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ABSTRACT: Hydrological modeling is a challenging task nowadays because of the multi-faceted nature of the problem and
the various choices available. There has been a proliferation of models and modeling techniques in the past few decades, and
as a result, it is confusing even to an experienced hydrologist. There are simple models, not so simple models, complex
models and more complex models with each type having its own pros and cons. There are those who consider the end result
more important than the method used to arrive at it and there are also those who consider otherwise. There is no unique

approach or model that suits all and all purposes. In this paper, the author attempts to highlight some criteria for the choice of a
model, limitations of different types of models including calibration issues, and a comparison of a few types of models in terms

of the resource costs and the marginal benefits.
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INTRODUCTION

There exists a plethora of hydrological models that can
be found in the literature, with each one having its own
pros and cons. However, there is no hydrological model
that has universal applicability, and as a result, more
and more models seem to originate at a rate faster than
many hydrologists can digest. The question then is
what criteria should be used in selecting or developing
a model that suits a particular need under a given set of
conditions and constraints. The starting point should
be to decide whether the model is for a practical
purpose to solve a particular problem, or for an
academic purpose with a view to better understand the
hydrological system. The views are divided. There is a
school of thought that advocates the principle that
better understanding of the system is more important
than the end result. There is also the other school of
thought that advocates the principle that it is the end
result that matters and not how it is obtained.

In developed countries where relatively more re-
sources are available for research, the approach adopted
has been to explore the hydrological system in a
distributed or semi-distributed manner. As highlighted
in the sections that follow, it has advantages and dis-
advantages. The advantages are mainly of a potential
nature, meaning that it is only when all the components
that constitute the model are known, or can be known,
a priori, that there will be better understanding of the
system. This condition rarely exists in the real world.
On the other hand, in less developed countries where

there are severe constraints in resources for research,

“the approach adopted is to look for simple, practical

and result oriented methods that would suit the probiem.
In this paper, an attempt is made to highlight these and
other related issues that pose as challenges to hydro-
logical modelling Results taken from some studies using
different types ol models are used as illustrations.

ISSUES TO BE CONSIDERED IN THE CHOICE
OF HYDROLOGICAL MODELS

Data Issues

The accuracy and reliability of the outcome of a model
depends upon the accuracy and reliability of the data
used as inputs. For simple hydrological models the
basic input is the rainfall which varies spatially and
temporally. Present day raingauges can measure rainfall
to a very high degree of accuracy, but a reasonable
spatial and temporal resolution is necessary to ensure
that the data are representative. Averaging out data has
the tendency to smooth out variations thereby dis-
torting the real situation. A compromise is often needed
to strike a balance between the resources available and
the accuracy of the expected result. The second most
important hydrological variable for modelling is the
discharge resulting from rainfall which can be considered
as an integrator of all catchment-scale processes. Direct
measurements of discharges are rarely made under
normal conditions. They are derived . from stage
measurements using rating curves. Stage measure-
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ments can be made quite precisely, but the rating curves
depend upon many factors such as the techniques and
instruments used to measure velocities and channel
hydraulic parameters, and whether or not measure-
ments cover the entire range of possible values. Very
often, rating curves are established under normal flow
conditions, and extrapolated to obtain discharges at
high flow conditions thereby introducing an uncertain
error. Measurements at high flow conditions are
usually not made because they are difficult, dangerous,
and costly. There are other relatively less important
hydrological processes such as evaporation and evapo-
transpiration, infiltration, interception, depression
storage etc. that contribute to the basin-scale hydro-
logical system, and their inclusion requires some
approximations and assumptions while their exclusion
results in over simplification.

In addition to hydrological data, geometrical and
topographical data are needed for distributed type of
models. On a local scale, such data can be found in
limited situations. The resolutions vary and depend
upon the region and the catchment. On a global or
regional scale, remotely sensed topographical data are
available, particularly from satellite observations.
Their resolutions also vary, but the publicly available
data sets do rarely have resolutions finer than 1 km x 1
km horizontally, and a few 10°s of metres vertically.
The results of any distributed model that uses such
coarse data will have inherent errors of the same order
or higher, than those of the input topographical data.

Modelling Issues

Hydrological models can be classified according to
several different criteria. On a broad basis, they could
be classified as data driven and physics-based. The
former type includes all models that do not consider
the physics of the transformation of rainfall to dis-
charges whereas the latter type in principle considers
laws of physics in the modelling process. Data driven
models are relatively easy to implement but not
without problems. Physics based models are much
more difficult to implement and the problems are also
of a higher magnitude.

Parameters and their Calibration Issues

All models need calibration before they could be
applied. The normal practice is to compare the outcome
of the model to the expected outcome and adjust the
parameters using some optimization algorithm until
the cumulative difference between the two as defined
by an objective function is a minimum. For models
with a small number of parameters, this is not difficult.
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However, as the number of parameters in the model
increases, the problem of finding a global minimum of
the objective function becomes difficult. The objective
function often gets trapped at a local minimum.

For physics-based models which are necessarily of a
distributed nature, use of optimization techniques for
calibration defeats the purpose. By the nature of physics-
based models, their parameters are physically identifiable
and thus measurable, at least in theory. In practice
however, such an exercise is not easy to implement,
particularly when the catchment characteristics are
heterogeneous. No distributed model which accounts
for catchment heterogeneities and spatially varying
hydrological inputs that has been calibrated using field
measured parameter values exist at the present time.
Instead, what is often done is calibrating the para-
meters of the model using some kind of optimization
technique against a single site measured output data.
As a result, most models that start with laws of physics
end up as data driven models thereby defeating the
purpose of adopting such an approach.

Assuming that the above is the only currently
available option for calibrating distributed models, the
next issue is the choice of the optimization algorithm.
In addition to the problem of getting trapped at a local
optimum, another problem in multi-parameter optimi-
zation is that of equi-finality—a concept originated in
the general systems model of Bertalanffy (1968),
meaning that the same final result may be arrived from
different initial conditions and in different ways. In
open systems the final state can be reached by many
different ways whereas in a closed system the equi-
finality principle states that there is a cause-effect
relationship between the initial state and the final state.
In the context of multi-parameter optimization, what
this means is that there is no unique set of parameter
values, but rather a feasible parameter space from
which a Pareto set of solutions is sought.

SOME EXAMPLES OF SIMPLE AND COMPLEX
MODELS

A simple model developed recently for forecasting the
stage at Pandhare Dovan gauging station across Bagmati
River in Nepal (Catchment location: 26° 42'-27° 50’
N; 85° 02'-85° 58' E; catchment area = 2272 kmz)
using the stage and rainfall values at previous time
levels has been found to be of the form,

Sgam (£) = C1(Ss am (1-1)) + Co(Save (1-2)) + C5(R(-1))
I i

where, Sg ., (7) is the stage at 8 am on day ¢, Sgam (1)
is the stage at 8 am on day -1, i.e. previous day, Sy
(#-2) is the average of four measurements of stage on
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day -2, i.e. two days before, and R(z-1) is the mean
rainfall over the area of eleven rainfall stations during
the previous 24 hours. (8 am of the previous day to 8
am of the current day). The model parameter values
obtained by least squares error minimization method
and the error indicators during the calibration and
validation periods are given in Table 1.

A similar simple model, also developed recently
after several trials, for forecasting the stage at the
Sivasagar gauging station across Brahmaputra River in
India using upstream stage data at Dibrugarh, upstream
tributary stage data at Jungaon and Nangalamora gaug-
ing stations across the tributaries Dehing and Desang
respectively, and upstream rainfall data at Dibrugar,
Dhemaji, North Lakshimpur and Sivasagar is of the form,

hSivasagar (t) = a]hSivasagar (t = ]) T hDibrugarh (t = 1)
+a3thhing (-~ 1) & a4hDe5ang (t - 1)
+357Sivasagar (t-D+ ML akshimpur (t=1)

+a’.’"‘Dibn.ugarh -+ 8" Dehing (t=1

. Q)

in which the parameters, after least squares error
minimization were found to be,
a =9.78E-01,a, =8.47E—-02,a; =-7.96E - 02,

a, =9.32E—03, a5 = 4.03E 05, ag =1.38E — 03,
a; =6.49E — 04, ag =8.01E — 04,

The goodness of fit of this model as indicated by the
coefficient of determination (R?) and the RMSE are
given in Table 2.

Both these models are relatively simple to formulate,
and require only the data normally available in any
river administration office. The calibration process is
quite simple and does not require much expertise. The
results are reasonable for prediction purposes. As the
complexity level of the model increases, the calibration
process also becomes more and more complex. This is
illustrated in the next two examples.

An approach that has been used for solving complex
non-linear problems in recent years is Artificial Neural
Networks (ANN). It has several advantages over other
similar types of models, the main one being that a prior
knowledge of the processes that transform the input
variables to the output variables is not required. The
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relationship between the inputs and outputs are contained
in the connection weights of the network which get
adjusted incrementally to the optimal values during the
calibration process that uses the backpropagation
algorithm. The details of the method, the formulation,
and application to hydrological modeling are well
described in several references (For example, Haykin,
1999; Anmala et al., 2000; Dawson and Wilby, 2001;
Jayawardena and Fernando, 1998; Fernando and
Jayawardena, 1998; Maier and Dandy, 2000; among
others). The implementation of the ANN approach is
not as simple as the two approaches described above,
and requires some expertise on the part of the modeller,
and the final structure of the network can only be
obtained by trial and error. Furthermore, parameters
that affect the rate of convergence to the optimal
condition also need to be determined by trial and error.

The results of the application of an ANN to predict
daily discharges in Mekong River (Basin location: 8°—
34°N; 94°-110°E) at Pakse gauging station (catchment
area = 545,000 km?®) for the network with the
minimum error for a model which takes the form,

10 10 10 9 9
Q.H»y = .f(Q s ;—ﬁlo sQ{g ""’Qfg—ﬂg tIE ]
2 2 1 1
Qtz 5---:Q[2—ﬁ2 !Q{l EREET] Q!l—ﬁl ) +e

where superscripts refer to the station number, Oy}, is

. (3)

the discharge prediction with y-lead time at Pakse, B is
the lag time, 0)° and Q,°, are the discharges at Pakse

at time ¢ and 3, Qz and sz _p, are the discharges at

Khong Chiam at time # and fo—f3,, etc., and e is the
mapping error to be minimized, are given in Table 3.
The difference of the above equation from other
discharge prediction formulae is that it takes into
account the travel time between different stations
explicitly by varying the corresponding input with
flexible subscripts. As expected, the reliability of the
predictions decreases with increasing lead-time.

Distributed models on the other hand become much
more complex. Most of the currently available distri-
buted models are of a conceptual nature. One such
model is the VIC model (Wood, et al., 1992), which is
based on the Xinanjiang model (Zhao, 1992) that is
widely used in China. It has undergone several

Table 1: Parameters and Error Indicators for the Stage Prediction at Pandhare Dovan in Bagmati River

Calibration Period Validation Period
(January 1980-December 1998) Wit Reramalens January 1999-December 2004)
2 RMSE RMSE/Aver- 2 MSE RMSE RMSE/Aver-
R MSEAm) (m) age Stage (%) Cy C. Cs " (m) {m) age Stage (%)
0.88 0.03 0.34 223 0.510 04124 | 0.016 | 0.88 0.05 0.33 19.51

Note: MSE = Mean Square Error; RMSE — Root Mean Square Error




552

Table 2: Error Indicators for the Model for the Stage
Prediction at Sivasagar in Branmaputra River

Calibration (1993-2001) Validation (2002-2004)
R? RMSE (m) R? RMSE (m)
0.961 0.23 0.920 0.30

Table 3: Error Indicators for the ANN model
for the Mekong River

Le(ig;;"e (’:”n’?/f) '?n’f”éfj RRMSE |1 - NSE
1 47665 | 102808 | 010 | 0.1
7 209207 | 380607 | 035 | 0413
14 279684 | 488763 | 048 | 0.24

Note: MAE -Mean Absolute Error; RRMSE — Relative Root Mean
Square Error with respect to the average flow; NSE — Nash-Sutcliffe
Coefficient of Efficiency

modifications over the years (Liang, et al, 1996;
Cherkauer and Lettenmaier, 1999); Jayawardena and
Mahanama, 2002; Liang and Xie, 2003; among
others). The most recent publicly available version is
referred to as VIC-3L (Liang, et al., 1996) in which
three vertical soil layers are considered. The land
surface is described by a given number of land cover
classes each of which is empirically specified by its
Leaf Area Index (LAI), canopy resistance expressed
by some empirical aerodynamic relationship, and
relative fraction of roots in each of the soil layers that
depend upon the vegetation class and the soil type,
also expressed empirically. There is also the bare soil
to be considered. Surface runoff and baseflow are
computed for each cover type and summed up over all
cover types within a pre-specified grid. Data
preparation include the delineation of the river network
and the catchment boundary, catchment representation
by grid cells, and determination of the flow directions
based on DEM in addition to specifying the vegetation
types and their respective LAIL. The soil moisture is
modelled statistically by a variable infiltration capacity
curve, hence the name VIC. With all this information,
only the runoff producing rainfall can be determined. It
has to be then routed through the network of streams to
estimate the flow at a given grid point. The forcing
inputs are the rainfall and the evapo-transpiration. The
latter, if unavailable, is estimated using some empirical
equation that relates evapo-transpirafion to temperature.

The point to be highlighted here is that despite the
detailed description of the catchment properties, mea-
sured quantitative data on land cover, canopy resistance
and fraction of roots are not available except in a few
places. As a result, many hydrological modellers use
default values set by the model developers and coarse
data available in public domains. The validity of the
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use of such default values is certainly in question.
Although, this kind of distributed approach is expected
to produce output variable values at each grid point in
the mesh, they cannot be validated due to lack of data.

There are many parameters that need to be determined
in such a model. Their spatial variability is usually
ignored in the calibration process in which an objective
function is optimized. Very often the objective function
gets trapped at a local optimum rather than reaching
the global optimum. Global search techniques such as
Simulated Annealing (SA), Genetic Algorithm (GA)
and the Shuffled Complex Evolution algorithm (SCE)
are the commonly used ones, and the SCE has been
seen to be more efficient. Regardless of the algorithm
used, the solution in general does not lead to a single
‘best’ parameter set but to a Pareto set of solutions in
the feasible parameter space. A state 4 (a set of target
parameters) is said to be Pareto optimal, if there is no
other state B dominating the state A4 with respect to a
set of objective functions. A state 4 dominates a state
B, if A is better than B in at least one objective function
and not worse with respect to all other objective func-
tions. The SCE family of algorithms, first proposed by
Duan et al. (1992), has undergone extensions and
modifications and evolved into the Multi-Objective
Complex Evolution (MOCOM) algorithm (Yapo et al.,
1998), the Shuffled Complex Evolution Metropolis
(SCEM) algorithm (Vrugt ef al. (2003), and the Multi-
Objective Shuffled Complex Evolution Metropolis
(MOSCEM) algorithm (Vrugt er al. (2003).

Using the VIC with six parameters to be calibrated,
against the target discharge at the most downstream
station at Pakse, the results for different resolutions of
the Mekong River catchment are given in Table 4 which
clearly illustrate the increase of computer resources
required. Calibration performance in this example has
been evaluated mainly in terms of normalized parameter
distribution, objective function evaluation, or error
indicators of the averaged simulation of the optimized
parameter population.

CONCLUDING REMARKS

In this paper, an attempt has been made to highlight
the various challenges in hydrological modelling given
the present abundance of hydrological models and
modellig techniques. The challenges arise as a result of
the inadequacy of resources for research, lack of
relevant data, lack of expertise and the lack of a clear
understanding of the driving force for any hydrological
modeling attempt. In the first place, the choice needs
to be based on whether the attempt is needs driven or
resources driven. When it is needs driven, simple
models are adequate given the limitations arising from
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Table 4: Statistics for Grid Representation of the Mekong Basin and Computation Resource
Consumption for Different Grid Resolutions

; No. of Grid Mesh One Model Evaluation Optimization
Resolution : ; : ;
Active Grids Dimension viC Routing | Evaluations Total
22 g 2% 37 13x8 2 min 5 min 1000 60 hr
19 x 1° 113 26 x 16 5 min 15 min 1000 170 hr
0.5° x 0.5° 374 51 x 31 10 min 1 hr 500 240 hr
0.25° x 0.25° 1311 102 x 61 30 min 3hr - i
0.125° x 0.125° 4850 203 x 121 2 hr 9 hr - =

Note: Simulation period for one model evaluation of the VIC model and the linear reservoir routing is for 105 months. Grid mesh dimension
is the full dimension of the grid mesh for basin grid representation. As a comparison, 100,000 model evaluations of the lumped SAC-SMA
model for the Leaf River watershed use around 20 min on the hpcpower system for 26 month simulation period.

data inaccuracy. When it is resources driven, consider-
ation should be given to the marginal potential benefit
that may be accrued against the costs associated with
uncertainties and inaccuracies of the data, model for-
mulation and calibration issues. These issues are
highlighted with results taken from four different types
of hydrological models.
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