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ABSTRACT: Reservoir modelling problems deals in finding out the optimal reservoir storage volumes and releases to be
made in each time period so that the deviation of release values from the demand is minimum thereby maximizing the returns.
The present study aims at demonstrating the potential of evolutionary computing algorithm namely Cross Entropy (CE) method
for modelling of single reservoir systems. The model development to a single reservoir system operated for satisfying irrigation
demands is done. The model was applied to a South Indian Reservoir system. The model development, sensitivity of model

parameters in model solution is also explored.

INTRODUCTION

Reservoir modeling problems involves in the deter-
mination of optimal storage and release values in
different time periods such that the demand is satisfied
to the maximum extent without compromising the
system constraints. A comprehensive overview of the
various conventional techniques for reservoir modeling,
with its advantages and limitations is discussed in Yeh
(1985). To overcome those limitations, recently meta
heuristic techniques like Genetic Algorithm, Simulated
Annealing, Ant Colony Optimization, are being used
for solving combinatorial optimization problems.
These techniques provide a more realistic representation
of problem and provide ease in handling the nonlinear
and non-convex relationships in the formulation of
model.

In the last decade, there has been a wide development
and application of evolutionary computing algorithms
in various fields of engineering. The Cross Entropy
Algorithm is a subset of evolutionary computation, a
generic population-based meta heuristic optimization
algorithm. The main principle of evolutionary
algorithms is reducing the large feasible set of
solutions, to smaller sets with in an acceptable
computational time. The applications of Cross Entropy
method in the modelling of combinatorial optimization
problems in the water resources field is limited to
water distribution system modeling by Perelman and
Ostfeild (2007), Jairaj and Remya (2007). The present
study aims at exploring the potential of Cross Entropy
(CE) method for modeling a single reservoir system.

'Conference speaker

The concept of cross entropy, details of model
development and application to a real world field
problem are discussed subsequently.

CONCEPT OF ENTROPY AND CROSS-ENTROPY

In its simplest form, Entropy can be termed as a
measure of uncertainty associated with a process. The
probability distribution of events, if known provides a
certain amount of information. Shannon in the year
1948 defined a quantitative measure of the uncertainty
associated with a probability distribution or the
information content of the distribution in terms of
entropy, called Shannon Entropy (Kapur and Kesavan,
1992) given by the Eqn. 1,

n

H(X)=-kY p;/Inp, ¢))
1
where H(X) represents the Shannon Entropy
corresponding to the random variable X, k is the
Boltzmann constant and p; represents the probability
distribution corresponding to the variable x;.

The uncertainty can be quantified with entropy
taking into account all different kinds of available
information. Thus entropy is a measure of uncertainty
represented by the probability distribution and is a
measure of the chaos or of the lack of information
about a system. If complete information is available,
entropy is equal to zero; otherwise it is greater than
Zero.
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Cross Entropy is a distance measure from one
probability distribution to another. One of the well-
known definitions of Cross Entropy is the Kullback-
Leibler distance measure, serving to assess the
similarity between two probability distributions: the
statistical g(x) model and the true distribution p(x).
Cross Entropy (D (P, Q)) is formulated as in Eqn. 2,

n
D(P, Q) =Y pinft )
i=1 I
Looking at Eqn. 2, the Cross Entropy is always greater
or equal to the entropy; hence it can be considered as
the upper bound of entropy.

Principle of Minimum Cross-Entropy

According to Laplace’s principle of insufficient reason,
all outcomes of an experiment should be considered
equally likely unless there is information to the
contrary. Suppose we guess a probability distribution
for a random variable X as QO = {q1 g2 ¢3 ... qn}
based on intuition or theory. This constitutes the prior
information in terms of a prior distribution. To verify
our guess, we take a set of observations X = {x;, x5, x;,
.., X3 and compute moments based on these
observations. To derive the distribution P = {p;, ps, ps
..., pny of X, we take all the given information and
make the distribution as near to our intuition and
experience as possible. Thus, the principle of
minimum cross entropy (POMCE) is expressed, when
the cross entropy, D (P, Q) is minimized, as in Eqn. 3,

Minimize D (P,0) =f P ln’if ()

i=1 i

On the basis of intuition, experience or theory, a
random variable may have an apriori probability
distribution. The Shannon entropy is maximum when
the probability distribution of the random vaiiable is
that one which is as close to the apriori distribution as
possible. This is referred to as the principle of
minimum cross entropy, which minimizes the
Bayesian entropy (Kullback and Leibler, 1951). This is
equivalent to maximizing the Shannon entropy. Here
minimizing D (P, Q) is equivalent to maximizing the
Shannon entropy.

METHODOLOGY

A single reservoir system with known demands at the
reservoir is considered for the model development. In
this problem the objective function is to minimize the
deviation of release value from the demand value for
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all time period. The single reservoir system is sche-
matically represented as represented in Figure 1. Thus
the objective function is to minimize the deviation of
the system release at any time from the demand at that
time, subject to the continuity and release constraints.
The problem may be mathematically represented as,

12
Minimize Z[Df —R,] . (4)
r=1
Subjectto: S, =8, + I, - R -Ovf, V¢t s (D)
0<S,<K, Vit ... (6)
0<R <D, vt (D)

where S, represent the storage, /, the inflow value, R,

the release from the reservoir to meet the known
demands D, and Ovf; the overflow from reservoir in
time period #, K, is the maximum useful storage
capacity of reservoir. The time period considered is
one year or 12 months.
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Fig. 1: Single Reservoir System

MODEL APPLICATION

The system considered for model application is the
Malaprabha single reservoir system in Karnataka state,
South India, which is being used for irrigation purpose.
The live storage capacity of the reservoir is 870 mm’.
A constant irrigation demand at the reservoir (in-
corporating a conveyance loss of 50%) on a monthly
basis is made use of in the study. A short term monthly
operation of the reservoir system with monthly inflow
to reservoir for four years from 1976 to 1978 is made
use of in the study.

CROSS ENTROPY ALGORITHM DEVELOPMENT

The Cross Entropy (CE) method is an evolutionary
iterative technique based on the concept of rare events,
which involves two main stages: (1) generation of a
sample of random data (trajectories, vectors, etc.)
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according to a specified random mechanism, and (2)
parameter updating of the random mechanism, on the
basis of the generated data, so as to produce a “better”
sample at the next iteration. The procedure of the
algorithm is similar to the one used to determine the
optimum diameters of a real world water distribution
network problem (Jairaj and Remya, 2007).

The steps involved in the algorithm * - single
reservoir system optimization are described below.

1. The first step is conversion of the deterministic
problem into a Stochastic Node Network, by
representing the decision variables. The decision
variables are numbered continuously covering the
entire storage classes with mean value ranging
from 5 Mm® to 865 Mm® for all the twelve time
periods. Figure 2 gives the schematic re-
presentation of the decision variables.

2. Set the iteration counter # = 0 and initialize the
probability values for all the decision variables to

, where p; is the probability of the

pj:”f(tr)

decision variable i and nf (#) represents the total
number of decision variables in each time period £,
in this study number of decision variables in each
time period is 87, corresponding to the eighty seven
storage classes available. Because we have to select
one decision variable from the nf (1) available
options for each time period.

3. Generate N random vectors depending on the
probability of decision variables obtained in the last
step. In this case the value of N is taken to be equal
to the maximum value of nf (), so that all the
decision variables appear at least once in the
solution. Here random vector corresponds to a
system decision or solution, which corresponds to
the storage volumes of the reservoir at each of the
time periods starting from one to thirteen. It will be
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an m dimensional vector where m corresponds to
the total number of decision variables. Out of these
m variables twelve of them will be having a
coefficient of one while the rest of them will have
zero. Each random vector will be a combination of
the twelve decisions (decision variables), each
corresponding to one of the twelve time periods.

. Determine the feasibility of the decision vectors,

i.e., check whether the system constraints such as
continuity, release and storage constraints etc. are
satisfied using Eqns. 5 to 7. The vectors are then
arranged in the ascending order of their benefit
function values. This is done to separate out the
elite sample. '

. Choose a set (say p.) of the top best performing

vectors for updating the probability vector p,; to the
probability vector py;. p. corresponds to
percentage of the vectors selected and its value
varies (between 10% and 20%) but may change as
a function of the sample size N. The i component
of py+1, is obtained as in Eqn. 8,

i

N ... (8
Prii 1B, )]
where p,.;;, is the probability of success in the
(++1)" iteration of node i, B,; is the total number of
times node i/ was chosen out of the best top
performance vectors, 7B, at iteration .

. In order to avoid early convergence (stopping

criteria  of decision variable probabilities
approaching zero or one) to a local optimum
solution, a smoothing parameter o, is used. The
value of smoothing parameter o is determined
based on sensitivity analysis. The probability is
modified as in Eqn. 9,

Prati < O Py +(-0) py ... (9)

Time Period
1 2 12

Storage Class

3] 1 88 958
15 2 89 959
25 3 90 960
855 86 173 1043
865 87 174 1044

Fig. 2: Schematic Representation of Decision Variables
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7. In this step check whether all the probabilities are
approximately equal to zero or one. If yes then the
stopping criteria is reached and convert the final
vector to its corresponding decisions, which will
give the solution to the problem. If the stopping
criterion is not reached then continue from step 3
using the new probability.

The coding of the model for the problem is done in
C language. The model was run till the convergence
criteria were met. The results of the sensitivity study,
the model solution are discussed subsequently.

RESULTS AND DISCUSSIONS

As explained in the last section a smoothing parameter
(a.) is used to avoid premature convergence of the
algorithm. In order to study the significance of the
smoothing parameter o, a sensitivity study was
conducted by varying the value of a. in the range 20%
to 50%. The sensitivity of performance function for
some typical values of a. is shown in Figure 3 and
Table 1 respectively. The influence of the parameter a,
on the model solution and the number of iteration to
attain the optimum solution are given in Table 1.

From the figure it can be seen that smaller value for
smoothing parameter will lead to a very slow
convergence of fitness function and higher values lead
to faster convergence. Hence number of iterations
required to reach stopping criteria will be larger for
smaller alpha (a.) values and vice versa. An optimal
value of a.= 0.4, was selected.
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Fig. 3: Sensitivity of Fitness Function to the parameter o,

Table 1: Influence of Parameter o, on Model Solution

oz (%) | No. of lterations | Optimal Solution
20 23 0.399
30 19 0.399
40 13 0.399
50 9 0.424
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The algorithm was implemented as explained earlier
using the value of 40% for the smoothing parameter
(. At the end of iteration, all those decision
variables having probabilities equal to one was
combined to produce the optimal system decision or
the optimal solution to the problem considered. The
decisions variables were transferred to their decisions
i.e., to storage classes for the time period, which the
decision variable represents. In this problem the near
optimal result obtained is having a benefit function
value of 0.399, with optimum release values in each
period. The optimal release values are plotted against
the demand values in each period as shown in Figure 4.
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Fig. 4: Optimal Releases for the Single Reservoir System

The algorithm was used to optimize the releases to
be made from reservoir in each period (=1 to 12) for
four consecutive years (1976 to 1979) for the
respective inflow values, and constant monthly
demands. The optimum release values obtained from
solution of model along with the respective demands
in each time period ( = 1 to 12) for these four years
obtained using CE method is shown in Figure 5.

The cross entropy algorithm requires the fine tuning
of only one parameter, and the solution converges
quickly. The method can be used for solving other
combinatorial optimization problems in the water
resources field.
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Fig. 5: Optimal Releases for Single Reservoir System
for the years (1976-1979)
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SUMMARY

The modeling concept of the evolutionary computing
algorithm namely the Cross Entropy method, to a
single reservoir system was illustrated. The sensitivity
study of performance function to the smoothening
parameter for the algorithm was also carried out. The
cross entropy method is superior to other evolutionary
computing algorithms as it requires fine tuning of only
one parameter for arriving at a near optimal solution.
The number of iterations required to generate an
optimal solution are also less thereby making the
algorithm easier for applying to various other
combinatorial optimization problems.

REFERENCES

Jairaj, P.G. and Remya, A.R. (2007). “Water distribution
network optimization using Cross Entropy Method”

1079

Proceedings of National Conference on Hydraulics and
Water Resources, HYDRO 2007, Elite Publishing House
Pvt. Ltd., New Delhi, 615-622.

Kapur, J.N. and Kesavan, J.K. (1992). Entropy optimization
principles with applications, Academic Press Inc.

Kullback, S. and Leibler, R.A. (1951). “On information and
sufficiency”, Ann. Math. Statics, 22, 79-86.

Perelman, L. and Ostfeild, -A. (2007). “An adaptive
heuristic cross-entropy algorithm for optimal design of
water distribution systems”, Engineering Optimization,
39(4), 413—428.

Singh, P.V. (2000). “The entropy theory as a tool for
modelling and decision making in Environmental and
Water Resources”, Water SA, 26(1), 1-11.

Yeh, W.W.G. (1985). “Reservoir management and operation

models—a state of the art review”, Water Resources
Research, 21(2), 1787-1818.



