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ABSTRACT: This paper presents a brief historical excursus on the development of hydrological catchment models together
with a number of possible future perspectives: Given the wide variety of available hydrological models, which according to the
embedded level of prior physical information, vary from the simple input-output lumped models to the complex physically
meaningful ones, the paper suggests how to accommodate and to reconcile the different approaches. This can be performed
by better clarifying the roles and the limitations of the different models through objective benchmarks or test-beds
characterising the diverse potential hydrological applications. Furthermore, when dealing with hydrological forecasting, the
reconciliation can be obtained in terms of forecasting uncertainty, by developing Bayesian frameworks to combine together

models of different nature in order to assess and reduce predictive uncertainty.

INTRODUCTION

The history of hydrological modelling ranges from the
Rational Method to recent distributed physically-
meaningful models. Over the same period of time,
starting from the simple Unit Hydrograph, input-output
models, now called data-driven models, have evolved
into ANN models and Data Based Mechanistic (DBM)
models. From the wide range of models available, the
choice of the one most appropriate for any specific
task is difficult, particularly as each modeller tends to
promote the merits of his/her own approach.
Moreover, apart from the WMO inter-comparisons of
conceptual models (WMO, 1975), snow accumulation
and melting models (WMO, 1986) and real-time
updating approaches applied to hydrological flood
forecasting models (WMO, 1992) conducted in the
seventies and the eighties, no further objective
comparisons using benchmarks or standard data sets
have been proposed or effected in the last decades.
Only recently an inter-comparison of distributed model
was started by the US-NWS (http://www.nws.noaa.gov/
oh/hrl/dmip) in order to assess the performances of
distributed hydrological models.

Today, the plethora of available models has grown
beyond any possible limit and the need for
accommodating under a unifying view and reconciling
the different approaches has become of great priority.
Unfortunately, hydrology is one of the few scientific
branches where standards on the use and development
of models are difficult to set and in practice each
modeller is setting his owns.

Moreover, hydrological models serve many
purposes, one of the most important applications being
flood forecasting where uncertainty plays a major role.
Unfortunately, the implication of using uncertainty in
the decision-making process and even the concept of
uncertainty seem to deter hydrologists from addressing
the problem. Indeed, many hydrelogists do not appear
to be aware of the need to quantifying predictive
uncertainty and tend to describe the model sensitivity
rather than the decision makers’ uncertainty on the
outcome of possible future values of the quantity
conditional upon the model forecast.

This paper will briefly describe the historical
development of the different hydrological models and
will try to suggest possible approaches to reconcile the
different approaches both on the basis of their potential
use as well as in terms of their Bayesian combination
aimed at benefiting of all possible information
generated by the use of alternative models within the
frame of the decision making process. Finally, the
paper concludes with an overview of possible future
perspectives in hydrological research.

A BRIEF HISTORY OF QUANTITATIVE
HYDROLOGICAL MODELS

From the Rational Method to the Linear Models
(1850-1960)

The Rational Method proposed by Mulvany (1850) is a
clear exposition of the concept of time of
concentration and its relation to the maximum run-off;
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it estimates peak flow but not flood volume and is
physically meaningful only in small impervious
catchments in which flow is effectively a purely
kinematic process. Applications of the method to the
design of sewers appeared in the literature from the
end of the 19th century (Kuichling, 1889; Lloyd-
Davies, 1906).

Many years later, (Sherman, 1932) introduced the
concept of the Unit Hydrograph (UH) based on the
principle of superposition of effects; it enabled the
complete flood hydrograph to be predicted from
rainfall sampled at constant intervals. With the
introduction of system’s theory, the unit hydrograph
was then interpreted as the response of a linear,
causative, dynamic stationary system and two forms of
the unit hydrograph were then considered. The first
one, the continuous time impulse response of a linear
system, is known in hydrology as the Instantaneous
Unit Hydrograph (IUH) and a second one, the response
to a time discretized input, is known as the finite
period unit hydrograph (TUH) (O’Donnell, 1966).
Indeed, the introduction of the IUH can be viewed as
the starting point that led to the separation of
physically meaningful and data’ driven models. If the
“shape” of the IUH is defined a priori by the modeller
as the integral solution a set of linear or linearized
differential equations and the parameter values are not
estimated from the input-output historical data, but
computed as a function of the physical characteristic
quantities of the phenomenon, then the IUH is a
physical interpretation of the phenomenon. Examples
can be easily found in flood routing models. For
instance, Kalinin and Milyukov (1957) demonstrated
that, by linearizing the unsteady flow equaticns, the
integral solution is a Gamma density function, namely
a Nash cascade (1958; 1960) with parameters » and £,
where the parameter » is now extended to the domain
of real numbers, which can be expressed in terms of
the Froude number, the bed slope, the velocity, etc.
(Dooge, 1973). Furthermore, Hayami (1951) showed
how to derive an IUH from the linear diffusion
equation, while Todini and Bossi (1986) derived a
TUH from the linear parabolic approximation of the
unsteady flow equations, with the two parameters,
celerity and diffusivity, which are recomputed at each
integration time interval in terms of the hydrodynamic
characteristics of the reach (discharge, the friction
slope, etc.).

However, if the shape of the IUH/TUH cannot be
defined a priori on physical grounds, both the shape
and the relevant parameters must be derived from the
measurements so, clearly, the result is a data-driven
model (Natale and Todini, 1976a; 1976b).
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The extension of the [UH/TUH approach to larger.
not necessarily impervious catchments presented
problems requiring subjective choices, such as:

o Separation of storm runoff from base flow;

e The determination of “effective” rainfall, namely
that portion of the rainfall that is not lost through
replenishing soil moisture etc.;

e The actual derivation of the IUH/TUH shape and/or
of the IUH/TUH parameters from the measurements
available.

To overcome these problems, research into non-linear

or threshold-type systems led to representations based

on:

1. Volterra integrals of an order greater than the first,

2. orthogonal polynomials (Amorocho and Orlob,

1961) or

3. piecewise linearisations (Todini and Wallis, 1977,
Todini, 2002b), reproducing the consequences of
threshold effects introduced by soil saturation.

From Conceptual to Variable Contributing Area
Models (1960-2000)

To achieve a better physical interpretation of
catchment response, the 1960s saw the development of
models in which individual components in the
hydrological cycle were represented by interconnected
conceptual elements; each of these represented, in the
hydrological model, the response of a particular
subsystem. Dawdy-O’Donnell (1965); Crawford and
Linsley (1966)—Stanford Watershed 1V; Burnash et
al. (1973)—Sacramento (Figure 1); Rockwood,
(1964)—SSARR; Sugawara, (1967, 1995)—Tank, etc.

All these models, also known as Explicit Soil
Moisture Accounting (ESMA) models, represented in
different ways the responses of, and the
interconnections between, the various subsystems from
which the overall catchment response could originate
(see Figure 2); at the time, they were regarded as the
very best that could be achieved with the then current
data and computational resources. At that time the
modellers strongly believed that the parameters of their
models, such as the storage coefficients, roughness
coefficients or the different thresholds were physical
entities which could be inferred from the physio-
graphic characteristics of the catchments. Due to the
need to obviate a time consuming trial and error
approach in parameterising these models, model
parameter optimisation was introduced (Dawdy-
O’Donnell, 1965). As a result, when the estimates
were made on the basis of objective functions to be
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Fig. 1: Schematic representation of a typical conceptual model: the Sacramento model
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Fig. 2: The different components forming a flood wave as in the Sacramento model

minimised (for example the sum of squares criterion),
the resulting parameter values were generally
unrealistic, perhaps because they incorporated errors of
measurements as well as those of the model itself.
Also, the conditions of observability (the need for
sufficient information content in the data to determine
the parameter values) were not always guaranteed,
particularly for multiple input-output hydrological
models (Gupta and Sorooshian, 1983; Sorooshian and

Gupta, 1983; Singh and Woolhiser, 2002). In essence,
these models became data-driven.

At the end of the 1970s, a new type of lumped
models was introduced, based on the idea that the
rainfall runoff process is mainly dominated by the
dynamics of saturated areas, which can be related to
the soil moisture storage using a simple monotone
function, thus leading to the variable contributing area
models. These models generally employed the Dunne
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(1978) assumption that all precipitation enters the soil
and that surface runoff originates by saturation of the
upper soil layer. These variable contributing area
models, the Xinanjiang (Zhao, 1977) and the
Probability Distribution (PDM) (Moore and Clarke,
1981) were characterised by few significant
parameters: although expressing the physical concepts
of continuity of mass they were still not entirely
meaningful in their dynamics. Thereafter, Juemou
et al. (1987) combined the Xinanjiang soil moisture
distribution function with the Constrained Linear
Systems (CLS) model (Natale and Todini, 1976a;
1976b; Todini and Wallis, 1977; Todini, 2002b) into
the Synthesized Constrained Linear Systems model
(SCLS). Later, by modifying the Xinanjiang soil
moisture distribution function, Todini (1996; 2002a)
developed the ARNO model, from which Wood and
Lettenmaier (1992) originated the VIC model by
increasing the number of soil layers (Liang et al.,
1996a; 1996b). The core of all these models is a two
parameter distribution function curve representing the
relation between the total volume of water stored in the
soil and the extension of the saturated areas.
Unfortunately the parameterisation of this curve, as
well as of the other processes represented (drainage,
percolation, groundwater flow, etc.) was based on
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empirical parameters to be estimated from the data.
Beven and Kirkby (1979) originated a more
physically-meaningful distribution function model,
TOPMODEL, based on the distribution function of a
topographic index. This is based on the assumption
that the accumulation of soil moisture can be
approximated by successive steady states of the water
table originating in the upper soil layer. They derived a
new relation between the volume of water stored in the
soil and the extent of saturated areas (the topographic
index function) on the basis of physically-meaningful
parameters. Unfortunately, also due to a water balance
error which was present in the original TOPMODEL,
recently detected and corrected (Saulnier and Datin,
2004), the physical meaning of parameters proved to
be true only for very small hill-slope catchments
represented with extremely fine meshes (Franchini
et al., 1996).

The Distributed Physically Meaningful Models
(1965-Today)

In a further step towards a physical representation of
the rainfall-runoff process, Wooding (1965a; 1965b;
1966), and Woolhiser and Liggett (1967) used
kinematic models for the study of small urban basins,

1-dimensional
unsaturated flow
model for each
gtid element

Fig. 3: Schematic representation of the SHE model
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while Freeze and Harlan (1969) proposed, albeit only
as a future project, the creation of a mathematical
model based on distributed physical knowledge of
surface and subsurface phenomena. By numerical
integration of the coupled sub-systems of partial
differential equations describing surface flow and flow
in the unsaturated and saturated zones, and by
matching the solutions of each sub-system with the
boundary conditions of another, catchment scale
predictions could be produced. This concept was
developed into SHE (Systtme Hydrologique
Européen), by the Danish Hydraulic Institute (DK), the
Institute of Hydrology at Wallingford (UK) and
SOGREAH (France), (Abbott et al., 1986a; 1986b).
SHE has since evolved into a robust physically-based
model, available as MIKE-SHE (Refsgaard and Storm,
1995) and SHETRAN (Ewen et al., 2000).

The limitation to its practical use is the large
requirement for data and computational time which
restrict its use to small extensively instrumented
catchments.

More recently, the wider availability of distributed
information, ranging from soil types and land use to
radar rainfall, have facilitated the production of
simplified physically-meaningful distributed hydrological
models. These models, based on simplifying
assumptions, with simpler and more parsimonious
parameterizations than those employed in MIKE SHE
and SHETRAN, can also be applied to flood
forecasting. Such models are: WATFLOOD (Kouwen,
2000), DHSVM (Wigmosta et al., 1994), TOPKAPI
(Todini, 1995; Todini and Ciarapica, 2002; Liu and
Todini, 2002), FEWS NET Stream flow Model

(Verdin and Klaver, 2002), LISFLOOD (De Roo et al.,
1998; 2000) and tRIBS (Vivoni, 2003), and many
others that are under test within the frame of the US-
NWS DMIP! and DMIP2 projects (http:/www.
nws.noaa.gov/oh/hrl/dmip).

The Data-Driven Models (1970-Today)

The Sherman (1932) UH, the starting point for Data-
Driven models, was expressed in discrete form by Box
and Jenkins (1970), who showed the link between the
Transfer Function models and the Auto-Regressive
with Exogenous variables models (ARX). Following
this idea, Todini (1978) used the UH in the form of an
Auto-Regressive Moving-Average with Exogenous
variables models (ARMAX) for the reduction of model
parameters in a Kalman Filter based real-time flood
forecasting system. This Box and Jenkins type
modelling introduced a loss of “physicality” in the
models, for instance when using the integration to
eliminate cyclo-stationarities in data, with the loss of
the possibility of preserving the mass balance or
Intervention Analysis models, in favour of more
mathematically oriented approaches. Later, system
engineering approaches, including various types of
input-output techniques, were applied in developing
better performing and more parsimonious models to
represent the hydrological behaviour of a catchment,
although with a larger loss of physical interpretation.

This loss of physicality increased further with
Artificial Neural Network (ANN) approaches, which
can be viewed as non-linear analogues of the original
linear transfer function models; unfortunately,
forecasts may be poor when the events are larger than
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those in the training set (Cameron ef al., 2002; Gaume
and Gosset, 2003). Although Dawson and Wilby
(2001) and Shamseldin (1997) review applications of
ANN to rainfall-runoff modelling, few operational
forecasting systems are presently based on ANN
(Garcia-Bartual, 2002); as already noted, outside of the
range of the training set, the ANN may be less robust
and may sometimes diverge (Gaume and Gosset,
2003). More recently, a Data Based Mechanistic
(DBM) modelling approach, introduced by Young
(2002), derived the model structure and the parameter
values from the input and output data using system
engineering identification and parameter estimation
techniques that attempted to go beyond the black-box
concept by selecting those (not necessarily linear)
model structures that are considered physically
meaningful (Young, 2001; 2002).

Input
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Hidden Layer

Output
Layer

Input #1 —~

Fig. 5: A typical representation of an ANN model

ACCOMMODATING AND RECONCILING
HYDROLOGICAL MODELS

Towards New Possible Classifications of Models
and the Need for Test Beds

Today, users are frequently uncertain on the selection
of the most appropriate hydrological model to suit
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their purposes given the wide variety of existing
models (Singh and Woolhiser, 2002). A rather general
classification of hydrological models was provided in
1988 by Chow et al, as shown in Figure 6.
Unfortunately, thirty years later this classification does
not seem to be fully satisfactory. With the introduction
of the concepts of “predictive uncertainty” (de Finetti,
1975) and “equifinality” (Bertalanffy, 1968; Beven
and Kirkby, 1979; Beven and Freer, 2001) many
models, following the basic Bayesian principle, are
now viewed as a combination of what is assumed to be
known and what is derived from the observations.
Under these new concepts, it is difficult to classify
even a routing component of a hydrological model.
This could in fact be interpreted as physically based
when using the Saint Venant equations with known
boundary conditions, but, at the same time, as
stochastic since all the uncertainty (model structure,
parameters, initial and boundary conditions, input and
output measurement errors) would be taken to be
concentrated in the roughness coefficient, which
becomes now an uncertain (stochastic) parameter only
characterized by its posterior probability density.
Therefore, it is evident that the classification proposed
by Chow et al. (1988) becomes more and more
difficult to actually represent the wide variety of
available models. As an alternative, Todini (1988)
proposed a simple classification based upon both prior
knowledge and problem requirements, in order to
assess the state of the art of hydrological models.

Also this classification, which was just sketched in
the referenced paper, is not conclusive, but it is
probably along these lines that the models should be
assessed and classified with the aim of clarifying to
possible users, in relation to the requirements of the
problem to be solved: the quantity and quality of
assumptions made; the need for geo-morphological
information; the role of uncertainty and the calibration
requirements.
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This implies the definition of a number of standard
test beds, covering a wide variety of engineering and
water resources problems, in order to operationally
compare the models also in relation to their declared
objectives, their performances and their easiness of
use.

Predictive Uncertainty and the Use of
Multi-Model Approaches

Since the late nineties, the interest in assessing
“uncertainty” in models has grown exponentially within
the scientific communities of meteorologists and
hydrologists. In particular, the introduction, on the one
hand, of meteorological ensembles, aimed at assessing
meteorological meso-scale models forecasting un-
certainty (Molteni er al., 1996; Buizza et al., 1999;
Stephenson ef al., 2005), and on the other hand, of the
Hydrological Uncertainty Processor (Krzysztofowicz,
1999), aimed at assessing predictive uncertainty in
hydrological forecasts, have created the basis for the
assessment of “flood forecasting uncertainty”. The
interest in this subject is shown not only by the
abundant available literature, but also by the establish-
ment of the International Research Programme
HEPEX (2004). Unfortunately, the statistical back-
ground of far too many meteorologists and hydro-
logists was insufficient to really appreciate the definition
of “predictive uncertainty” and its subtle difference
with “model uncertainty”. This generated, in the recent
literature, a wide number of papers where the “model
uncertainty” is estimated instead and is regarded as
“predictive uncertainty”, thus increasing the fogginess
of the subject.

Flood emergency management requires operational
decisions that may lead to dramatic consequences
(economical losses, casualties, etc.) to be taken in real
time. Knowing exactly what would actually happen in
the nearby future (next few hours or days), emergency
managers could safely take, by the book, the best
possible decisions on the basis of pre-defined
operational plans. Unfortunately, in real situations the
managers cannot choose the right decision due to their
uncertainty on the future evolution of events. Decision
theory (Raiffa and Schlaifer, 1961; De Groot, 1970)
studied this problem and provided solutions for
decisions under uncertainty. These are generally
obtained by minimising the expected value of an utility
function, which represents either the actual losses (if
they can be estimated) or, more in general, the
manager perception of losses, as a function of a
quantity that may occur at a future time, such as the
discharoe or the water stage that will be reached at a
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given cross-section. This quantity, which is called
“predictand” in the statistical literature, is not known
when issuing the forecast, but can be evaluated as an
expected value to which a forecasting error is attached.

In the case of flood forecasting, predictive
uncertainty can thus be defined as the uncertainty that
a decision maker has on the future evolution of a
predictand that he uses to trigger a specific decision,
such as issuing a flood warning or opening the gates of
a water detention area or activating a bypass.

Today, basically three approaches are available in
the literature for the assessment of predictive un-
certainty, the Hydrological Uncertainty Processor
(HUP) introduced by Krzysztofowicz (1999), the
Bayesian Model Averaging (BMA) promoted by
Raftery (1993, 2003, 2005) and the Model Conditional
Processor (MCP), more recently introduced by Todini
(2008). These approaches aim at assessing and
reducing predicting uncertainty by combining together
one or more than one predictive model.

One of the major benefits arising from the use of
multi-model techniques is again the possibility of
reconciling alternative modelling approaches, which
somehow was advocated by Klemes (1983) in order to
take the maximum advantage from the different
characteristics of the physically based and the data
driven models.

FUTURE PERSPECTIVES
Extending Models to Ungauged Catchments

As seen in the previous sections, the evolution of
hydrological models proceeded from the simple
conceptual models to the more comprehensive and
physically based ones, gradually introducing more
detailed equations in the effort of better reproducing
the complex reality (Singh, 1998). At the same time
several lumped models have been proposed, which
tend to represent reality with widely different
parameterisations of the infiltration, soil saturation,
drainage, run-off formation processes. But the basic
question is whether or not it is possible to directly set
up a lumped hydrological model encapsulating the
physical properties and processes that can be described
at the different scales without the need of setting up
distributed models.

In a recent paper, Martina et al. (2008) showed that
unfortunately, the physical properties of the basic
processes can only be retained at finer spatial scales
(less than 1 km), while, due to the inherent topological
non-linearity, physically based lumped models can
only be derived through an averaging process
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conditional upon a correct representation of additional
phenomena. These additional non linear phenomena,
which must be reproduced when lumping at the
catchment scale are: the hysteretic dependency of the
saturated area on the mean soil water volume, also
found by several other authors (Mishra and Seth, 1996;
Niedzialek and Odgen, 2004; O’Kane and Flynn,
2007; Norbiato and Borga, 2008), and the exfiltration
from the soil which continues after the end of a rainfall
event (Liu and Todini, 2002). Owing to these non-
linear effects, one has to realize that, as for today, only
the distributed models can be exported to ungauged
catchments on physical grounds, while their lumped
version must be successively derived via distributed
modelling simulation.

Thus, interesting research perspectives lie in the
study of the non linear phenomena not resolved at the
catchment scale and in the derivation of theoretical
results that could overcome the need for distributed
modelling simulations.
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Linking Hydrological Models to LAMs for
Real-Time and Flash Flood Forecasting

Another important area of development is the use of
hydrological models as part of a chain aimed at
transforming meteorological Quantitative Precipitation
Forecasts (QPFs) into flood forecasts at given river
cross-sections. The use of QPFs is common when one
wants to extend the forecast beyond the characteristic
concentration time of a catchment. Several tentative
case studies have been implemented in the recent past,
particularly within EU funded projects such as EFFS
(2003), which have not lead to satisfactory results. In
addition, the wuse of meteorological ensemble
predictions, namely predictions based not on a single
future precipitation scenario, but on a set of 20-50
scenarios (members of the ensemble), has additionally
complicated the problem.

As one can notice from the Figure 8, where an
example of real time flood forecast at Ponte Spessa on
the Po river (Figure 7) is displayed, ensemble QPF
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forecasts tend to generate ensembles of predicted
discharges and water levels that hardly embed the
observed ones. This is due to the fact that meteoro-
logical ensembles represent an envelope of model,
parameter and boundary conditions uncertainty instead
of the actual uncertainty of future values (Todini, 2008).

Therefore, current research, particularly within the
frame of HEPEX, aims at finding the most appropriate
ways of making use of QPF ensembles by
incorporating them into Bayesian inferential schemes
based on the uncertainty multi-model processors
described in a previous section.

Linking Hydrological Models to GCMs for
Climate Studies

The pressure due to climate changes is also motivating
a wide variety of research activities and in particular
the incorporation of hydrologic models into the
General Circulation Models (GCMs). The importance
of a more realistic representation of the water balance
at the catchment scale was recognized by Diimenil and
Todini (1992) who incorporated the ARNO model
(Todini, 1996; 2002a) in the ECHAM GCM in place
of the Manabe (1969) on-off bucket, followed by
Liang ef al. (1996a; 1996b) who used the VIC model
(Wood et al., 2002) in the GFDL GCM for the same
purpose.

One of the reasons that motivated the interest of
climatologist at using more realistic surface schemes,
rather than the simple on-off bucket, to represent the
formation of runoff is tied to the possibility of using
river discharges, now available for most of the largest
rivers of the world, to assess the response of the GCMs
not only in terms of average climatology, but also in
terms of actual monthly water volumes delivered to the
oceans.

What appeared immediately evident was the need
for a lumped hydrological model that could be applied
to all the GCM pixels which were, at that time, of the
order of magnitude of 100 x 100 km®. Neither the
ARNO nor the VIC schemes could be extended on
physical grounds to the different pixels, taken as
ungauged catchments, due to the lack of physical
meaning of their parameters. This motivated the
interest in possible hydrological model para-
meterizations which parameters could be derived from
digital elevation maps, land use maps and soil type
maps that are now available for the entire globe at
pixels of the order of 1 x 1 km®.

As described in a previous section results in this
area are promising but not yet conclusive and
additional research is still needed.
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CONCLUSIONS

A long way was made in terms of quantitative
representation of hydrological phenomena from the
Rational Method to the now-a-days available distributed
physically meaningful models. Nonetheless, there is
much scope in pursuing research along a number of
interesting questions and problems under the pressure
of climate changes or the need for correctly assessing
predictive uncertainty and the possibility of reconciling
alternative modelling approaches.

This paper, which aimed at presenting a historical
overview and future perspective in hydrological
catchment modelling, concludes with the hope of
finding new young generations that will enthusiastically
approach the new emerging research requests.

REFERENCES

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E.
and Rasmussen, J. (1986a). An introduction to the
European Hydrological System—Systéme Hydrologique
Européen, “SHE”, 1: History and philosophy of a
physically-based, distributed modelling system. J
Hydrol., 87, 45-59.

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O’Connell, P.E.
and Rasmussen, J. (1986b). An introduction to the
European Hydrological System—Systéme Hydrologique
Européen, “SHE”, 2: Structure of physically-based,
distributed modelling system. J. Hydrol., 87, 61-77.

Amorocho, J. and Orlob, G.T. (1961). Non-linear analysis of
hydrologic systems. Water Resources Centre, Contribution
40. University of California, Berkeley, USA.

Bertalanffy, Ludwig von (1968). General Systems Theory:
Foundations, Development, Applications, New York,
George Braziller. Revised edition 1976: ISBN 0-8076-
0453-4

Beven, K.J. and Kirkby, M.J. (1979). A physically based,
variable contributing area model of basin hydrology.
Hydrolog. Sci. Bull., 24, 43-69.

Beven, K.J. and Binley, AM. (1992). The. future of
distributed models: model calibration and uncertainty
prediction. Hydrol. Process., 6,279-298.

Beven, K.J. and Freer, J. (2001). Equifinalilty, data
assimilation, and uncertainty estimation in mechanistic
modeling of complex environmental systems using the
GLUE methodology. J. of Hydrol. 249, 11-29.

Box, G.E.P. and Jenkins, G.M. (1970). Time Series Analysis
Forecasting and Control, Holden Day, San Francisco,
USA.

Buizza, R., Miller, M. and Palmer, T.N. (1999). Stochastic
representation of model uncertainties in the ECMWF
Ensemble Prediction System. Quart J. Roy. Meteorol,
Soc., 125, 2887-2908.



History and Perspectives of Hydrological Catchment Modelling

Burnash, R.J.C., Ferral, R.L. and McGuire, R.A. (1973). 4
General Streamflow Simulation System—Conceptual
Modelling for Digital Computers, Report by the Joint
Federal State River Forecasts Center, Sacramento, USA.

Cameron, D., Kneale, P. and See, L. (2002). An evaluation
of a traditional and a neural net modeling approach to
flood forecasting for an upland catchment. Hydrol.
Process. 16, 1033—1046.

Chow, V.T., Maidment, D.R. and Mays, L.V. (1988).
Applied Hydrology. McGraw-Hill.

Crawford, N.H. and Linsley, R.K. (1966). Digital simulation
in Hydrology, Stanford Watershed model 1V, Tech. Rep.
39. Dept. Civil Eng. Stanford University, USA.

Dawdy, D.R. and O’Donnell, T. (1965). Mathematical
models of catchment behavior. J. Hydraul. Div.—ASCE,
HY491, 123-137.

Dawson, C.W. and Wilby, R.L. (2001). Hydrological
modelling using artificial neural networks. Prog. Phys.
Geog., 25, 80-108.

de Finetti, B. (1975). Theory of Probability, Vol. 2. Wiley,
Chichester, UK.

De Groot, M.H. (1970). Optimal Statistical Decisions,
McGraw-Hill, New York.

De Roo, A.P.J., Wesseling, C.G. and Van Deursen, W.P.A.
(1998). Physically based river modelling within a GIS.
The LISFLOOD model. Proc. 3rd Int. Conf. on Geo-
Computation. In: Geo-Computation CD-ROM produced
by R.J. Abrahart. ISBN 0-9533477-0-2. http:/www.
geocomputation.org/1998/06/gc_06.htm.

De Roo, A.P.J., Wesseling, C.G. and Van Deursen, W.P.A.
(2000). Physically-based river basin modelling within a
GIS: The LISFLOOD model. Hydrol. Process., 14,
1981-1992.

Dooge, I.C.1. (1973). Linear Theory of Hydrologic Systems.
Technical Bull. No. 1468—United States Department of
Agriculture. Washington, USA.

Diimenil, L. and Todini E. (1992). A rainfall-runoff scheme
for use in the Hamburgh Climate Model, in J.P.O’Kane
(Editor) Advances in Theoretical Hydrology, a tribute to
James Dooge. European Geophysical Society Series of
Hydrological Sciences, 1. Elsevier, Amsterdam, pp. 129—
157.

Dunne, T. (1978). Field studies of hillslope flow processes.
Chapter 7 In: Kirkby, M.J. (Editor), Hillslope Hydrology.
Wiley, New York, pp. 227-293.

EFFS (2003). An European Flood Forecasting System,
http://effs.wldelft.nl.

Ewen, J., Parkin, G. and O’Connell, P.E. (2000).
SHETRAN: Distributed river basin flow and transport
modeling system. J. Hydrolog. Eng., 5, 250-258.

Franchini, M., Wendling, J., Obled, Ch. and Todini, E.
(1996). Physical interpretation and sensitivity analysis of
the TOPMODEL, Journal of Hydrol., 175:293-338.

521

Freeze, R.A. and Harlan, R.L. (1969). Blueprint for a
physically-based digitally-simulated hydrologic response
model. J. Hydrol., 9, 237-258.

Garcia-Bartual, R. (2002). Short-term river forecasting with
Neural Networks. Integrated Assessment and Decision
Support. Proceedings of the Ist biennial meeting of the
International Environmental Modelling and Software
Society, 2, 160-165. (ISBN: 88-900787-0-7).

Gaume, E. and Gosset, R. (2003). Over-parameterisation, a
major obstacle to the use of artificial neural networks in
hydrology? Hydrol. Earth Syst. Sci., 7, 693-706.

Gupta, V.K. and Sorooshian, S. (1983). Uniqueness and
observability of conceptual rainfall-runoff model
parameters: the percolation process examined. Water
Resour. Res., 19, 269-276.

Hayami S. (1951). On the propagation of flood waves,
Disaster Prevention Research Institute Bul 1, 1-16.
Kyoto University, Japan.

HEPEX (Hydrological Ensemble Prediction Experiment)
(2004). http://www.ecmwf.int/newsevents/meetings/
workshops/2004/HEPEX/index.html.

Juemou, W., Ruifang, Z. and Guanwu, X. (1987).
Synthesised Constrained Linear System (SCLS), J.
Hydraul. Eng., no. 7. Beijing, China.

Kalinin, G.P. and Milyukov, P.I. (1957). O raskete
neustanovivshegosya dvizhenia vody v otkrytykh ruslakh
(On the computation of unsteady flow in open channels).
Meteorologiva i gidologiya zhuzurnal 10, 10-18
Leningrad (in Russian).

Klemes, V.K. (1983). Conceptualization and scale in
hydrology, J. Hydrol., 65, 1-23.

Kowen, N. (2000). WATFLOOD/SPL: Hydrological model
and flood forecasting system. Dept. Civil Egineering,
University of Waterloo, Waterloo, Ont., Canada.

Krzysztofowicz, R. (1999). Bayesian theory of probabilistic
forecasting via deterministic hydrologic model. Water
Resour. Res., 35,2739-2750.

Kuichling, E. (1889). The relation between the rainfall and
the discharge of sewers in populous districts. Amer. Soc.
Civil Eng. Trans., 20, 1-56.

Liang, X., Lettenmaier, D.P. and Wood, E.F. (1996a). One-
dimensional Statistical Dynamic Representation of
Subgrid Spatial Variability of Precipitation in the Two-
Layer Variable Infiltration Capacity Model. J. Geophys.
Res., 101(D16), 21,403-21, 422.

Liang, X., Wood, E.F. and Lettenmaier, D.P. (1996b).
Surface soil moisture parameterization of the VIC-2L

model: Evaluation and modifications. Global Planet
Change, 13, 195-206.

Liu, Z. and Todini, E. (2002). Towards a comprehensive
physically-based rainfall-runoff model. Hydrol. Earth
Syst. Sci., 6, 859-881.



522

Lloyd-Davies, D.E. (1906). The elimination of stormwater
from sewerage systems. Inst. Civil Eng. Proc., 164, 41—
67. London, UK.

Manabe, S. (1969). Climate and Ocean circulation: 1. The
atmospheric circulation and the hydrology of the earth’s
surface. Mon. Weather Rev., 97,739-774.

Martina, M.L.V., Todini, E. and Liu, Z. (2008). Can
physically meaningful properties and parameters be
directly retained in lumped hydrological models? Paper
submitted to Journal of Hydrology, under review.

Mishra, S.K. and Seth, S.M. (1996) Use of hysteresis for
defining the nature of flood wave propagation in natural
channels. Hydrological Sci J., 41(2), 153-170.

Molteni, F., Buizza, R., Palmer, T.N. and Petroliagis, T.
(1996). The ECMWF Ensemble Prediction System:
methodology and validation. Quarterly Journal of the
Royal Meteorological Society, 122: 73-119.

Moore, R.J. and Clarke, R.T. (1981). A Distribution
Function Approach to Rainfall-Runoff Modelling. Water
Resour. Res., 17, 1367-1382.

Mulvany, T.J. (1850). On the use of self registering rain and
flood gauges. Inst. Civ. Eng. Proc., 4, 1-8. Dublin, Ireland.

Nash, J.E. (1958). The form of the instantaneous unit
hydrograph. IUGG General Assembly of Toronto, Vol.
III—IAHS Publ., 45, 114-121.

Nash, J.E. (1960). A unit hydrograph study with particular
reference to British catchments, Proc. Inst. Civil. Eng.,
17, 249-282.

Natale, L. and Todini, E. (1976a). A stable estimation for
linear models 1. Theoretical development and Monte-
Carlo experiments. Water Resour. Res., 12, 667-671.

Natale, L. and Todini, E. (1976b). A stable estimator for
linear models 2. Real world hydrologic applications.
Water Resour. Res., 12, 672-675.

Niedzialek, J.M. and Ogden, F.L. (2004). Numerical
investigation of saturated source area behavior at the

small catchment scale, Adv. Water Resources, 27(9),
925-936.

Norbiato, D. and Borga, M. (2008). Analysis of hysteretic
behaviour of a hillslope-storage kinematic wave model
for subsurface flow, Adv. Water Resources, 31(1), 118
131.

O’Donnell, T. (1966). Methods of computation in
hydrograph analysis and synthesis, Recent trends in
hydrograph synthesis, Proc. Tech. Meeting no. 21,
T.N.O., The Hague, pp. 65-102.

O’Kane, J.P. and Flynn, D. (2007). Thresholds, switches and
hysteresis from the pedon to the catchment scale: a non-
linear system theory. Hydrol Earth Syst Sci, 11(1):443—
459.

Raiffa, H. and Schlaifer, R. (1961). Applied statistical
decision theory, The MIT Press, Cambridge, MA.

Water, Environment, Energy and Society (WEES-2009)

Raftery, A.E. (1993). Bayesian model selection in structural
equation models. In K.A. Bollen and J. S. Long (Eds.),
Testing Structural Equation Models, pp. 163-180.
Newbury Park, Calif. Sage.

Raftery, A.E., Balabdaoui, F., Gneiting, T. and Polakowski,
M. (2003). Using Bayesian model averaging to calibrate
forecast ensembles, Tech. Rep. 440, Dep. of Stat., Univ.
of Wash., Seattle.

Raftery, A.E., Gneiting, T., Balabdaoui, F. and Polakowski,
M. (2005). Using Bayesian model averaging to calibrate
forecast ensembles, Mon. Weather Rev., 133, 1155-1174.

Refsgaard, J.C. and Storm, B. (1995). Chapter 23: MIKE
SHE. In: Computer models of watershed hydrology,
Singh, V.P. (Ed.), Water Resources Publications,
Littleton, Colorado, USA.

Rockwood, D.M. (1964). Streamflow synthesis and
reservoir regulation. U.S. Army Engineer Division,
North Pacific, Portland, Oregon, Engineering Studies
Project 171, Technical Bulletin No. 22,

Saulnier, G.M. and Datin, R. (2004). Analyical solution to a
bias in the TOPMODEL framework balance,
Hydrological Processes, 18, 1195-1218.

Shamseldin, A.Y. (1997). Application of Neural Network
Technique to Rainfall-Runoff Modelling, J. Hydrol., 199,
272-294,

Sherman, L.K. (1932). Streamflow from rainfall by the unit
graph method. Engineering News Record, 108, 501-505.

Singh, V.P. (1988). Hydrologic Systems: Rainfall-Runoff
Modelling, Vol. 1-2. By Prentice Hall—A Division of
Simon & Schuster, Englewood Cliffs, New Jersey 07632.

Singh, V.P. and Woolhiser, D.A. (2002). Mathematical
Modeling of Watershed Hydrology. J. Hydrol. Eng., 7,
270-292.

Sorooshian, S. and Gupta, V.K. (1983). Automiatic calibration
of conceptual rainfall-runoff models:- The question of
parameter observability and uniqueness. Water Resour.
Res., 19, 260-268.

Stephenson, D.B., Coelho, C.A.S., Balmaseda, M. and
Doblas-Reyes, F.J. (2005). Forecast Assimilation: A
unified framework for the combination of multi-model
weather and climate predictions, Tellus A, 57A, 253-264.

Sugawara, M. (1967). The flood forecasting by a series
storage type model. Int. Symposium Floods and their
Computation, [AHS Publ. 85, IAHS Press, Wallingford,
UK, pp. 1-6.

Sugawara, M. (1995). Chapter 6: Tank model. In: Computer
models of watershed hydrology, V. P. Singh (Ed.) Water
Resources Publications, Littleton, Colo., USA.

Todini, E. and Wallis, J.R. (1977). Using CLS for Daily or
Longer Period Rainfall-Runoff Modelling. In:
Mathematical Models for Surface Water Hydrology,
Ciriani, T.A., Maione, U. and Wallis, J.R. (Eds.) Wiley,
Chichester, UK, pp. 149-168.




History and Perspectives of Hydrological Catchment Modelling

Todini, E. (1978). Using a desk-top Computer for an on-line
flood warning system—IBM Journal of Research and
Development, 22(5), 464-471.

Todini, E. and Bossi, A. (1986). PAB (parabolic and
backwater) an unconditionally stable flood routing
scheme suited for real-time forecasting and control,
Hydraul, J., Res., 24, 405-424.

Todini, E. (1988). Rainfall-runoff modeling—Past, present
and future. Journal of Hydrology, 100(1), pp. 341-352.

Todini, E. (1995). New trends in modeling soil processes
from hillslope to GCM scales. In: The Role of Water and
the Hydrological Cycle in Global Change, HR. Oliver
(Ed.).

Todini, E. (1996). The ARNO Rainfall-Runoff model.
Hydrol, J., 175, 339-382.

Todini, E. (2002a). Chapter 16: The ARNO model. In
Mathematical Models of Large Watershed Hydrology.
Singh, V.P., Frevert, D.K. and Meyer, S.P. (Eds.), Water
Resources Publications, Littleton, Colorado, USA. pp.
687-716.

Todini, E. (2002b). Chapter 20: The CLS model. In;
Mathematical Models of Large Watershed Hydrology.
Singh, V.P., Frevert, D.K. and Meyer, S.P. (Eds.), Water
Resources Publications, Littleton, Colorado, USA. pp.
861-886.

Todini, E. and Ciarapica, L. (2002). Chapter 12: The
TOPKAP! model. In: Mathematical Models of Large
Watershed Hydrology. Singh, V.P., Frevert, D.K. and
Meyer, S.P. (Eds.) Water Resources Publications,
Littleton, Colorado, USA. pp. 471-506.

Todini, E. (2008) A model conditional processor to assess
predictive uncertainty in flood forecasting. Intl. J. River
Basin Management 6(2), 1-15.

Verdin, J. and Klaver, R. (2002). Grid-cell-based crop water
accounting for the Famine Early Warning System.
Hydrol. Process., 16, 1617-1630.

Vivoni, E.R. (2003). Hydrologic Modeling using Trian-
gulated Irregular Networks: Terrain Representation,

Flood Forecasting and Catchment Response, Ph.D.
Thesis MIT, Cambridge, Mass., USA.

523

Wigmosta, M.S., Vail, L.W. and Lettenmaier, D.P. (1994).
A distributed hydrology-vegetation model for complex
terrain. Water Resour. Res., 30, 1665-1679.

WMO. (1975). Intercomparison of conceptual models used
in operational hydrological forecasting. Operational
Hydrology Report No. 7, WMO Publ. No. 429, 172 pp.
Geneva, Switzerland.

WMO. (1986). Intercomparison of models of snowmelt
runoff. Operational Hydrology Report No. 23. WMO
Publ. No. 646, Geneva, Switzerland.

WMO. (1992). Simulated real-time intercomparison of
hydrological models. Operational Hydrology Report No.
38. WMO Publ. No. 779, 241 pp. Geneva, Switzerland.
ISBN: 92-63-10779-3.

Wood, E.P., Lettenmaier, D.P. and. Zartarian, V.G. (1992).
A Land-surface hydrology parameterization with subgrid
variability for general circulation models. J. Geophys.
Res., 97 (D3), 2717-2728.

Wooding, R.A. (1965a). A hydraulic model for the
catchment-stream problem, I. Kinematic wave theory,
Hydrol, J., 3(3, 4), 254-267.

Wooding, R.A. (1965b). A hydraulic model for the
catchment-stream problem, II. Numerical solutions,
Hydrol, J., 3 (3, 4), 268-282.

Wooding, R.A. (1966). A hydraulic model for the
catchment-stream problem, I1I. Comparison with runoff
observations, Hydrol, J., 4,21-37.

Woolhiser, D.A. and Liggett, J.A. (1967). Unsteady, one-
dimensional flow over a plane—the rising hydrograph.
Water Resour. Res., 3, 753-771.

Young, P.C. (2001). Data-based mechanistic modelling and
validation of rainfall-flow processes. In: Model
Validation: ~Perspectives in Hydrological ~Science,
Anderson, M.G. and Bates, P.D., (Eds.) Wiley,
Chichester, UK, 117-161.

Young, P.C. (2002). Advances in real-time flood fore-
asting, Phil. Trans. Roy. Soc. London, A. 360, 14331450,

Zhao, RJ. (1977). Flood forecasting method for humid
regions of China. East China College of Hydraulic
Engineering, Nanjing, China.



