow discharges g for all the 

grid cells of the overland flow plane grid, the computation advances to the next time level. 

Following the same computational steps until the total simulation time. 

3.3  Performance Evaluation Measures 

The following performance criteria has been used to evaluate the performance of the 

2D-VPMM method and 2D- DW explicit method.   
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Figure 3.5. The flow chart of the step-by-step 2D-VPMM overland flow routing procedure of 
overland flow propagation in x and y directions of each cell. 
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Nash-Sutcliffe Efficiency (NSE): 
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       (3.40) 

where, 𝑄௢௜ = ith ordinate of the observed discharge hydrograph; 𝑄஺௩௚ = Average of the 

observed discharge hydrogrh; N = number of the ordinates of the hydrograph; ciQ = ith 

ordinate of the computed discharge hydrograph. 

The percentage error in peak discharge, 
perQ  (in %): 
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       (3.41) 

where, Qpc is the peak discharge computed by the proposed 2D-VPMM model, Qpo is the 

peak discharge of the benchmark solution or the observed hydrograph.   

The normalized error in time to peak discharge, tqper : 
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(3.42) 

where, tqpc is the time to peak discharge of the computed hydrograph by the proposed 2D-

VPMM model, tqpo is the time to peak discharge of the hydrograph of benchmark or the 

observed hydrograph.  

The mass conservation error, EVOL (in %):   
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(3.43) 

where,  ejR = jth ordinate of the effective rainfall intensity, A  = Area of the overland flow 

plane, NQ = Number of simulated hydrograph ordinates, NR= Number of effective rainfall 

ordinates generating the hydrograph. A negative value of  EVOL indicates a loss of mass and 

a positive value of  EVOL indicates a gain of mass. A value of EVOL = 0 implies that the 

method is fully volume conservative. 
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CHAPTER - 4 

   ANALYSIS AND RESULTS  

 

In this chapter, the simulation results obtained using the two dimensional diffusive 

wave explicit model (2D-DW-explicit model) which employ the explicit finite difference 

scheme (similar to the explicit numerical scheme used in the CASC2D model developed by 

the Colorado State University, USA) and the 2D-VPMM model which employ the storage-

based Muskingum-McCarthy schemes are compared. This study uses the observed rainfall-

runoff events datasets which are widely considered in the literature to test the source code 

written for the 2D overland flow modelling methods. The first case considered in this study 

uses a hypothetical case of a tilted V-Catchment used by Di Giammarco et al. (1996), in 

which two planes each of size 1000m x 800m are joined with a rectangular channel in 

between. The second case considers the experimental rainfall-runoff data collected from the 

study of laboratory catchment of the University of Illinois, Urbana Champaign (Maksimović 

and Radojković, 1986). The obtained results by using the 2D-DW-explicit model and the 2D-

VPMM model and their comparison to evaluate performance of these individual method is 

described in following section.  

4.1  Performance Evaluation Using Hypothetical V-Catchment Data 

The tilted V-catchment rainfall-runoff simulation event is studied by Di Giammarco 

et al. (1996) to verify the performance of their proposed the control volume finite element 

method (CVFEM) based on the simplified form of the mass conservation and momentum 

equation by ignoring the contribution of inertial term.  In the study of Di Giammarco et al. 

(1996) the experiments was carried out on the various slope cases. One of the case was of the 

tilted V-Catchment (with slopes in two directions i.e x and y –direction of the overland flow 

plane and channel slope equal to the slope of the plane along the length of the channel) as 

shown in Figure 4.1. We have attempted to use this 2D tilted V-catchment case of overland 

flow generation by a rainfall event to examine the suitability of the 2D-DW-explicit and 2D-

VPMM models in reproducing the rainfall-runoff phenomena as well as their comparative 

performance. In this tilted V-catchment experiment, the simulation was conducted using a 

rainfall excess input with an intensity of 10.8mm/hr for the duration of 90 minutes. The 

runoff generated from the precipitation over the channel area is not considered. The 

Manning’s n for the planes is taken as 0.015, whereas for the channel it is taken as 0.15. Di 
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Giammarco et al. (1996) have also attempted to compare the outflow hydrograph at the 

channel outlet obtained using the CVFEM with the various methods like the Integrated Finite 

Difference (IFD) method and the results of the SHE model (Abbott et al., 1986). The tilted V-

catchment numerical experiment conducted by Di Giammarco et al. (1996) is further used by 

numerous researchers such as Panday and Huyakorn (2004), He et al. (2008), Lai (2009), 

CASC2D (digitized from Lai, 2009), 2D fully dynamic wave equation (Costabile et al., 2013) 

and MODHMS (digitized from Yu and Duan, 2014). The simulated discharge hydrograph at 

the outlet of channel of tilted V-catchment by using 2D-VPMM, 2D-DW-Explicit and 

Gridded  Surface  Subsurface  Hydrologic  Analysis  model  (GSSHA)  (Downer  et  al.  

2005), all other method are presented in Figure 4.2 and their performance criteria is presented 

in Table 4.1. Note that the 1D-VPMM channel routing method (Perumal and Price, 2013) 

applicable for routing flow in rectangular channel is applied to routing channel flow in both 

of these 2D-VPMM, 2D-DW-Explicit models. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 4.1. Geometry of the Tilted V-Catchment (Di Giammarco et al., 1996). 
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Table 4.1 The 2D-VPMM model simulation results comparison with 2D-DW-Explicit model 

and other model results (for tilted-v-cathment). 

Model NSE 
(%) 

Qper (%) 

2D-VPMM 99.36 -0.19 

2D-DW-Explicit 98.83 -0.19 

CVFEM (Di Giammarco et al., 1996) 98.04 1.98 

Panday and Huyakorn (2004) 95.56 0.4 

He et al., (2008) 98.12 0.09 

Lai, (2009) 93.86 -0.12 

MODHMS (digitized from Yu and Duan, 2014) 95.90 1.23 

CASC2D (digitized from Lai, 2009) 90.49 -0.22 
 

 

Figure 4.2. Comparison of discharge hydrograph simulated by the 2D-VPMM and 2D-DW-

Explicit models at the channel outlet of the tilted V-catchment along with the simulations of 

various methods as well as benchmark solution (SHE model). 
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 The discharge hydrograph simulation results presented in the Figure 4.2 are obtained 

by using the grid size i.e. ∆𝑥 = ∆𝑦 = 50 m and ∆𝑡 = 6 sec for both the 2D-VPMM, 2D-DW-

Explicit and GSSHA models. The Di Giammarco et al. (1996) used grid size, ∆𝑥 = ∆𝑦 =

50 m and ∆𝑡 = 5 𝑡𝑜 100 sec (adaptive time step) in their CVFEM model whereas He et al. 

(2008) model used grid size i.e. ∆𝑥 = ∆𝑦 = 50 m and ∆𝑡 = 20 sec. Lai, (2009) analyzed the 

stability range of implicit and explicit schemes for this particular problem and found that the 

explicit solver allow use of time step ∆𝑡  up to 30 seconds. However, we have used digitized 

results of all these above methods. Note that in this particular case, the model results of the 

SHE model are considered as the benchmark solution to compare the performance of various 

models as presented in Table 4.1.  From the results shown in Table 4.1 and Figure 4.2, it can 

be revealed that the results of the 2D-VPMM method are slightly better as compared to the all 

other considered rainfall-runoff simulation models. Particularly, the 2D-VPMM model 

perform slightly better than the 2D-DW-Explicit model. Further, it could be observed that the 

execution time required by the explicit model is slightly higher as compared to the 2D-

VPMM model by keeping all the input variables same. In case of GSSHA model, we have 

created DEM for this V-catchment using Water Modelling Software (WMS, 

https://www.aquaveo.com/software/wms-watershed-modeling-system-introduction). 

However, this software is designed to create input data sets of natural watershed for the 

GSSHA model and hence it is expected that while creating the input data set for this small 

catchment, there may some error and hence, the simulation results by GSSHA model are not 

really matching well with the SHE model results and the other models used in this particular 

case.  

 The sensitivity analysis of the 2D-VPMM and 2D-DW-Explicit models results for the 

conservation of the mass is carried out when various spatial and temporal time steps are used 

for simulation by keeping the same input conditions of the SHE model simulation and is 

presented in Figure 4.3. From Figure 4.3, it can be inferred that the 2D-VPMM is slightly 

higher volume conservative than the 2D-DW-Explicit method. In case of 2D-VPMM model 

though the mass conservation error increases with increase with increase grid size, it can be 
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considered that it is negligible for all practical cases. However, the 2D-DW-Explicit method 

exhibit different mass conservation characteristics, though it shows marginally higher error in 

mass conservation as compared to the 2D-VPMM model, but this model is least affected by 

the use different spatial and temporal time steps. The performance evaluation of the 2D-

VPMM and 2D-DW-Explicit models simulations is studied using the performance evaluation 

criteria explained in Section 3.3, by comparing with the simulation results of the SHE model. 

The sensitivity analysis carried out for the 2D-VPMM and 2D-DW-Explicit models is shown 

in Table 4.2.  From the results presented in Table 4.2, it can be inferred that the 2D-VPMM 

model is performing slightly better as compared to the 2D-DW-Explicit model based on used 

performance criteria.  

 

Figure 4.3. Sensitivity analysis of the 2D-VPMM and the 2D-DW-Explicit models for the 

tilted V-catchment. 
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Table 4.2 Performance evaluation of 2D-VPMM and 2D-DW-Explicit models for tilted V-

catchment. 

2D-VPMM 2D-DW-Explicit Model 

Test Case 
 NSE 
(%) 

Qper (%) 
EVOL 

(%) 
 NSE 
(%) 

Qper (%) 
EVOL 

(%) 

∆𝑥 = ∆𝑦 = 25 m 
∆𝑡 = 3 sec 

99.25 -0.19 -0.22 98.65 -0.19 -0.25 

∆𝑥 = ∆𝑦 = 50 m 
∆𝑡 = 6 sec 

99.36 -0.19 -0.24 98.83 -0.19 -0.28 

∆𝑥 = ∆𝑦 = 100 m 
∆𝑡 = 10 sec 

99.54 -0.2 -0.27 99.06 -0.19 -0.33 

∆𝑥 = ∆𝑦 = 200 m 
∆𝑡 = 30 sec 

99.59 -0.22 -0.31 99.00 -0.22 -0.41 

 

4.2  Performance Evaluation Using University of Illinois Experimental Laboratory 

catchment Data 

In order to verify the performance of the 2D-VPMM and 2D-DW-Explicit models, 

these models are applied to simulate the observed hydrographs of the two-dimensional 

overland flow experiments conducted by Shen et al. (1974) on the impervious laboratory 

catchment of the Watershed Experimentation System at the University of Illinois, Urbana-

Champaign. The observed hydrographs of eight different events of these laboratory 

experiments subjected to different rainfall inputs for different laboratory catchment 

configurations are reported by Maksimović and Radojković (1986). The geometry of this 

laboratory catchment is shown in Figure 4.4.  

The experimental catchment consists of two symmetric planes each of length L and 

width W/2 characterized with two slopes Sox and Soy. The geometric characteristics and 

rainfall information for different events are shown in Table 4.3. The hydrographs obtained for 

this case by the 2D-VPMM and 2D-DW-Explicit models are compared with the experimental 

results shown in Figure 4.5 to Figure 4.12. The numerical grid size of 3.0355 m (x) × 3.0480 

m (y) and simulation time step dt = 6 sec is used in this case for overland flow simulation. 

The performance evaluation criteria obtained while simulating the outflow discharge 

hydrograph for each considered events for both of these 2D-VPMM and 2D-DW-Explicit 

models are presented in Table 4.4. 
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Figure 4.4. Geometry of the University of Illinois laboratory catchment. 
 
 
 
 
Table 4.3. Geometrical characteristics and the rainfall input for different events considered 

in the University of Illinois laboratory catchment. 

 

Event 

Number 

L (m) W (m) S0x 

(%) 

S0y 

(%) 

Rainfall 

Intensity 

(mm /min) 

Rainfall 

Duration 

(sec)   

5 12.192 12.142 0.5 0.5 2. 97 240  

6 12.192 12.142 0.5 0.5 2. 97 120  

7 12.192 12.142 0.5 0.5 2. 97 60  

8 12.192 12.142 0.5 0.5 2. 97 30  

9 12.192 12.142 1.0 0.5 1. 90 240  

10 12.192 12.142 1.0 0.5 1. 90 120  

11 12.192 12.142 1.0 0.5 1. 90 60  

12 12.192 12.142 1.0 0.5 1. 90 30  
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Note that the to simulate the outflow hydrographs of all these events using the 2D-

VPMM and 2D-DW-Explicit models, the 1D-VPMM method (Perumal and Price, 2013) is 

incorporating for routing flow in the triangular channel while accounting for the contribution 

of lateral flow. From Table 4.3, it can be seen that the overland planes of events 5 to 8 of 

these V-catchment system are characterized by equal slopes in both x and y directions (S0x = 

S0y = 0.005) subjected to an uniform rainfall intensity of 2.967mm/min for a duration of 240, 

120, 60 and 30 secs, respectively, corresponding to these events; whereas, the overland 

planes of this system corresponding to the events 9 to 12 are characterized by different slopes 

in x and y directions (S0x = 0.01; S0y = 0.005), subjected to an uniform rainfall intensity of 

1.90mm/min for a duration of 240, 120, 60 and 30 secs, respectively, corresponding to these 

events. For the events 5 to 8, the calibrated roughness is 0.016, whereas for the events 9 to 

12, the calibrated roughness is considered as 0.015. This is because these latter events are 

subjected to reduced uniform rainfall intensity in comparison with the events 5 to 8 causing 

the overall roughness to be lesser than that of the former events. For those events (events 7, 8, 

11 and 12), where the rainfall duration is smaller than the time of concentration, the 

roughness decreased as a result of cessation of the rainfall and for such events the decreased 

roughness of the plane is considered as 0.011 after the cessation of rainfall.  

 

 

Figure 4.5. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-Explicit 

models with the observed hydrograph (University of Illinois, Event 5).    
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Figure 4.6. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-Explicit 

models with the observed hydrograph (University of Illinois, Event 6).    

 

Figure 4.7. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-Explicit 

models with the observed hydrograph (University of Illinois, Event 7). 
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Figure 4.8. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-Explicit 

models with the observed hydrograph (University of Illinois, Event 8). 

 

Figure 4.9. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-Explicit 

models with the observed hydrograph (University of Illinois, Event 9). 
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Figure 4.10. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-

Explicit models with the observed hydrograph (University of Illinois, Event 10). 

 

Figure 4.11. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-

Explicit models with the observed hydrograph (University of Illinois, Event 11). 
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Figure 4.12. Comparison of the simulated hydrograph by the 2D-VPMM and 2D-DW-

Explicit models with the observed hydrograph (University of Illinois, Event 12). 

 

Table 4.4. Performance evaluation of 2D-VPMM and 2D-DW-Explicit models for University 

of Illinois laboratory catchment rainfall-runoff events. 

Event 
Number 

2D-VPMM 2D DW Explicit 

dt=6sec dt=6sec 

η 
Qper (%) tqper (sec) 

η 
Qper (%) tqper (sec) 

  (%) (%) 

5 98.36 3.24 73.1 95.71 3.24 73.10 

6 98.87 0.16 -10.37 91.95 -1.35 -16.29 

7 98.11 -1.48 0 88.18 -6.98 -17.53 

8 96.57 -9.18 0 57.60 -23.22 -21.48 

9 99.09 -0.41 98.56 97.83 -0.41 98.56 

10 97.61 -1.66 4.81 94.08 -2.30 4.81 

11 98.12 -9.61 0 74.15 -11.67 -11.16 

12 95.41 -5.55 4.5 59.73 -24.45 -13.92 
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Referring to Figures 4.5 to Figure 4.12 and Table 4.4, it can be seen that the 2D-

VPMM model is able to produce the outflow discharge hydrographs with quite high accuracy 

almost above 97% except for events 8 and 12. For the events 8 and 12, the efficiency of 

reproduction for the 2D-VPMM model given by η is around 96.57 % and 95.41 %, 

respectively, somewhat lower than that of other events. However, the efficiency of 

reproduction for the 2D-DW-Explicit model given by η were reasonably very good in case of 

events 5, 9 and 10 (η > 94%), acceptable in case of events 6 and 7 (η = 91.95 % and 88.18 %, 

respectively). However, in case of events 8, 11and 12, the 2D-DW-Explicit model has 

performed very worst as the efficiency of reproduction given by η were 57.60 %, 74.15 % 

and 59.73 %, respectively. From Figures 4.5 to 4.12, it can be concluded by visualization of 

1D-VPMM and 2D-VPMM model simulation results that there is necessity to use the two 

dimensional model as it is presenting the actual geometry and flow process. It can be revealed 

from all these simulation results for events 5 to 12 (also see Figures 4.5 to 4.12), the 2D-

VPMM model is performed far better than the 2D-DW-Explict model. These simulations 

demonstrate that the 2D-VPMM model is highly efficient for all the cases of simulation, 

except for the events 8 and 12. However, the performance of the 2D-DW-Explicit model is 

very worst particularly for events 8, 11 and 12. The plausible reason one can attribute for 

such behavior of these two events could be due to shorter duration of rainfall input applied 

for these events. It may also be noticed that there are discharge measurement errors in all 

these experimental events as the values of discharges at a given time are not the same for 

different events during the same period of rainfall application with the same intensity of 

rainfall. Furthermore, it was revealed that while the use of a larger time interval for the 

explicit scheme computation leads to unstable solutions, stable solutions are obtained using a 

relatively small time intervals. However, among the stable solutions obtained using a 

relatively larger time intervals for numerical solutions result in early arrival of the runoff 

hydrographs in comparison with the benchmark hydrographs. Even with the use of smaller 

time interval, close reproduction of the benchmark hydrographs could not be achieved. It is 

inferred from the study that one has to apply caution while accepting the stable solutions of 

the two-dimensional overland flow model obtained using the explicit finite difference 

scheme. 
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CHAPTER - 5 

   CONCLUSIONS AND RECOMMENDATIONS  

This study was conducted with aim to achieve mainly two objectives: (1) 

development of computer code for the two dimensional overland flow simulation by using 

two dimensional diffusive wave explicit model (2D-DW-explicit model) which employing 

the explicit finite difference scheme (similar to the explicit numerical scheme used in the 

CASC2D model developed by the Colorado State University, USA) and (2) to carry out the 

performance evaluation by comparing the simulation results of the 2D-DW-explicit model 

with those obtained by the 2D-VPMM model (which employ the storage-based Muskingum-

McCarthy schemes) using experimental plot data available in the literature.  

The performance of the 2D-VPMM and 2D-DW-Explicit model for two dimensional 

overland flow simulation is carried out using hypothetical tilted V-catchment rainfall-runoff 

simulation event studied by Di Giammarco et al. (1996) and University of Illinois 

experimental laboratory catchment data comprised of observed hydrographs of the two-

dimensional overland flow experiments from eight events conducted by Shen et al. (1974) on 

the impervious laboratory catchment of the Watershed Experimentation System at the 

University of Illinois, Urbana-Champaign. Maksimović and Radojković (1986) have 

presented rainfall-runoff data of these eight different events subjected to different rainfall 

inputs for different laboratory catchment configurations in the tabular form. Out of these two 

data sets, rainfall-runoff simulation event studied by Di Giammarco et al. (1996) is widely 

used in the literature to demonstrate the suitability as well as accuracy of the newly 

developed 1D and 2D numerical models while the University of Illinois experimental 

laboratory catchment data is first time introduced by the PI and Co-PI’s to verify the 2D-

VPMM model and in the present study. Based on these conducted study following 

conclusions are drawn: 

1. The computer code developed for two dimensional overland flow simulation by using 

2D-DW-explicit model is able to reproduce the benchmark solution as well as other 

available 2D overland flow models simulation results including the 2D-VPMM overland 

flow simulation model results with higher Nash-Sutcliffe efficiency (η ) for the tilted V-

catchment. Note that in order to simulate the flow in rectangular channel, 1D-VPMM 

channel routing method applicable for flow routing in the rectangular channel is used for 

simulation of outflow discharge hydrograph at the end of channel by the 2D-DW-Explicit 

and 2D-VPMM models. 
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2. Further, the performance evaluation of these two overland flow simulation models based 

on the use of titled V-Catchment data suggests that the 2D-VPMM method perform better 

than the 2D-DW-Explicit model and all other considered 2D overland flow simulation 

models. Further, it was observed that the execution time required by the 2D-DW-Explicit 

model is slightly higher as compared to the 2D-VPMM model by keeping all the input 

variables same.       

3. Furthermore, the sensitivity analysis conducted based on the use of tilted V-catchment 

data suggests that the 2D-VPMM model is able to preserve slightly higher volume than 

the 2D-DW-Explicit model. In case of the 2D-VPMM model though the mass 

conservation error increases with increase with increase grid size, it can be considered 

that it is negligible for all practical cases. However, the 2D-DW-Explicit model exhibit 

different mass conservation characteristics, as it is least affected by the use different 

spatial and temporal time steps.   

4. The performance evaluation of these two models based on the University of Illinois 

experimental laboratory catchment data use suggests that the 2D-VPMM model is able to 

produce the outflow discharge hydrographs with quite high accuracy (with η > 97%) 

except for events 8 and 12. For the events 8 and 12, the 2D-VPMM model able to 

simulate hydrographs with η values 96.57 % and 95.41 %, respectively. The 2D-DW-

Explicit model is able to simulate the outflow discharge hydrographs reasonably well in 

case of events 5, 9 and 10 (η > 94%), acceptable in case of events 6 and 7 (η = 91.95 % 

and 88.18 %, respectively) and performed very worst in case of events 8, 11 and 12 (η = 

57.60 %, 74.15 % and 59.73 %, respectively). These results clearly brought out the 

accuracy, robustness, stability, flexibility and practicability of the 2D-VPMM overland 

flow model. 

5. Further, it can be revealed that the 2D-VPMM model can be easily applied to one-

dimensional overland flow simulation also. The comparison of 1D-VPMM and 2D-

VPMM model brought out the necessity to use the two dimensional overland flow model 

for simulating the rainfall-runoff cases on spatially varied topographic land surfaces.   

Based on this study, it is recommended that the 2D-VPMM overland flow simulation 

model is an viable option that can be applied for its use in large scale hydrological models 

coupled with atmospheric models to study the water resources problems and climate change 

impact assessment due to flexibility offered by this model in use of very large spatial and 

temporal computational grid size.   
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