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ABSTRACT: This paper describes the rationale behind the Multiple Reservoir Inflow Forecasting System and how it is
specified to issue 12 months long probabilistic forecasts across selected reservoir systems in Australia. The forecasting system
enables development of 12 months long monthly flow scenarios (probabilistic forecasts) issued 'based on a mix of prevalent
catchment and climate conditions, so as to simulate the likely evolution of the reservoir network over the coming 12 months for
medium term planning and operations. The probabilistic forecasting system uses previous season flow as an indicator of
catchment influences and selected sea surface temperature anomalies across varying locations and time lags as climatic
indicators in its formulation. Given the considerable uncertainty that exists in choosing relevant climatic indicators, a flexible
model structure (or multiple climatic indicators) is adopted, leading to the formulation of multiple predictive models, each aiming
to represent the impact different climate phenomena have on the responses. Examples of such multiple models could be an El
Nino Southern Oscillation indicator at a short time lag for one model, and a combination of the Inter-decadal Pacific Oscillation
and a lagged Indian Ocean dipole influence for another model. The inflow scenarios that are finally predicted thus come from a
collection of such models, thereby enabling an appropriate representation of the structural uncertainty that exists in this
prediction problem. The above forecasting system is illustrated using two case studies representing the Sydney Catchment
Authority water supply system and the Tasmanian hydroelectric system. The advantages and drawbacks of using the above
mentioned model averaging logic are discussed, and modifications suggested that can improve the predictive performance and

consequent reservoir operations.

INTRODUCTION

Medium to long-term probabilistic forecasting of
rainfall or streamflow involves predicting (often as a
conditional probability distribution) the responses
being studied as a function of lead time, conditional to
relevant climatic and catchment forcings. Examples of
such probabilistic forecast methods are many,
including those reported in (Sharma, 2000a; Sharma,
2000b; Sharma et al., 2000), most such approaches
providing users with the probability with which the
response may fall in a designated category (such as
“low”, “medium” or “high™) or with which it may
exceed a specified threshold. A limitation of such
forecasts is that they cannot be used to ascertain the
risks associated with undertaking longer-term water
planning. For such planning to be done, the
probabilistic forecasts must link across time (to the
maximum lead time they are designed for) and across
the multiple nodes of the water system they represent.
This allows the forecasts to be used as representative
scenarios or realisations indicating how inflows may
evolve over the medium to long-term planning
horizon, thereby enabling water managers to identify

operating policies that maximise profits and minimise
risks of system failure.

This paper presents a probabilistic forecasting
procedure termed the Multiple Reservoir Probabilistic
Inflow forecasting System (MRFLO) that issues
multiple realisations or scenarios of seasonal and
monthly inflows to all nodes of a reservoir system
from defined starting points for the coming twelve
months. These realisations are issued taking into
account the dominant climatic influences on the
evolution of the streamflow in the catchment, as well
as the streamflow at preceding lags to represent the
persistence introduced due to the catchment storage
depletion mechanism. As identification of a definite
climate forcing is difficult for most catchments in the
world, there is considerable uncertainty in specifyirig a
unique predictive modeling form. A model combination
or a model averaging alternative is proposed here as
the basis for representing this model structural
uncertainty, the individual models being formulated
using a semi-independent climatic forcings, so as to
enable representation of the full uncertainty one would
expect in the resulting inflows. It is seen that the use of
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these multiple models results in more stable and
consistent forecasts being issued, as compared to the
case where a single model were being used. However,
the combination of multiple models also results in the
predictions tending to converge towards the mean
observed flow value, a consequence explained using
the Central Limit Theorem, as a result of which there
is a tendency of low flows being overestimated and
high flows underestimated on an expected value basis.

The sections that follow describe the basis of the
method in greater detail and outline its application for
the multiple reservoir systems operated by Hydro-
Tasmania and by the Sydney Catchment Authority,
two catchment systems that have rather different
climatic controls and predictability associated with
them. The paper is organised as follows. The next
section details the logic implemented in formulating
MRFLO. The section that follows sets out the details
of the two applications and the methods that were used
to test the suitability of the results. The next section
details the results from the applications, which is
followed by the conclusions drawn from the work.

METHODOLOGY

An outline of the framework used in formulating the
probabilistic forecasting model is presented below.
The framework consists of three main steps. The first
step involves formulating key aggregate system
response indicators that can be presumed to be
influenced by climatic forcings that are substantially
different from one another. The second step involves
formulation of the probabilistic forecasting model,
which entails identification of predictor variables from
a list of candidate predictors that are deemed to
influence the seasonal aggregate response variable
under study, and, the representation of spatio-temporal
dependence in the seasonal probabilistic forecasts. The
final step is the disaggregation of the seasonal
probabilistic forecasts of the aggregate response to
monthly inflows at individual nodes of the reservoir
system. More details on the individual steps alongwith
related details of the two study areas—the method is
applied to are presented below.

Probabilistic Forecasting Model Structure

The probabilistic forecasting procedure used here
conditionally simulates multiple response variables
through pre-selected system predictors. Given the
uncertainty associated with selection of predictor
variables, especially when predicting at long lead
times, the above prediction model is formulated as an
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ensemble model combination or, multiple predictive
models with near-independent predictive bases are
formed and resulting predictions collated to form an
ensemble of likely response scenarios. The steps
involved in the above formulation involve selection of
predictor variables from sea surface temperature
anomalies and catchment indicators, and are detailed
as follows:

1. For each aggregate response variable, identification
of multiple (set equal to 8 in this study) pseudo-
independent order 1-2 predictors of the system
being forecast are identified, the predictor
identification being performed wusing the
nonparametric partial mutual information criterion
(Sharma, 2000). Apart from the use of partial
mutual information, which is a generic measure of
dependence between variables and manages to
ascertain dependence without needing to make
assumptions on the nature of dependence (linear or
nonlinear), consideration is given to the fact that
the uncertainty in observations is nonstationary, to
account for which observation standard errors that
reflect the change in error characteristics over time,
are used in identifying the predictors.

2. In order to represent temporal dependence in the
probabilistic forecasts, the first predictor (order 1
predictor) in the above identification is selected as
the preceding response value. Use of the previous
response helps impart a Markov order 1
dependence in the seasonal probabilistic forecasts.

3. ldentification of subsequent predictor variables that
offer the best partial dependence to what is
described by the leading order 1 and 2 predictors. A
maximum of 4 (four) predictors were identified for
each component model, that leaves us with 5
models each of which are formulated with the aim
of representing relatively independent mechanisms
(except for the common first predictor representing
the previous season’s flow) that contribute to
variability in the response.

4. Identification of the optimal influence weight
associated with each predictor variable, this
influence weight collapsing to zero in situations
where the partial usefulness of an individual
variable was negligent. This influence weight was
ascertained using a partial correlation based logic
implemented using nonparametric kernel density
estimation techniques.

5. Identification of the probability of selecting each
one of the 8 models that are being used to
formulate the combined probabilistic forecast. This
weight was estimated based on the performance of
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the model averaged forecasts in a leave-one-out
cross-validation setting, the weight being estimated
using a nonlinear constrained optimisation
algorithm whose objective was to minimise leave-
one-out cross-validation mean square error.

Note that the above procedure enables formulation of
the eight component models, each of which have four
predictor variables, the first of these variables being
common (lag one response variable for the case of the
Tasmanian study, and the aggregate or summed lag
one response for the case of the Sydney Catchment

Authority study). The second predictor in these five

sets is ascertained using partial mutual information,
with eight such predictors being chosen such that the
cross-dependence between them is minimal while
maintaining the partial mutual information to be high.
Order 3 and 4 predictors are then chosen using partial
mutual information without taking cross dependence
into account, the assumption being that a unique order
2 predictor (that is relatively independent of other
order two predictors) will lead to unique higher order
predictors and a predictor set that satisfies the pseudo-
independence argument that was raised before.

Probabilistic Forecasting Algorithm

An algorithmic description of the probabilistic
forecasting procedure is as follows:

1. Form aggregate response variables X; , ,, s = site,
g = season, = year.

2. Form multiple predictive models for each aggregate
variable—

X 0.1l Zusicg, v

X g0 Zusag o

where Zyq ) represents an independent basis
consisting of [X; ;1 ,, selected land-ocean-atmosphere
indicators].

3. Estimate probability of sampling from each
model—p(Ms1), p(Ms2), ... using cross-validation.

4. For a given realisation, for each aggregate variable,
probabilistically select the model to be used.

5. Sample X, ; ;| Zurq o= F'(g,) where Cor(s,, €y)
# 0 but specified such that Cor(X; , ,, X;:,, ) equals
the observed spatial cross-correlation.

6. Update time (g, 7) and predictor vector Zyq, 1 by
including the sampled X; , , as the new predictor
value.

Note that the above conditional simulation was
performed using a kernel density based nonparametric
simulation procedure as outlined in Sharma (2000b). It
should also be noted that the use of non-independent

uniform random numbers (g;, €y) is aimed at ensuring
an appropriate representation of the spatial dependence
that exists in the response variables, and the use of a

- fixed order one predictor in the multiple conditional

generation models used, helps impart a Markov order 1
dependence structure in the sequences generated.

The procedure outlined in Wilks (1998) for
specifying the dependence structure between the
uniform random numbers (g,, €y) involves an empirical
specification of the correlation matrix in a transformed
Gaussian variable space, such that the correlations
between the generated responses equal the historical
value. The empirical nature of this procedure makes it
computationally excessive and also leads to results that
are unstable when the historical correlation is high. An
alternate procedure was developed in course of this
study to overcome the above mentioned problem. This
procedure is nonparametric_and involves resampling
vectors of (g, &) from estimates formed based on the
historical record. The steps involved in forming the
above mentioned random number vectors are:

1. Denote historical estimates of the uniform random
numbers as (e,, ).

2. Ascertain the rank of historical aggregate variable
observations X, and X;;, . The rank for the i°th
observation is denoted as (7).

3. Estimate the empirical historical uniform random
number as:

, (D)
SiTON+1
where N denotes the number of observed values.

Consequently, if the ’th observed pair (X 4, i» Xy74, 1)
has ranks ((i), (i')), the associated random numbers

N+1'N+1
of the N empirical uniform random number pairs in
step 3 for use in the conditional generation of
response variable values (as stated in step 5 of the
algorithm).

will be (ﬁ QJ 4. Randomly select any

It should be noted that while the uniform random
numbers as generated above will take definite values
as calculated in step 3 of the above algorithm, this has
no practical limitation on the generation of response
variables as the conditional generation procedure leads
to new and unique realisations.

As pointed above, the Wilks (1998) procedure was
found to be suitable in cases where the historical cross
correlations did not become exceptionally high
(greater than 0.8). With one of the two case studies
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results are presented for next, the historical correlations
were excessive, as a result of which step 5 of the
algorithm was modified to simulate a multivariate
response vector consisting of the entire aggregate flow
vector using a conditional multivariate probability
density estimate of the aggregate responses.

Study Areas

The two study areas results are reported for were the
Tasmanian Hydro-electric commission in Tasmania,
Australia, and the Sydney Catchment Authority
reservoir system in New South Wales, Australia.
Hydro-Tasmania operations cover reservoirs spread
across the state of Tasmania. The main catchments
covered are represented in Figure 1.

- PIEMAN-ANTHONY
- MERSEY-FORTH
- GREAT LAKES/SOUTH ESK
- DERWENT
- GORDON-PEDDER

- KING

Fig. 1: Main catchments representing the Tasmanian
hydro-electric system

The spatial cross-correlations evaluated on a
seasonal basis across the six catchment systems in
Figure 1 range from 0.5 to 0.97, with the cross-
correlations between the catchment systems excluding
the Great Lakes (system 3) catchment falling in the
high 0.8-0.97 range. This is a result of all catchments
except the Great Lakes being influenced by frontal
systems that originate from the western side of
Tasmania, the impact of such western influences being
smaller in the Great Lakes system.

As a result of the above observations, it was deemed
appropriate to form two aggregate response variables
representing the entire Tasmania reservoir system,
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these being denoted as “WCD” (catchments 1, 2, 4, 5, 6)
and CGL (catchment 3) in the remainder of this paper.

The Sydney Catchment Authority water supply
system (Figure 2) consists of 11 major water supply
dams, all in the vicinity of Australia’s largest city,
Sydney. The climatic influences that effect variability
across these dams are similar, because of which the
cross-correlations between the seasonal inflows in
these dams are high (greater than 0.8). Three regional
clusters of dams can be identified, and are used in
formulating the probabilistic forecasts described next.
These are depicted in Figure 2, and shall be referred to
as WWA, METRO and SHOAL in the results
presented later. It should be pointed out that the WWA
response variable includes Warragamba dam, which
supplies nearly 80% of the water to Sydney, and thus
has considerable importance in the formulation of the
probabilistic forecasts. The cross-correlations between
these three aggregate variables range from 0.77 to 0.92
(on a seasonal basis), suggesting that the differences
between the climatic factors that influence variability
in the catchments may not be significant.

APPLICATION AND RESULTS

The probabilistic forecasting model was applied to
predict seasonal and monthly flows from four defined
start points in the year (March, June, September,
December) for the next 12 months. Predictions were
issued on a seasonal as well as on a monthly basis, the
monthly predictions being generated based on the
seasonal values using a simplistic method of fragments
approach. The results presented next are obtained in
two application settings—cross-validation for inflow
data upto 1998, and pure-forecasts for inflow data
between 1999 and 2004 (2006 for the Sydney
Catchment Authority application). The pure-forecasts
were issued using the model that was developed based
on data till 1998, hence representing a situation
analogous to one in which the model will finally be
used. If one were to assume that the inflows for the
period represented by the pure forecasts will be similar
to the flows in the pre-1999 period, one should expect
the model to perform similarly in both segments. All
the results presented next are based on the issuance of
100 realisations, each of them 12 months long, from
the four starting points indicated before. Results are
assessed on the forecasting models ability to simulate
the correct spatio-temporal dependence structure, as
well as reduce the predictive uncertainty through the
use of the additional climate information utilised in
issuing the probabilistic forecasts.
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WWA = Warragamba (6) + Woronora (5)

SHOAL (Shoalhaven dams) = Wingecarribee (7) + Fitzroy Falls (8) + Tallowa (9)
METRO (Metropolitan dams) = Cataract (1) + Cordeaux (2) + Avon (3) + Napean (4)

Fig. 2: Main reservoirs constituting the Sydney Catchment Authority Water Supply system.
/Modified from www.sca.nsw.gov.au)

Tasmanian Application

Table 1 presents the autocorrelation attributes of the
generated and observed aggregated flow variables. As
can be inferred from the table, the Markov order 1
assumption serves well in representing dependence in
the seasonal aggregate response.

The dependence characteristics at individual nodes
are also of interest. The lag one seasonal auto-
correlation at individual system nodes (for three
seasonal combinations similar to Table 1) are illustrated
in Figure 3. The aggregate flows are disaggregated to

nodal flows using a simple method of fragments
approximation (equivalent to finding the nearest
neighbour of the generated aggregate flow in the
historical record, and scaling nodal flows to maintain
summation to the generated value). While the seasonal
autocorrelation is not as well represented as it is for the
case of the aggregate flow variable in Table 1, the
results are acceptable given the use of a Markov order
one predictor at the aggregated response variable scale.
Note that further improvements are possible if a more
elaborate disaggregation approach is adopted.
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Table 1: Lag 1 autocorrelation in seasonal aggregate
response variables. “H" and “S” denote historical or
simulated, while “L1-2" etc. denote the correlations
between seasons at Lead 1 and 2 (in this case MAM and
JJA). AGG1 and AGG2 represent WCD and CGL
response variables respectively
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lead 1 (1-3 months ahead), and hence are expected to
deteriorate if earlier forecasts are inaccurate.

Table 3: R for seasonal aggregate response variable
probabilistic forecasts issued in March for lead times of 1
to 4 seasons. Variable AGG1 represents the WCD

aggregate seasonal
represents the CGL aggregate seasonal response

response, while variable AGG2

R? L1 L2 L3 L4
AGG1 0.47 0.57 0.53 0.49
AGG2 0.56 0.59 0.49 0.51

ACF L1-2 L2-3 L3—4
H-AGG1 0.22 0.38 0.1
H-AGG2 0.58 0.47 0.1
S-AGG1 0.21 0.36 0.05
S-AGG2 0.56 0.51 0.04
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Fig. 3: Lag one seasonal autocorrelation at individual
nodes (total nodes 37, for 3 seasonal pairs) of the
reservoir system

Table 2 presents similar results detailing the ability
to represent spatial dependence across simulations. It
can be noted that while medium dependence is well
simulated, high spatial dependence is difficult to
simulate with the Wilks (1998) methodology adopted
here.

Table 2: Historical and simulated spatial cross-
correlations between aggregate seasonal responses for
probabilistic forecasts issued in March

CRCOR L1 L2 L3 L4
HIST 0.31 0.64 0.45 0.23
SIM 0.34 0.38 0.42 0.25

Table 3 presents the R-square statistics of the
conditional forecasts issued in March for the coming
12 months. It should be noted that the lead 2 forecasts
(4-6 months ahead) depend on the forecast issued at

Given that the probabilistic forecasts described here
are aimed to be used to simulate system behavior, it is
imperative that they be able to simulate the kind of
volumes that are likely to occur. This depends strongly
on the ability of the sequences to mimic the spatio-
temporal dependence that is observed. Results
documenting the accuracy of the sequences in
simulating aggregated volumes (from 1-6, 1-9 and 1—
12 months ahead) are presented in Tables 4 and 5. It is
interesting to note that the accuracy of the volumes a
full 12 month ahead is remarkably high. This would
not be possible were spatial and temporal dependence
not simulated well. The conditional distribution of
the 1-12 month aggregated volumes is presented in
Figure 3.

7000 8000 9000
L

Estimated

4000 5000 6000
1

1 I T T 1 1

4000 5000 6000 7000 8000 9000

Observed

Fig. 4: Aggregate twelve months probabilistic forecast
results for Net System Inflows issued in March. The
vertical lines represent the 10" to 90" percentiles of the
probabilistic forecasts issued. In cases where the
observed flow falls within these limits (the line intersects
the 45 degree line) the observed flow value is indicated
by an open circle. In cases where this is not so, it is
indicated by a closed circle




Coping with Model Structural Uncertainty in Medium Term Probabilistic Streamflow Forecasting Applications 881

Table 4: R results for cumulative aggregate variables up
to a lead time of 4 seasons, for probabilistic forecasts
issued in March. Note AGG1 and AGG2 refer to the WCD
and CGL aggregate seasonal response variables, while
“L” refers to the lead time

R? L1 L1-2 L1-3 L1-4
AGG1 0.47 0.6 0.6 0.6
AGG2 0.56 0.62 0.62 0.6

Table 5: R? for cumulative Net System Inflow probabilistic
forecasts issued in March (formed by adding individual
aggregate response variable values) for lead times of 1-4
seasons. Note that AGG1 + 2 represents the cumulative
sum of WCD and CGL (or, the cumulative net system inflow)

R’ L1 L1-2 L1-3 Li—4
AGG1+2 0.58 0.65 0.63 0.62

Note that while the results illustrated in Figure 4
and Tables 4 and 5 point to a high accuracy of the
probabilistic forecasting system, certain limitations are
also visible. The main limitation that can be spotted
from the results
oversimulation of low observed flows and an
undersimulation of the high observed flows. This bias
is a likely result of the model averaging procedure
adopted, with the bias being possible to reduce if one
considers an alternative where the model weights were
not static as was the case here, but allowed to evolve
based on past history of the accuracies associated with
individual models. Work on such a formulation is
currently underway.

In addition to the above results, the models were
tested in a pure forecasting mode using data from 1998
to 2004. The tests involved running the probabilistic
forecasts starting in each of the four seasons for the
coming 12 months, and comparing results with those
" observed. Pooling together the results for all seasons
resulted in adequate number of cases being evaluated
(number of cases being number of years x number of
seasons * 4 seasons representing the coming year).
The overall coefficient of determination from this
exercise was recorded at 0.59 (for WCD) and 0.47 (for
CGL), results that are not dissimilar to those reported
in Table 3. These pure forecast validation results lend
more credibility to the cross-validation results reported
elsewhere in this paper, and provide a strong case for
the utility of the forecasting system in water manage-
ment applications.

Sydney Catchment Authority Application

Table 6 presents the lag-one autocorrelation of the
aggregate seasonal response Sydney Catchment Autho-

rity inflow. The table indicates that the seasonal
persistence structure was well represented in the
probabilistic forecasts, with all the lag one correlations
being represented within tolerance limits. This is a
result of the Markov order-one representation used in
formulating the probabilistic forecasting model. Note
that the lack of representation of the lag one auto-
correlation for Quarter 4 is not surprising, given that
Q4 represents a lead 4 forecast, which is heavily
dependant on the quality of forecasts for quarters 2
and 3.

Table 6: Lag 1 autocorrelation of observed data and
simulations for forecasts issued in quarter 1. The
autocorrelation for the simulations is estimated as the
average of the autocorrelations for each probabilistic
forecast

in Figure 4 pertain to an

Historical Q1 Q2 Q3 Q4
WWA -0.10 0.60 0.30 0.23
METRO -0.31 0.42 0.05 0.15
SHOAL -0.30 0.44 0.22 0.18
Probabilistic Forecasts

WWA 0.51 0.18 0.08
METRO 0.32 0.01 0.07
SHOAL 0.39 0.09 0.16

Table 7 represents the spatial cross-correlations
simulated across the four lead times across the three
response variables. Representation of these spatial
dependence attributes was a key consideration in the
formulation of the probabilistic forecasting model. The
multi-variate probabilistic forecasting of all responses
simultaneously, along with the use of a common
aggregate system predictor (the lag 1 aggregate inflow
for the preceding season) results in an adequate
representation of the spatial dependence attributes.

Table 8 presents the Coefficient of Determination
(often represented as R’ but used here to represent the
fraction of the variance of observed flows that is
explained) for the seasonal probabilistic forecasts for
Leads 1 to 4. Note that the results for Lead 1 represent
forecasts for Quarter 1, results for Lead 2 represent
forecasts for Quarter 2 (JJA), etc.

Tables 9 and 10 present the Coefficient of
Determinations for probabilistic forecasts aggregated
over multiple lead times (for each response variable)
and over the entire system (summation of all the
responses aggregated over the indicated lead time). A
good performance in these aggregate variables is
indicative of a proper representation of spatio-temporal
dependence between the probabilistic forecasts for
each response.
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Table 7: Historical and Forecast Cross Correlations for Leads 1 to 4

Historical Probabilistic Forecasts

Q1 Wwwa METRO SHOAL LEAD1 WWA METRO SHOAL
WWA 1.00 0.84 0.80 WWA 1.00 . 0.81 0.78
METRO 0.84 1.00 0.78 METRO 0.81 1.00 0.76
SHOAL 0.80 0.78 1.00 SHOAL 0.78 0.76 1.00

Q2 WWA METRO SHOAL LEAD2 WWA METRO SHOAL
WWA 1.00 0.92 0.86 WWA 1.00 0.89 0.83
METRO 0.92 1.00 0.86 METRO 0.89 1.00 0.80
SHOAL 0.86 0.86 1.00 SHOAL 0.83 0.80 1.00

Q3 WwaA METRO SHOAL LEAD3 WIWA METRO SHOAL
WWA 1.Q0 0.89 0.82 WWA 1.00 0.84 0.79
METRO 0.89 1.00 0.80 METRO - 0.84 1.00 0.74
SHOAL 0.82 0.80 1.00 SHOAL 0.79 0.74 1.00

Q4 WWA METRO SHOAL LEAD4 wwa METRO | SHOAL
WWA 1.00 0.91 0.76 WWA 1.00 0.87 0.73
METRO 0.91 1.00 0.86 METRO 0.87 1.00 0.82
SHOAL 0.76 0.86 1.00 SHOAL 0.73 0.82 1.00

Table 8: Coefficient of Determination (R?) for forecasts
issued in quarter 1 for individual quarters corresponding
to lead times of 1 to 4 seasons

Q1 Start WWA Metro Shoal
Lead 1 0.244 0.261 0.446
Lead 2 0.095 0.074 0.164
Lead 3 0.336 0.247 0.412
Lead 4 0.237 0.322 0.255

Table 9: Coefficient of Determination (R?) for forecasts
issued in quarter 1 that are aggregated over multiple lead
times, for each response variable

Q1 Start WWA Metro Shoal
Lead 2 0.338 0.325 0.324
Lead 3 0.334 0.297 0.312
Lead 4 0.357 0.309 0.306

Table 10: Coefficient of Determination (R?) for forecasts
issued in quarter 1 aggregated over multiple lead times
and over the entire system

Q1 Start Lead 1
0.452

Lead 2
0.357

Lead 3
0.347

Lead 4
0.355

Forecasts for the entire year issued in Quarter 2 are
presented in Figure 5. The overall R® statistic
associated with the forecasts is 0.36, significantly
lower than the corresponding statistics with respect to
the Tasmanian forecasting system. However, it is

notable that the representation of the temporal and
spatial dependence that the model structure ensures,
results in significant accuracy in the forecasts one-year
out into the future. Readers are reminded that the
forecasts for lead times of 2, 3 and 4 seasons are based
on the forecasted inflows for the previous seasons,
hence cannot be of a high quality unless dependence
attributes are well modeled.

o
o
o -
=
(=]
Q
=] b
(=]
o
£ gl )
E ®©
% Q/ b [ ]
4
L v A
8 . i 1]
= ! [ ]
5 ] *
o
(=
=}
o™
T I 1 1 I
2000 4000 6000 8000 10000
Observed

Fig. 5: Simulated and observed aggregated flows for
Quarters 2, 3, 4 and 1 (of the next year) for forecasts
issued in Quarter 2
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As was done with the Tasmanian forecasting
system, the Sydney Catchment Authority forecasts
were also evaluated in a pure-forecast mode, with
pure-forecasts being issued from 1999 to 2006.
Coincidently, this pure forecast period coincided with
one of the lowest flow periods ever recorded in the

history of the Sydney Catchment Authority inflows.

As a result, the bias noticeable in the forecasts of the
low flows in Figure 5, was all the more evident for this
period, and the accuracy that was noted was negligible
(R? estimated for these years being less than zero).
Hence, the pure forecasts did not allow a confirmation
of the results that were obtained in the cross-validation
mode, instead pointing out to the main limitation of the
forecasting procedure, which is the bias that is
introduced especially for the very low and high flows
as a result of multiple model results being combined.

DISCUSSIONS

This paper presented a multi-reservoir inflow fore-
casting system that issues probabilistic forecasts of
inflows on a monthly basis for the next 12 months at
multiple nodes of a reservoir system. These inflows
can then be used as inputs into a reservoir simulation
approach, and optimal operating policies for the
coming twelve months formulated. The probabilistic
forecasting system is developed using climate
information as represented by reconstructed sea
surface temperature anomaly data, which, along with
the previous season’s inflows serves as the basis for
reducing the predictive uncertainty in the forecasts
issued. In this study, two applications of this
forecasting system are reported. These represent the
Tasmanian Hydro-electric system, the aim being to
provide inflow forecasts such that knowledge on the
power generation capability of the system can be
ascertained beforehand, and the Sydney Catchment
Authority system, where the aim is to assess likely
future storages so that decisions on whether additional
pumping is necessary to keep the storage at an
acceptable level can be made confidently.

The capabilities and drawbacks of the forecasting
procedure can be assessed based on the two fore-
casting applications presented here. Some observations
that can be drawn from these applications are:

1. Model averaging: The use of multiple predictive
models has advantages and disadvantages. The
advantage is the representation of the full
uncertainty behind the forecasting procedure in the
probabilistic forecasts issued. The disadvantage is
the significant bias that is introduced with respect

to the very high or very low flows the system may
encounter. In the two case studies presented, this
bias was very evident in the results for the Sydney
Catchment Authority system, where the climatic
forcings used were not as strongly related to the
response as they were in case of the Tasmanian
inflows. Further work is needed on developing a
model combination approach that can address this
limitation adequately.

. Spatio-temporal dependence representation: The

two forecasting applications presented here used
somewhat different models for representing the
spatio-temporal dependence structure in their
respective historical flow records. The less-
spatially-correlated Tasmanian inflows used a
modification of the Wilks (1998) approach as the
basis for modeling spatial dependence, which the
more-strongly  correlated Sydney Catchment
Authority inflows used a common Markov order 1
predictor (the aggregate system inflow) and a
modeling procedure that predicted the full
multivariate response given the same conditioning
variables. These different model structures have
associated advantages and disadvantages. The
advantage of the Wilks (1998) approach is that
each individual response can be modeled using a
set of predictor variables chosen to predict the
individual response by itself. The disadvantage is
the limited ability of the method to simulate very
high (greater than 0.8) cross-correlations in the
forecasts issued. The advantage of modeling the
multivariable response collectively is the simplicity
the model structure presents. The disadvantage is
the limited representation of the structural
uncertainty present as predictor variables cannot be
identified with associated individual responses.

. Physical interpretation of system predictors: The

logic used to identify predictor variables in either
of the two applications presented was to use a
statistical measure of partial dependence, known as
Partial Mutual Information. The only physical
consideration behind the choice of predictor
variables was to restrict the lags till which they
could be identified to a maximum (6 years in this
study), and associate lower importance to
predictors that arise from regions known to have
high uncertainty associated in the sea surface
temperature anomaly reconstructions. This limited
physical consideration leads to a system of
predictors that are difficult to explain using our
knowledge of the underlying circulation that relates
climate variables across the earth. This is especially
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so when identifying order 3 and above predictors,
which are meant to explain the response conditional
to the earlier predictors that have already been
identified. The use of multiple predictive models is
crucial in formulating the probabilistic forecasts in
such a situation. Multiple models are based on the
use of multiple predictor sets, and while each set
has significant selection uncertainty associated with
it, collectively, the multiple sets are able to convey
the full uncertainty in the climate predictions
judiciously.
While the probabilistic forecasting approach presented
here has the ability to produce meaningful forecasts at
multiple nodes of the reservoir system for a high lead
time (one year), a number of improvements are
possible. The use of physically based climate
simulation models can offer a completely different
basis in the multi-model ensemble that formulates the
probabilistic forecasting system. The use of concurrent
downscaling models that work off forecasts of climate
variables using General Circulation Models offers an
alternative where identification of predictor variables
will be restricted to the current lag, thereby reducing
the structural uncertainty that is introduced by
identifying such variables across multiple time lags as
was done in the applications reported here (Westra et
al., 2008). A third alternative for improving forecasts
is the use of non-static model combination weights, or
weights that are dynamic in nature. The use of such
dynamic model combination (Chowdhury and Sharma,
2007) can possibly help alleviate the model bias that is
observed at the low or high streamflow end, by helping
assign greater weights to models that perform well at
each end of the flow spectrum being modeled. Work is
currently underway to improve the multiple site
probabilistic forecasting system by inclusion of the
alternatives outlined above.
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