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ABSTRACT: With the ever increasing demand for scarce water resources, it is imperative that water resource utilization is
optimized in the short and the long-term. A major component of this endeavour is the optimization of reservoir system
operation which until recently had been dominated by Linear Programming (LP) and Dynamic Programming (DP). An
alternative to LP and DP is direct simulation-optimization within which the operating rule curves can be defined by decision
variables and therefore obtained directly. The simulation—optimization approach which is now easily enabled by the use of
evolutionary optimization techniques, is easier to understand and enables the incorporation of required system performance
more easily and comprehensively than LP or DP. One of the main challenges experienced in applying simulation-optimization

approaches is high computation intensity and reducing computat

acceptability of the approach.

ion intensity whilst maintaining effectiveness leads to greater

This paper investigates the applicability of simple trigonometric functions as a means of parsimoniously defining operating
rule curves and thereby reducing the number cf decision variables in reservoir system optimization. The procedure is applied
to a system of two reservoirs whose total yield needs to be maximized while meeting multiple reliability constraints of supply
and reservoir storage state. The results obtained do not indicate the need for trigonometric functions and suggest that an even
simpler model that defines rule curves as straight horizontal lines with no monthly variation is adequate. While this may be the
case for the system studied here, it is proposed that the trigonometric function or its variants be studied with more complex
systems or other objectives. The shuffled complex evolution (SCE-UA) method is applied in the optimization and is found to be
effective and efficient through the use of multiple randomly initialized runs.

INTRODUCTION

As global water demand continues to spiral while the
availability of the resource becomes more uncertain
with increased pollution and climate change/ variability,
the need to utilize water resources as efficiently as
possible in short term operation and long term planning
cannot be overemphasized.

Most large water resource systems typically include
one or more reservoirs that need to be operated
efficiently in order to maximize benefits and minimize
losses. The operation of reservoirs typically includes
rules that specify when and how much water needs to
be released depending on several variables including
the storage state of the individual reservoir and that of
the complete system, the demand/s and the period
(season, month, 10 day period etc.) of the year. Inflow
forecasts, if adequately reliable can be included in real
time/short term operation. For the system is to meet
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the water demands and storage state based uses
(e.g. recreation) as adequately as possible, then the rule
curves need to be optimized applying an objective
function that maximizes overall benefit.

Reservoir operation optimization is still and active
area of research (Wardlaw and Sharif, 1999, Chang
et al., 2005a, b, Prakash and Shanthi, 2006, Shiau and
Lee, 2005, Consoli et al., 2007, Shih and Re Velle,
1995, Chen et al., 2007, Suiadee and Tingsanchali,
2007, Ndiritu, 2005, Ndiritu, 2003) and the Genetic
Algorithm (GA) seems the predominant optimization
approach in recent studies. This observation is in
agreement with the suggestions for increased

application of the GA in reservoir operation (Labadie
2004). The GA and other evolutionary techniques
enable the inclusion of as much detail as needs to be
included as they are easily amenable to a simulation-
optimization (s-O) approach unlike linear programming
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or dynamic programming. The need to run a large
number of simulations in applying evolutionary
techniques is a drawback of the S-O approach and may
also limit the level of detail that can be practically
included. The long computation times (varying from
100 minutes to 8 hours) observed in the optimization
of a system of two reservoirs (Ndiritu, 2005) inspired
the current study. Each monthly rule curve value had
been set as an independent value to be optimized and
this lead to an optimization problem with a large
number of parameters (varying from 77 to 158).
Multiple randomly initialized runs obtained reasonably
close objective functions but poor parameter
identification indicating that the problem was over-
parameterized.

The objective of the current study is to investigate
the applicability of using simple trigonometric functions
to define rule curves as a means to eliminate over-
parameterization and thereby reduce computation time
and obtain better parameter identification. In addition,
this study also serves to demonstrate the application of
the shuffled complex evolution (SCE-UA) method
(Duan et al., 1992) as an alternative to the popular GA
in reservoir system optimization. Although the SCE-
UA has been shown to be highly effective and efficient
in catchment model calibration, only a single application
in reservoir system optimization has been found (Cui
and Kuczera, 2003). A simulation-optimization approach
is applied to the system of two reservoirs used in an
earlier study (Ndiritu, 2005). The objective is determine
the monthly operating rule curves that maximize total
system yield subject to multiple reliability constraints
to supply and reservoir storage states.

SYSTEM SIMULATION

The main water balance components included in the
analysis are shown on Figure 1. The upper dam, Rust
de Winter has a catchment area of 1 145 km® and the
incremental area to the downstream reservoir Mkombo
is 2 578 km’. On the basis of simulated monthly
streamflow sequences supplied by the South African
Department of Water Affairs and Forestry (DWAF) for
the period 1920-1996, the mean annual runoff to Rust
de Winter is 19.8 mm while the incremental area to
Mkombo has a mean annual runoff of 3.9 mm. The
historic mean point rainfalls for the same period at
Rust de Winter and Mkombo are 605 and 243 mm
respectively. Rust de winter and Mkombo have live
storage capacities of 27.1 Mm® and 205 Mm’

respectively and these were assumed in the current
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analysis. The South African DWAF also provided the
monthly average Symon’s pan evaporation depths.
These were factored by 0.85 to obtain reservoir
evaporation rates. Surface area-storage volume
relationships for computation of net evaporation losses
were obtained and modelled using second order
polynomials. On Figure 1 and for the rest of this paper,
Rust de Winter is denoted as Reservoir 1 and Mkombo
as Reservoir 2.

Assuming the two reservoirs to be initially half-full,
mass balance was carried out at a monthly time step as
described by Eqn. (1).
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where:

S, is the vector of the initial storage volumes at the
beginning of month j of year

0, is the vector of the incremental inflows in month
jofyeari

NEV,; is the vector of net evaporation losses in
month j of year i

RF;; is the vector of regulated flows from the upper
to the lower reservoir assuming neither transmission
losses nor abstractions

AS;; is the vector of the direct diversions to supply
SP;; is the vector of spill volumes.
The net evaporation losses were obtained as,

i.7.k }

nev; ;= O.S[a,.,j,k +a,-‘j+l,k:]x[0.85evj,k —ra
4 (2)

where:

a;x is the surface area of reservoir k at the
beginning of month j of year i

ev;, is the average Symon’s pan evaporation rate for
reservoir k in month j

ra;; is the point rainfall at reservoir & in month j of
year i.

The direct diversion to supply as;;; and the
regulated flow from Reservoir 1 to 2, rf,;; depend on
the storage state of the individual reservoirs, the total
storage state of the system, the monthly demand and
the month of the year. Operating rule curves therefore
needed to be defined for each reservoir and for total
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Reservoir 1 (¢;)
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Reservoir 2 (C3)

d; 2
as;;x  direct diversion from reservoir k in month  of year i
Ck capacity of reservoir k
dis demand for reservoir & in month j
evyx  average Symon’s pan evaporation for reservoir & in month j
qix  inflow to reservoir k in month j of year i
ra;;  point rainfall at reservoir & in month j of year i
rfi«  regulated flow from reservoir & in month j of year i
spix  spill from reservoir k in month j of year /

Fig. 1: Main water balance components in system simulation

storage. Each reservoir was assumed to supply at four
levels of restriction (100, 80, 50 and 30%) and three
rule curves therefore needed to be defined for each. It
had been found (Ndiritu, 2005) that it was sufficient to
obtain the rule curves for total storage as a weighted
linear average of the rule curves of the individual
reservoirs and this finding was adopted in the current
analysis. The direct diversions to supply from each
reservoir and the controlled release from Reservoir 1
to 2 were obtained as follows:

o If the overall storage and individual reservoirs are in
the same supply zone, that level of direct diversion
is provided with no controlled release from
Reservoir 1 to 2.

o If the upper reservoir is in a lower zone than that of
total storage, the diversion to supply from Reservoir
1 is based on its zone.

o If the lower reservoir is in a lower zone than that of
the total storage and the upper reservoir is in the
zone of the total storage or a higher one, then a
controlled release is made from Reservoir 1 to
Reservoir 2. This release equals the extra demand
that Reservoir 2 would fail to supply for being in a
lower zone than the total storage. Once the controlled
release 'is made, Reservoir 2 provides a direct
diversion corresponding to the zone of total storage.

e If no controlled release is made and Reservoir 2 is
in a lower zone than the total storage, Reservoir 2
provides a direct diversion based on its supply zone.

o Ifareservoir is in a zone higher than that of the total
storage, the direct diversion is based on the supply
zone of total storage.

Quantitative details of this procedure are available in
the earlier study of the system (Ndiritu, 2005).
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To reflect the reality of supply to multiple users, It
was assumed that reservoir 1 would be supplying
municipal demand while reservoir 2 would be
supplying irrigation demand at the levels of reliability
presented in Table 1. As expected, these reflect a
higher reliability requirement for municipal water
supply. Assuming the reservoirs would also be used
for some storage state based utilization (e.g. some
form of recreation), the reliability of levels of storage
that would need to be maintained to enable an
adequate level of utilization were also included and are
presented in Table 1. The reliability constraints were
defined as the maximum proportion of time out of the
total simulation period that a particular event is
allowed to happen. The event could be a certain
restriction level to supply or a storage state lower than
a set value. These reliability levels formed the
constrained the amount of yield that the system is
capable of supplying and are therefore termed as
reliability constraints. Note that the reliability of 1.0
for a storage state of 20% is realistic for a historic
analysis (as in this study) but would not be for more
comprehensive stochastic analysis applying synthetically
generated sequences.
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RULE CURVE DEFINITION USING
TRIGONOMETRIC FUNCTIONS

The trigonometric function needed to be defined in a
manner that would allow the rule curves to take a large
variety of shapes and thereby enable a robust search. A
function that was considered adequate for the purpose
was defined as,

ik =t +wpi (3—1) +apy [sin(.’zn(é ~Ip, ]ﬂ sl d)

where 1l is the rule curve value for month Js2, ...y
12) and level / (/ = 1, 2, 3) and reservoir & k=1,2),
Pes Wpr, apy, and Ip; is the translation, width,
amplitude and lag parameter for reservoir k.

The search range for all the four parameters except
wpi was [0-1] while that for wp, was [0-0.5]. If the
computed rule curve exceeded 1.0 or was negative, the
solution was rendered infeasible by reducing the
objective function to a negligible value (% 1070,
Although the trigonometric function is not as flexible
as a free definition of all the rule curve values, it was
found reasonably versatile as Figure 2 illustrates. This

Table 1: Reliability Constraints of Water Supply and Reservoir Storage States

iabili t S Reliabili
Storage Zone | Level of Supply (%) Reliability Storage State eliability
Reservoir1 | Reservoir2 Reservoir 1 | Reservoir 2
1 100 0.95 0.8 0.8 0.1 0.1
2 80 0.98 0.8 0.6 0.5 0.5
3 50 0.99 0.9 0.2 1.0 1.0
4 30 0.995 0.95
1
4
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Fig. 2: The versatility of the simple trigonometric function
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Figure shows the rule curves that would be obtained
for various combinations of the four parameter sets for
[ = 2 (the second rule curve). Compared with a free
specification of all the rule curve values, the
trigonometric function uses 4 parameters to define the
3 rule curves of a single reservoir while a free
specification would need 36. In order to test the need
for the trigonometric function, a case in which the
amplitude parameter (ap,) was set to a very low value
was carried out as well. This case was equivalent to a
rule curves that apply only the translation (pi) and
width parameter (wp;) as deactivating the amplitude
parameter deactivates the lag parameter (Ipy).

SYSTEM OPTIMIZATION

The optimization involved determining the rule curves
that maximized the total yield (¥) from the system.The
objective function was therefore defined as,

N 12 2
2.2 2.k
Maximize Y= s .. (4)
TR
as, ___P’"I,k "
Jk 100 .. (5)

Where N is the total number of years of analysis, asi;
is the actual supply in month j of year i for reservoir &,
prii is the supply percentage for storage zone ! for
reservoir k, (Table 1) dj is the water demand for month
j from reservoir k and 7R is the total runoff in the
simulation period. The reliability constraints (Table 1)
were imposed by reducing the objective function to an
extremely low value (1 x 10'%) in case of any violation.

Each reservoir required 4 parameters to define the
three rule curves and the rule curve values for total
storage (rl;)) was defined as linear functions of those
of the individual reservoirs as described in Eqn. 6 and
the weight (we) was optimized.

trlj!, =we X rlj,,,l + (1 = we) % rlj,l,z ... (6)

The demands djy (j = 1, 2...., 12, k = 1, 2) were
obtained as fixed percentages of the annual demands d
and the annual demands were themselves optimized. A
constant distribution was assumed for reservoir 1 as
municipal demand typically show little monthly
variation while the distribution for reservoir 2 was
highly varied, typical of the seasonal variation of
irrigation demand. In total there were therefore
11 parameters to optimize.

The optimization was carried out by linking the
simulation model to a shuffled complex evolution
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(SCE-UA) optimizer (Duan et al., 1992). The SCE-UA
s based on the following 4 concepts: i) combination of
deterministic and probabilistic approaches ii) systematic
evolution of a complex of points spanning the parameter
space in the direction of global improvement
iii) competitive evolution and iv) complex shuffling. A
population of solutions is generated and divided into a
number of complexes. Each complex evolves
independently using the downhill simplex method for a
set number of evolutions. The complexes are then
shuffled thereby enabling exchange of information
among them. If convergence is not reached, a new set
of evolutions for each complex is carried out. A more
detailed explanation of the method is provided by
Duan et al. (1992, 1994). The SCE-UA has been used
extensively in catchment model calibration and has
been found to be effective and efficient. The SCE-UA
optimization parameters applied here were based on
the recommendations of the developers of the method
(Duan et al., 1994). To verify the effectiveness of
optimization and parameter identification, 5 randomly
initialised optimization runs were made for each case.

RESULTS AND DISCUSSION

Table 2 presents the objective function and number of
model simulations obtained for the two cases (with the
complete trigonometric model and with the amplitude
parameter deactivated). All 10 optimization runs give
almost similar objective functions with the lowest
value greater than 95% of the largest one indicating
effective optimization by the SCE-UA. The optimization
when the amplitude parameter is inactivated however
takes a considerably lesser number of model simulations.
Table 3 presents the optimized parameters for all the
runs of the two cases while Figure 3a displays the
parameter values of the complete model (with
amplitude activated). Figure 3a reveals a satisfactory
level of consistency of parameter values from different
runs suggesting the trigonometric model is adequately
parsimonious for the problem. Figure 3b illustrates the
high cross correlation between the optimized annual
demands d, and d; which is again is an indication of
effective optimization. This Figure also demonstrates
the role that multiple randomly initialised optimizations
can play in identifying efficient alternative solutions to
water resource utilization. Figure 4 presents the rule
curves obtained from the individual runs giving the
best objective functions (run3 for with amplitude
activated and run 1 with amplitude deactivated). The
curves indicate that the optimum solution includes a
significant amplitude parameter although  this
activation does not provide superior operating rule
curves since the optimized yields with amplitude
deactivated are just as good (Table 2).




1030 Water, Environment, Energy and Society (WEES-2009)

Table 2: Optimized Yields and Number of Model Simulations

- Amplitude Activated Amplitude Deactivated
n.sim Yield (Y) n.sim Yield (Y)
1 21439 0.2728 12992 0.2819
2 17299 0.279 13873 0.2699
3 19761 0.2833 14027 0.2785
4 14681 0.2778 12784 0.2808
5 17610 0.2789 12884 0.2773

n.sim—number of simulations

Table 3: Optimised Parameter Values

Baranates Units Amplitude Aclivated
run 1 run 2 run 3 run 4 run 5
tp4 - 0.0168 0.0187 0.0221 0.0087 0.0099
wp1 - 0.0757 0.0545 0.0401 0.0416 0.0451
apq - 0.0154 0.0099 0.0215 0.0029 0.0046
Ips - 0.0589 0.0329 0.2371 0.5529 0.6064
tp2 - 0.1804 0.3578 0.4756 0.3629 0.2998
wp2 - 0.0961 0.0777 0.0659 0.0937 0.1237
apz - 0.0647 0.0679 0.015 0.0666 0.0376
Ip2 - 0.6035 0.4973 0.444 0.2629 0.1028
dy Mmslyear 6.6649 5.3761 4.2582 4.9773 5.2671
d> Mmalyear 2.4315 3.9392 5.2101 4.282 4.0257
we - 0.9738 0.9417 0.939 0.9457 0.9563
Amplitude Deactivated
o1 0.0046 0.0058 0.0059 0.0025 0.0062
wp+ 0.0273 0.0764 0.0645 0.0285 0.0567
tp; 0.5151 0.0701 0.2447 0.4555 0.2568
wp2 0.0244 0.1054 0.1057 0.1029 0.136
d Mm?®/year 3.9654 6.8197 6.016 3.9607 5.6081
dz Mm*/year 5.4321 2.1757 3.2873 5.4001 3.6454
we 0.9409 0.7434 0.9116 0.9396 0.9258
i~ 6 ‘ T T
- W S T .
PPN U W - " S
o = ! ' ©
L P o
H > b s S Al - -
.g i < amplitude activated
! s 17 @ amplitude deactivated
et 8 , ; ;
1 2 3 4 5 6 7 8 9 10 11 0 2 4 6 8
(a) parameter (column I Table 3) (b) annual demand for reservoir 1 (Mm’/y)
Fig. 3: Optimized parameter values and correlation of optimized annual demands
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Fig. 4: Optimized rule curves with amplitude activated and deactivated

The results therefore suggest there is no need for a
trigonometric function. To investigate possible further
application of the trigonometric function, an analysis
with very restrictive reservoir storage constraints that
vary on a monthly basis (Figure 5) replacing those
defined in Table 1 was carried out. The results of this
analysis presented in Table 4 however indicated that
activating amplitude actually obtained poorer results
than the simpler rule curve model that includes a
translation and width parameter only. The computation
time for 5 randomly initialized runs for all cases was
less than 10 minutes—much less than the computation

times in a previous analysis of the system (Ndiritu,
2005).

It was observed for all the optimization was the
redundancy of most of the reliability constraints. For
the first scenario with the simple and less restrictive
storage state constraints, the only active reliability
constraint was the requirement to supply 80% of
the demand at a reliability of at least 98%. For the
second scenario with very restrictive monthly varying
storage state constraints, the active constraints were
the 3 storage state constraints for months 1, 2 and 3
for reservoir 2. Figure 6 compares the reliability
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Table 4: Optimization Results with Monthly Varying Storage State Restrictions

Run Amplitude Activated Amplitude Deactivated
n.sim Yield (Y) n.sim Yield (Y)
1 9890 0.0347 7788 0.0377
2 7941 0.0366 7224 0.0376
3 11467 0.0376 7918 0.0377
4 3910 0.0333 8456 0.0377
5 2990 0.0315 7243 0.0377

n.sim—number of simulations

constraints with the optimized reliabilities for reservoir  decision making as it could provide ideas about how
2 highlighting the 3 active constraints. This type of  the system redundancy may be reduced to achieve a
analysis could provide useful information for practical ~ higher level of resource utilization.

reliability constraint and optimized reliability

—o— 10% reliability  —8— 50% reliability

808 -
g~ —&— 90% reliability

202

1 2 3 4 5 6 7 8 9 10 11 12
month

Fig. 5: Monthly varying reservoir storage state constraints

09 1

active reliability

08 4 ---+----=---r=""Jconstraints e Mt dnians i

month -
—a— reliability constraint level 1 —o— optimized reliability level 1
—a— reliability constraint level 2 —— optimized reliability level 2
—x— reliability constraint level 3 —e— optimized reliability level 3

Fig. 6: lllustration of active and redudant reliability constraints
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CONCLUSIONS AND RECOMMENDATIONS

A simple trigonometric function for parsimonious
modelling of reservoir operating rule curves was
formulated and applied in the maximization of the total
system yield obtainable from a system of two
reservoirs using a simulation-optimization approach.
Yield maximization was subjected to multiple
reliability constraints of demand and reservoir storage
state and optimization was carried out using the
shuffled complex evolution (SCE-UA) method. The
analysis found that for the specific problem, there is no
need for the use of trigonometric functions as simpler
rule curves that do not vary on a monthly basis
obtained similar yields using considerably lower
numbers of model simulations.

It is recommended that additional analysis using
other reservoir operating problems be carried out
before dismissing the applicability of the simple
trigonometric function. While the analysis here
suggests the trigonometric function is more complex
than necessary, for more complex systems it could turn
out that the trigonometric function (or its variant)
could be applied for the initial stages of optimization
to help reduce computation time. It may also be useful
to compare the rule curves applied in this analysis with
the general form of curve that defines each rule curve
value independently.

To verify the effectiveness of optimization and
parameter identification, 5 randomly initialised
optimization runs were carried out for all scenarios.
The objective function values from different runs
found close indicating the optimizations were all
effective. For optimization methods that do not ensure
the location of the global optimum such as the GA, the
SCE-UA and other evolutionary techniques, it is
suggested that multiple randomly initialised runs need
to be included as a valuable means of verifying the
adequacy of optimization. The effective and efficient
performance of the SCE-UA optimization in this
analysis encourages its wider application in reservoir
system optimization.
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