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ABSTRACT

Dynamic programming is an optimization technique which has
been extensively used for solution of various problems associated
with water resources systems. As the original technique had several
short comings, a number of modifications have been proposed to over-
come the limitations, particularly the curse of dimensionality. One
modification, known as discrete differential dynamic programming is
particularly suited for the problems related with water resources
systems,

.. A computer programme has been developed for optimization. of
operation of a reservoir using the technique of discrete differential
dynamic programming (DDDP). This programme alongwith' the theory of
DDDP has- been presented in this report. The application of the
programme to a hypothetical e€ase is also given to illustrate thé

programme usage.
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1.0 INTRODUCTION

The analysis of a water resources system is a complex problem
because of a large number of interacting factors. Among the techniques
which are generally used for this purpose now-a-days, optimization
techniques are perhaps ﬁwst common. During the last two decades,
significant advances have been made in the optimization techniques and

" presently these techniques are extensively used for plamning, design
and operation of water resources projects. The main motivation of
search for better techniques for analysis of water resources systems
has Been the realization of the fact that even a small improvement in
the solution of the related problems has high economic value attached
to it. Further, the advent of modern fast computer has made it very
easy to use these tools and the solution can be obtained quite quickly.

Among the available optimization techniques, two techniques
are extensively used for obtaining solution of the problems associated
with water resources systems. These are linear programming and dynamic
programming. Linear programming problems are those optimization pro-
blems whose objective function and constraints are linear functions
of decision variables. Once these conditions are satisfied, a wvery
efficient solution technique called simplex method is available
which can be applied to any linear programming problem. Now-a-days
generalized efficient computer codes are available for solution of
linear programming problems. All that a user has to do is to translate
the problem in the required form and present the data in the prescribed
format. This has been a very big incentive for widespread use of

linear programming. Although many physical phenomena are nonlinear in
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nature, linear programming has been successfully applied by piecewise
linearization of such processes.

| The other solution technique which has been extensively used
for solution of problems associated with water resources systems is -
dynamic programming. Dynamic programming is basically an enumeration
technique and can be used for objéctive functions which are linear,
nonlinear and even discontinuous. Because of the inherent nature of
the -technique, genéralized computer programmes are not available for
it. -However, the extensive application of the technique reported in
the literature is a proof of the fact that the efforts involved in
developing and testing computer programmes for specific applications
are insignificant, compéred with the benefits. One big advantagé in
using dynamic programming over other techniques is because of the way
constraints are handled in this technique. In the other optimization
techniques, the constraints lead to additional computations, However,
in dynamic programming the constraints can be utilizeq for increased

computational efficiency since they limit the feasible region.

1.1 Objective and Scope of Present Work
In the present study, a computer programme has been developed

which can be used to derive optimal operating policy of a reservoir,

This programme alongwith the theory is presented in this report,

Sufficient details about the programme are given in the report so that

a user can use the programme following them. A case study is also
given to substantiate the use of the programme. A listing of the
prograﬁme alonawith sample input and output is given in the Appendix 1,

2,and 3.



2.0 DYNAMIC PROGRAMMING

Dynamic programming is an enumerative technique developed
by Bellman in 1953. This technique was developed to optimize a probiem
which can be reﬁresented a§ a multistage decision process. The entire
formulation of dynamic programming is based upon thé Bellmén's
principle of optimality ( ref.figure 1}. An optimal policy has the
property that 'whatever the initial State and decisions are, the
remaining decisions must constitute an optimal policy with respect
to the sta;e resulting from the first decision'. The proof can be
obtained by contradiction. If the optimal path for going‘frmn AtoC
is I-1I then the optimal path from B to ¢ will be II and not II. In
the problem formulation, the dynamic behaviour of the system is
expressed by using three types of variables, as described below:

a. State variables - which define -the condition of the system.

For example, in studies dealing with reservoirs, the amount

of water stored in the reservoir may represent its state.

b. Stage variables - which define the order in which events
occur in the system. Most commonly, time is taken to be
the stage variable. There must be a finite number of possible

. - states at each stage.

C. Control variables - which represent the controls applied at
a particular stage and transform the state of the system. For
the reservoir operation problem, the release of water from

the reservoir is a typical decision variable.



Fig.1 - Illustration of the Principte of Optimality



With each state transformation, a return is associated
which may either represent benefits or costs. The state of reservoir
will be transformed by releasing a certain amount of water from it.
This water can be used for some useful purpose like irrigation and
will lead to monetary returns. The water released from a reservoir
may also cause flood damag?s downstream and hence a cost can be
associated with these damages. The problem is to find the control
variables which optimize the returns. Typically the benefits are
maximized and the costs are minimized. The optimal decision made at a
particular = stage is independent of decisions made
at previous stages given ‘the current state of the
system. A set of decisions for each time period
is called a policy. The particular policy which optimizes the objec-
tive function is called the optimal policy. The set of states which
result from the application of a policy is called the state trajec-
tory. )

| The dynamic behaviour of the system is expressed by an
equation known as the System equation. It can be written in discrete

form as:

s(t+#1) = f [s(t),u(t),t] e (1)
t = 1,2,000....N
where s(t) is the state variable at time t,
u{t) is the control applied at time instant t,
which last for a duration At, A4t, being the length
of time in which stage variable is discretized, and

f is the given functional form.



The state of the system at any stage t should lie in the
domain of admissible states at that stage. Similarly the control at
any stage should also lie in the admissible domain at that stage.

s(t) < S(t) ‘ e (2)

u(t) - U{t) eeee (3)

Where S(t) and U(t) are the domains of admissible states and
controls at stage t. ’

Let R[s{t), u{t).t] be the return obtained if the system is at
state s(t) at stage -t and the control u(t) is applied at instant t
lasting for a durationat. Further, let F[s(N),N]Jbe the sum of returns
from application of controls from some initial stage at t = 0 to final
stage at t = N. The objective of maximizing the sum of returns from
the system can be expressed as

Max F[s(N), N] ‘ oo (4)

Let the state of system at t = 0, s(0) ¢ S{0) is known and
the returns F(s{0),0 Jare also known. Let F*[s(0),0] be the optimum

value of these returns. Now consider the first stage ( of duration

At). The optimal return for this period is given by

PLs(1),1] = M RCS(0),u(0),0] + FA{s(0),01 ... (5)
w0y ¢ o)
This equation is solved for each discrete level of staté.gt
t =1 as a function of control variables u(0). To do this, the state.
is discretized into a number fo discrete levels (ref. figure 2). Now a.
particular lettice point is chosen and all the admissible levels of
decision variables  which lead to this state are chosen. For eacﬁ_
of these'decision variables, the return F[s(1),1] is calculated. The

maximum among these returns given the value of F*[s(1),1]. This



computation is repeated for each discrete value of s(1) and the results
are stored.

The computations are performed in similar fashion for stage '

2,3..... .N. ‘The recursfve equation for any stage t can be written as
PLs(t),t] = Mex Rs(t-1), ult-1), t=1] + F{s(t-1), t-1] ...(6)
u(t-1) = WYt-1)

Thus at the end of N'" stage, the values of F*[s{t),t],
t=1,2.......N are available. The optimal value of control variables
or the optimal policy is obtained by tracing back the values of returns,
corresponding to those states which satisfy the initial and final values
and the constraints. The optimal state trajectory can be determined by
using the system equation once the optimal policy is known.

The above computational scheme of dynamic programming is
known as the forward algorithm since the computations start at the
initial value of the state variable at stage 1 and move forward. In.
contrast to this, the computatior;s can also commence at the final value
of state variable at the last stage and can move backwards. The optimal

policy is retrieved by tracing forward from the returns. This algorithm

is called the backward algorithm.
2.1 Advantages and Disadvantages of Dynamic Programming

Dynamic programming is essentially an enumerative technique
which is specially suited to multistage decision problems., There are a
number of advantages in using this technique particularly for analysis
of a water resources system. Some of the advantages are:

i} The dynamic pfogranming formulation is same for linear as
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Fig. 2 - Tree Generated by Enumeration



wefl as nonlinear problems. Thus, no extra effort is required
for nonlinear problems. This property is very useful in case
of water resources systems since many related problems can-
not be realistically linearized.

ii) The incorporation of constraints in linear and nonlinear
pfogramming problems is more difficult than in dynamic programming
problems. In case of dynamic programming, the constraints seérve a use-
ful purpose. They.do limit the feasible region and thus may lead to
reduction in computational time requirement.

iii) The stoéhastic nature of a problem can be easily con-
sidered in the dynamic programming formulation. The algorithm developed
for a deterministic problem does not have to be significantly changed to
incorporate stochasticity. This i}s in contrast with other techniques
" where incorporation of stochasticity'requlres toc much change in the
algorithm and significant increase in cbmputational time.

Besides the above advantages, there are some disadvantages
in using the dynamic programming formulation. These include:

i) The dynamic programming is not basically tailored in such
a fashion that generalized programmes can be written using it. Thus a
new computer programme has to be 'developed or an existing progrmme
has to be significantly modified'and tested for each new application
of the technique. On the other hand standard computer programmes are
widely available for the linear programming technique.

ii) It was stated above that to solve a particular problem,
the state and contro! variables are discretizéd at each stage and these
discretized values are then used to compute returns. Thus for the
purpose of computation, these values have to be stored in the computer

memory from where they can be drawn as and when required. The number of
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the knowledge of one variable emables the determination of the other.
The initial values must always satisfy the constraints.

Now a set of incremental values of stage variable is assumed.
When these incremental values are added and substracted from the trial
trajectory at a particular stage, a subdomain is formed around the trial
trajectory. This subdomain is called a corridor. At this stage optimiza-
tion is performed constrained to this corridor and a better value of the
trajectory is found. For the next iteratidn. this trajectory is con-
sidered as the trial trajectory. The computations are performed by
varying the composition of the corridor in such a way that the algo-
rithm converges towards the optimal solution.

One such corridor is shown jn figure 3. In this case the
trial trajectory lies at the centre of the corridor though this is not a
necessary condition. More than one quantized states on either side of
the trajectory may be chosen but the choice of three quantized states
at each stage is most suitable for computational efficiency.

To obtain good convergence, two criterion were suggested by
Hall (1968). These are guidelines about the increments to the state
vector. The first is that the increments to the state variables must be
kept small and constant throughout any iteration. The second is that
the size of increments should .be reduced as the iterations proceed.
However, the size' of increments should be chosen such that entire
feasible region could be inspected if recuired. There is a strong co-
rrelation between the number of itérations required for good convergence
and the size of increments at each iteration. It was also suggested by
Yeh {1982) that several iterations with a small increment should be
allowed at the end of ®ach computation cycle to improve the value of

objective function.

10
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discretized values goes on increasing with the fineness of the dis-
cretization. For large problems, the memory requirement becomes a
major limitation. This requires judicious choice to be made for the acc-
uracy keduirement, computer memory available and computational time
available. Chow et al (1975) have discussed in detail the computer time
and memory requirements for analysis of water resources system.

Several techniques have been proposed by different investi-
gators to reduce the dimensionality problem associated with amalysis
of water resources systems using dynamic programming technique., One of
these, the Discrete Differential Dynamic' Programming (DDDP) proposed

by Heidari et al (1971) is being described here.
2.2 Discrete Differential Dynamic Programming Technique

The Discrete Differential Dynamic Programming is an iterative
procedure in which the recursive equation of dynamic programming is
solved within a restricted set of quantized values of the state vari-
ables. The optimal solution is obtained by gradually improving the

“initial solution. This technique is particularly suitable for invertible
systems. A system is called invertible if for that system, the order of
the state vector is equal to the order of the control vector. Thus
the knowledge of stage variables enables one to compute the decision
variables. The water resources systems are mostly invertible. For
example, assuming that the inflows to a reservoir are known, the
releases from it can be determined if the states of the reservoir at
different times are known.

The DDDP computations start with either a known stage

trajectory or a known policy. Because of .the property of invertibility,



A computer progr'ame has been developed for deterﬁining the
optimal operating bolicy of a reservoir using the DDDP -technique. In the
beginning the computations ére carried out using the DDP procedure. A
rough grid is chosen for this purpose and the optimization yields
the optimal trajectory which is used as-the initial ;rajector‘y for the
DDDP computations. The opti;nm trajectory is obtained after carry{ng out
the DDDP computations. The’ progiamme is described In the -following
article.A listing of the programme {s given in Appeadix 1. ‘_ . o



3.0 DESCREPTION OF PROGRAMME

3.1 Main Programme

The main prodramme reads the complete input data from a file
called BAK.INP. After initializing few variables, it calls the sub-
routine DDP. Using the values retﬁrned by the subroutine DDP, the
computations of discrete differential dynamic programme (DDP) are taken
up. After each stage of DDP computations, the corridor width is halved
Further at each stage, the computation cycle is repeated NITER times
while keeping the width of the corridor as fixed. A backward computation
' procedure is adopted here. The results are printed cut from the main

programme before terminating the programme execution.

3.2 Subroutine DDP

This is the suéroutine which carries out the discrete dynamic
programming computations. The trasfer of data from main programme to
this subroutine and back is mostly‘through common blocks. For the purpose
of computations, the entire active storage region is divided into NDV
number of divisions. The optimal state trajectory is searched from
amongst the feasible states so that the objective function is maximized
The optimal state trajectory so chosen becomes the initial trajectory
for computations in main programme.

3.3 Subroutine BENEF

This is a user supplied subroutine which evaluates the
objective function. Everytime there is a change in objective fumction

and/or the constraints, this sub-routine has to be modified.

14



The constraints are incorporated by assigning a very high negative

value to the function whenever a constraint is violated.

3.4 Function FINT

" This function is used for linear interpolation to find the value
of variable say x corresponQing to the given value of y using the table
of pairs of x & y values.

The organization of the program is shown in flgure 4. The
transfer of data to subroutines is mainly through common blocks as

given in figure 5.

3.5 Programme Implementation

The programme has been developed on VAX-11/780 system with-
Fortran-77 compiler. While developing the programme, it was kept in
mind that the programme should be sufficiently generalized in ‘the
sense that the required changes to implement it on other systems are
minimum.

However, following statements might require change for

susccessful running of the programme on a system other than on which

it has been developed :

1. The open statement may need modification.
2. The character deciaration may have to be changed.
3. _Changes may also be required in Format specifiers.

3.6 Description of variables
' Following is the list of important variables and their descr-
iption which have been used in this programme. This list includes

the variables used for input and output and subroutine calls.

15



Variable Description

AINF Inflow to reservoir {in cumecs)

AREA Reservoir surface area { in square meters)

DEM Demand of water from reservoir (in cumecs)

DTIM Computation time interval {in hours)

ELEV Reservoir elevation (in m)

NDY Number of increments in which active reservoir storage

capacity is divided.

NITER Number of jterations to be performed keeping the size of
corridor fixed. |

NN No. of set of values in elevation area-storage-release

capacity table.

NP Number of computatiohél periods

OREL Optimal release from reservoir {in cumecs)

REL Release from reservoir (in cumecs)

RELC Maximum possible release at a particular elevation

(in cumecs)

SMAX _- Maximum reservoir storage capacity(in cubic meters)

SMIN Minimum reservoir storage or dead storage(in cubic meters)
STIN Initial reservoir content { in cubic meters)

3.7 _ Input Specification

The input details are read from a file called BAK.INF
which is assigned a logical unit number 2. For ease of keying in,almost
all input is through free format. The input file organisation has

to be as given below:

t6



MAIN

DDP

BENEF

FINT

BENEF

FINT

Fig. 4 - Programme Organisation
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SUBPROGRAMMES

BLOCK COMMON

e RES 10 INT
MAIN X X X X
DOODP X X X X
BENEF X X X X
FINT

Fig.5 - Common Block Usage

18




Line No.{s) Variable(s) Format Description

1 TITLE A Title of the problem
(maximum 80 characters long)

2 NP Mainly control variables, also
DTIM Free information about maximum and minimum
NN '
SMAX storages allowed.
SMIN ’
NDY
NITER
3to ELEV Reservoir elevation area-storage
NN+2 AREA Free
STOR release capacity table. Should be
“RELC
given in tabular form for ease of
checking.
NN values are needed.
NN+3 STIN Free Initial reservoir storage.
As re- AINF Free NP values of reservoir inflows,
quired -
starting from first period.
As re- DEM Free NP values of water demand starting
quired
from first period.
All the input data must be in MKS system. Time is given in
hours.
3.8 Programme Output

The output from the programme contains all inbut information
and the optimal releases from the reservoirs. The output in order
as typed is

a. Number of time periods.

b. Computational time interval.

¢. Maximum and minimum storage capacities.

19



d. Elevation-area-capacity-release capacity tables.
e. Following information for each computational period-
initial storage, inflow, demand,release and final

storage.

The programme has been applied to a hypothetical case to
demonstrate the use of brogramme. The objective function chosen is
given is subroutine BENEF, The input and output for this hypothetical

-

case are given in Appendix 2 and 3 respectively.

20



4.0 CONCLUSIONS

A computer programme has been developed which can be used
to optimize operation of a single reservoir. This programme, which
is based on discrete differéntial dynamic programming approach has
been described and listed in this report. The programme has been
described in detail so that a user can use it foilowing the description.

The programme listing alongwith sample input and output is also given

in the report.
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AFFENDIIY - 1
COHFUTER FPROGRAMME

C************************!**#it*K****Il**t*##**t!*i*tl*tt**ltttt!****
INCREMENTAL DYNAMIC PROGGRAMMING FOR ONE RE SVOIR OFTIMIZATION
C*X*******t*l‘****t**t**3‘*lt***l*t***t*t**333**3**!*****************
COMMON/CL/ BEN(?O!?O)!3TBO(30#20)7TFRO(30!20)rUFS("O:20);
1IP(30+20)+sEPS(30s20)»DREN{30s20)
COMMON/RES/ SHQXFSHINISTIN(JO)lELEU(ES)lﬂREA(ZS)'STDR(zd}DRFLcﬂvﬁl
COMMON/10/ AINF(SO)IREL(30’701”O)10REL{50))BEﬁ§d0)
COMMON/INT/ NPINNSNDVsOTIN
CHARACTER%BO TITLE
C***t***tl****t***t***********X**********X******?#*******************
OPENCUNIT=2,FILE="BAK,INF')
READ(Z2s1) TITLE
1 FORMAT(A) o -
READ(Zr}) NP»DTIMyNN)SHAX) SMINsNDVINITER
READ(Z2 %) (ELEU(I)rﬁREﬁ(I?!STUﬂ(I)JRELC(I)?I =1sHNN}
READ{(2+%} STIM(i)
READ(2:%) (AINF(I)sI=lsNP)
READC2s%) (DEM(I)yI=1)MF)
C***x**t**************************K**********#***********************
IDELS=(SMAX~SHIN} MY
DELS=IDELS '

RTIM=LTIN%3500 E )
CRIEKXEKEERKREERLREF IO X KRR LN AKK C ) S nP
CALL DGDP(DELS: L ’ e .

CHRRKERERERRER R KR RE R P R KTR Sk K
DO 200 IT=1,NITEFR
DELS=DELS%0.5
DO 20 T=1,NF
DO 20 Jel1s3
STBO{I»d)= STINCI+1)+DELSR(2~J)
IF(STRBOCI-JY.GT.SMAY) STBU(I!JJ=4H0X
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: IF‘BT‘D‘fiJ"LixFﬁTNQQ!taofifa);snzu
20 CONTINUE . 57 . 0 ek

DO 100 TsNPygy=y .t o Tinh i

DOA0KEORE S YT B e

DOAB debss o . sl oiiio g .
REL CFvd T s (8T w,’(_;r_:&).n.ssm_'t{q;gﬂ’-.'t; il .,\?z S S

Radk £ir

:+nvsfitarankx—fiub¢s?§b(x;nawfz* :

. RMAX=FINT(STOR,RELL) AVST, NN) -
CaLL BENEF({I,JrK+AUST) ' EEENEF
IF(REL(I+JsK) 3T RMAX) BEN(JyKy=~1 ,E4+D0
IF(REL{T e K)o LT.0} BEN( I K)=~1,E+2¢

40 CONTINUE .

DO 55 K=1,3 . -
Kbo=1 o - ' .
IF(BEN(K;E).GT.BEN(KrL))ﬁNQ!g

- IsanN(K,3>.GT.BEN:KQﬁcit_xhka
IP(IsK)=KD o ¥
OBEN(I+K)=BEN(K,KD) "~

55 CONTINUE Coet

100 CONTINUE T

B0 30 K=1,32 e
REL(l:E:K)=(STIN(!)nST?ﬂllJK))/DTIM+ﬁINF(1)
AVST=(STINCI)+STEOLL X)) /2 '

RMAX=F INT(STORs RELLyAVST o NN) *

CALL BENEF(1,2:K,AVET) _ : BENEF
IF(REL(1+2/K). 6T RMAX) ‘BEM(Z,K)==1,E4+20 o
IFCREL(1:27K) LT 0) BENCZyK)®~1.E25 s
30 CONTINUE T . e
KO=1 .

1F<dzN<2.1).LT.aEN(zyz):“gnéz
IF(BEN(2,3) .GT.BEN(2,K)) KO3
OREL (1)=REL(1,2,K0) :
STIN(2)=STRO(1,K07 -

DO 150 I=2,NF

KE=IP(1,K0) ,
STIN(I+1)=5TEG(IsKE)
CREL(I)=REL(I,KDsKE)

KO=KE .
150  CONTINUE . -
200 CONTINUE s
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C***t***l#****X*#*****#******#********#****tttt*****t***tttt******
TYPE 900,TITLE

700 FORMAT(//A/720Xy "%%% . I N P U T DATA Xkk’////5%
17 All datz are in MKS unmits’)
TYFE 901rnprdtim/3400

901 FORMAT(/5:x'The number of time reriods for analusis are !’i3/
15xy " The comrutational time interval-is ! ‘4.1’ hours’)
TYFE 902,BMAX:8MIN _

202 FORMAT(/OX ' Maximum storade caracity is ¢ “P14.3° cum’/
15X‘Minimum storade ceracity is ¢ ‘P14.3° cum’)
TYFE FO03s (IsELEV{(I)»AREAC(I) s STOR(iYsRELC{E) s I=1 NN}

?03 FORMAT(/10xr Elevation -~ Area - Carscitwy -~ Relesse Caracituy Table’s
153x»* 8 N Elevation Aresa Caracity . Rel Caracity’

25xs - Cm ) {sam) ( cum ) ( cumecs)’//
2r(Sxridr4F14.,2) .
1000 TYPE %904

204 FORMAT(//7/720x° *Xk% Results of Calculations XkEX’//
1,7 Feriod Init Storade Inflow Bemand
2 Release Final Storase’/
3 ¢ cum 2 (cumecs) (cumecs )
4 (cumecs) ( cum J)°/)
00 140 I=1sNF

149 JYFE %10y IsSTINCI)Y»AIMFL(I)»DEM(I)»ORELCI)sSTINCI+1)

210 FORMAT(I3,4X»4F14,.353%XF14.3)
STOF
END

CRERRREXFRRREEAEEREREREKERREE AR RN KRR KRR ERRE KRR TR KR KKKk Rk X
SUEROUTINE DOF{RES)

CREEXRFREARKEAON R R IR KRR KR RKXRERRRREERK IR AIOR KRN R RR AKX R K%
COMMON/CLY BEN{Z0,22)sSTERO(30:20) s TPRO(30:20)0PS(20,20),
1IP{30+20)sEFS(30»20) yOBEN(I0,20)

COMMON/RES/ SHAX SHINsSTIN(SO) rELEV(2S)AREA(25)»STOR(25) rRELC(2%)
COMMON/IO/ AINF(S0)REL(30220+20,0REL(S50),DEM(S0)
COMMON/INT/ NF¢NMsNIWDTIH

C*l**K****#***#t*#*#***#************K***************K***X***#*

D0 20 I=1,NP

STEO{Is1)=6MIN

D0 20 J=2:NDV

BTBO(I+J)=5TBO(IsJ~-1)+DES
20 CONTINUE .
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10 100 I#*NP»Zs-1
BO 40 Jsl.MBV - ,
DU AD K=lsNDV - -
R!Lt!rJiKJ*fSi!D(!~t&¢§~81!ﬂ$1
RMAX=FINT{BTOR,RELCAUST 1 NN)
AVBT=(STEO(I-1»J)48TBOCIK) ) /2
CALL BENEF{IsJrKrAVSTS:
IFC(REL(TIrJrK) BT RMAX) BEN(JsK)=~1.E420 -
IE(REL(IsJrK) LT, 02 asn«a.x)—-i.zao i
{0 - CONTINUE e wE
0D 35 J=1,NIV
_ KO=1
DO S4 K=2sNDV .
54 IF(BEN(JsK3 BT, BEN(J:KGI
IPeIvy=KO .
OBEN(I,Jy=REN{JIKD)
55 CONTINUE :
100 CONTINUE
DB 30 K=1sNDV e
REL(1+2yK)={STIN{1)~ srna&ifx4)1n71n+nznrcxt
AVST=(STIN(1I+8TBO{L+K) 3,201
RMAX=FINT(STORsRELC»AVETsHRE "
Call. BENEF(i+2sKrAYST) e
T IF(REL(1+2+K).GT.RMAX) BEMNIZsK)n~1,E+20
C U IFC(RELCLr29K) W LT .03 nﬁNthK)"wl £20
30 CONTINUE , , :
Ko=1 -
DO ‘44 K=2,NDY
44 IF(BEN(2+K) BT: BEN(Z:KD)) xosx
STIN(2)=8TBO(1,KO) =~
DREL(L)=REL {1y 2,K0)
D0 150 I=23;NP . . S
KE=IP{T+KO) - C e
STIN(I+1)=STBOCT+KE) : o
DREL (I3 =REL(IsKOsKE)
KO=KE
150 CONTINUE . : e
RETURN ST I
ENL L - L o . , e
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[

C**t**#t**t*******K*#K****##**t*##****#*Rit*i#*ltttif!tllt#*#i*ﬁ**

SUEROUTINE BENEF(ITsIJ)IKsAVSTS

(3233223325332 83 233823323322 223233223 R 033 0332222322 Sy

COMMON/CL/ BEN(20,20) vSTBD(30:20):TFFG(30;20);OP8(20:20)r
1IF{3C+20)yEPS(30,20)»OBEN(30520)

COMMON/RES,/ SMAX SMIMsSTINCI0)YELEVI(25)AREA{25)»8T0OR(23)RELC{25)
COMNON/IO/ - AINF(SC)»REL(3Os20+20)yORELLTOI»TEM(SO)

FF=100000.0 . )
BEN(IJyIK)=RELCITyIJsIK)+FFRAVEY™

BENC(IJrIK)=REN(IJrIK) +OBENCITH1,IK?

IF(RELCIT»IJ»IK) LT DEMCIT))Y REN(IJrIK}=-1.,E3+20

RETURRN

END

CAREREERREREERERIERIAELXRERN KRR ERER RN RRK R KRR IR R AR TR XRRR KRN KR,

FUNCTION FINT(AsEBsAVALNN)

Ct*!******t#*t**tt!!***tt**!*****l#t##*!********##t***xx#**!****l*

10

DIMENSION A(1)sB{1)
IF(AVAL.LT.A(1)) THEN
"FINT=R(1)
RETURN
ENDIF
IF{AVAL.GT.ACNN)) THEN
FINT=B(NN)
RETURN
ENDIF
D@ 10 I=1sNN
IFCAVALJEQ.ACT)Y) THEN
FINT=B(I)
RETURN
ENDIF
IF(ACI-1).LT+AVAL ANE.ACTY . BT.AVAL) THEN
FINT=B(I-1)+{(B{1)--B(I-12)/(ALI)~A(I=1) ) k(AVAL-A{I-1))
RETURN
ENDIF
CONTINUE
END.
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APFENDIX -

2

SAMFLE INFUT

Test probles for dunaaie Prnﬁranminﬂ - reservoir oreration
1375332480 555064692 10 3

27654420.0
3454682746.0
42701988.0
914649072.0
&62627580.0
748301%52.0
87844088.0
100044654.0
113871968.9 1
124885%04.0 1
138273104.0 1

20 24 11
178.3
177.8
181.4
182.9
i34.4
iB5.%
187.5
18%.0
190.5
192,90
i?3.5
1275332480
1120.00
1800.00
3120.00
1540.0
4712.0
43500.0

3120.00
15460.00
3420,00
7822.90
1280.0
3200.0

1420.00
29460,00
2430,00
2988.0
5600.0
6380.0°

185022304.0
234361584.,0
296035680.0
370044408.,0
450220960.0

5550646%44.0°

678415104.0
844935232.0
023790080.0
2088124146.0
375332480.0

?120.00
$160.00°
1780,00
2600.0
104,90
24640.0

0.0
280000, 0
£94000.0

2408000.0
40580000.0
5880000.0
8044000.0
10444000.0
13356000,0
16380000.0
19600000.0

8400.00 3340.00
1840,00 1550.00
9800.00. 4440.00
7200,0 4250.0
2034.,0  2000.0
3504.0  3550.¢

2800.00
?120.00

22006.0
1750.0
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.. APPENDIX - 3
7. GAMFLE DUTPUT .

Test rrobles

in MKS units

311 data are

¥ige reriods for enalusis are ¢ 2¢
24.0 hourg

The number of
The chnrytqtiﬂﬁl{;}ihe-1ntﬁrva1 is 3
' - ¢ 1375332480,000 cup

Naxinui3stnrli§féiéécité is
] 55506692, 000 Tty

Kiniaum storage caracity is !

’

Elevation - Ares - Carscity - Relesse Caracity Table
SN Elevation Areas Caracity Rel Carscity
(5 Csam) oL cum ) { cugecs)
1 178.30 27654620,00 185022304, 00 ¢.00
2 179.80 34348275,00 "234261584.00 280Q0C0.00
3 181.40 42701%88,00 294035580.00 - 896000, 00
4 182.90 51649072, 00 3700444608, 00 2408000.00
o i84,40 62829%580.00 450220940, 00 4060000, 00
é 185.90 74830152, 90 533064944,00 3880000.00
? 187.50 87844084, 60 $78415104.00 80564000,04
8 189,00 100044556,00 844935232,90 10444000.00
.9 1990.50 1138?1968{00‘1023?90080@00 133838000.00
10 192,00  124885904.00 12 812416.00  14280000.00
11 19350 & 504,00 1398352480, 00 194600006, 00

A
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