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PREAMBLE

Water is the most essential natural resource for life next to air and is likely
to become a critical scarce resource in many regions of the world. The availability
of water resources in India shows a great deal of spatial and temporal variability.
The population in the country is steadily growing and is expected to approach
160 crores by 2050. The per capital food availability is at present low and needs
to be increased. This rate of growth in icod grain production can be achieved
through extension of irrigated areas and by increasing the grain yield per unit
area assuming that there may not be any significant increase in net scwn area.
It has been established that productivity of irrigated areas is atleast double, if not
more than, that of unirrigated areas in respect of wheat and rice crops. This calls
for better water management in the projects to bring more area under irrigation,
reduce the cost’/ha and thereby increase production. The growth process, the
increase in population and the expansion of economic activities inevitably, lead
to increasing demands for water for diverse purposes.

The Indian National Committee on Hydrology is the apex body on hydrology
constituted by the Government of India with the responsibility of coordinating the
various activities concerning hydrology in the country. The committee is also
effectively participating in the activities of UNESCO and is the National Committee
for International Hydroiogy Programme (IHP) of UNESCO. In pursuance of its
objective of preparing and periodically updating the state-of-art in hydroiogy in
the world in general and India in particular, the committee invites exerts in the
country to prepare these reports on important areas of hydrology. Realising the
importance of irrigation water management, the committee considered it
appropriate to get prepared a state of art in this important area.

This state-of-art report analyses and reviews the present practices of water
management being followed in projects of the country. The report also attempts
to cover various technical, social, economic and organisational aspects related to
the command area management and suggests possible action for improving the
water management.

The Indian National Committee on Hydrology with the assistance of its
erstwhile Panel on Surface Water has identified this important topic "Application
of Finite Element Method to Some Fiow Problems" for preparation of this
state-of-art report and the report has been prepared by Dr. B Vasudeva Rao of
IIT, Mumbai. The guidance, assistance and review etc. provided by the Panel are
worth mentioning.

It is hoped that this state-of-art report wouid serve as a useful reference
material to practising engineers, researchers, field engineers, planners and
implementation authorities, who are involved in correct estimation and optimal

utilisation of the water resources of the country.
-

(S.M. SETH)

Executive Member, INCOH
& Director, NIH

Roorkee
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APPLICATION OF FINITE. ELEMENT
METHOD TO SOME FLOW PROBLEMS

APPLICATION OF FINITE ELEMENT METHOD TO
SOME FLOW PROBLEMS

by
B.Vasudeva Rao
Department of Civil Engineering
Indian Institute of Technology
Powai, Bombay-400 076.

INTRODUCTION:

During the past few decades, a-significant number of rescarch papers have appeared which
apply the finite element technique to the solution of wide variety of problems in Hydraulic
Engineering and Water Resources. These papers in general point out that the stability and
accuracy of the Finite Element models are comparable to those found in Finite Difference
nodels. In some cases where complex geometries are involved, Finite Element models score
vell over Finite Difference models. The advent of computers also contributed to the
development of Finite Element models to solve wide variety of engineering problems. Further
improvement over FEM in recent years is the application of Boundary Integral method to
some engineering problems and it was claimed by Brebbia (1988) that it offers an excellent
altenative to Finite Element for the solution of some practical problems. In BEM only the
boundary is discretised and the solution is obtained in terms of boundary nodes. The values
of field variables are evaluated using the fundamental solution associated with the goveming
equation. The size of the matrix formed is small compared to the FEM. However, the
discussion will be restricted to the FEM only in this report. The report deals with the finite
element formulation of some of the problems encountered in Hyd. Engg./Water Resources.
These are mainly: (a) Water Distribution Networks, (b) Water Hammer Problems, (c)
Dispersion of pollutants in aquifers, (d) Ground Water management, (¢) Two-Dimensional
Stream Flow modelling, (f) Surfacc Runoff modelling.

The most popular method used in the structural mechanics to formulate the element
matrices is the variational technique. As reported by Narasimhan et al (1982), Finlayson and
Scriven have compared the variational technique with the weighted integration technique and
concluded that it is easier to formulate the finitc element equations using the Galerkin's
technique. At present, the Galerkin's method is the most widely used method to solve the
flow problems using the Finite Element method. In all the formulations reported here,
Galerkin's method has been used. A key task in the application of the finite element method
is that of setting up of a matrix of algebraic equations to be solved simultancously for the
various unknowns. Matrix_solution technique can be broadly divided into two classes: (i)
direct and (ii) iterative solvers. The difficulty with dircct solvers when applied to large
problems is that of computer memory. These matrices formed may be sparse and storing and
operating on zero clements will waste considerable amount of computer time. As opposed to
direct solvers, iterative mcthods have the advantage of storing and operating only on non-zero
juantities so that the storage requirements are always minimal. These iterative schemes may
ake more time to converge, but the computer memory requirements are minimum. One of
he attractive fecatures of the FEM is the ease with which the geometric information to define
tie discretised problem can be provided as input. Now this method has come to be recognized
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APPLICATION OF FINITE ELEMENT
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as a powerful tool of analysis of flow problems. The compact storage schemes for solution
of matrices by direct method is as follows.

COMPACT STORAGE SCHEME TO STORE THE GLOBAL MATRIX: Wih the
increase in the number of nodes of the problem, the matrix size will increase inordinately, but
most of the elements of the matrix are zero and only about 10 percent of the elements are
nonzero elements. If conventional schemes are used, it will lead to increase in storage
capacity requirements and also the computational time. The following compact storage scheme
. has been used here to store mostly the nonzero elements of the matrix so that the problem can
‘be solved fast with minimum storage requirements.

dyy dy, 45y @4 a4, 0 0 0
Gy 8 dp3 9y 835 0 0 0
3y 83, @33 @y @35 @3 0 O

Qyy 8y dyy G4y s g gy gy

(1)
dgy Ay dgy dgy dss dgg Ay doy
0 gy gq g5 Agg g7 g
0 0 0 @y @ a5 @y a
0 0 0 ag ags ags dgy Qg
[AU] = [ayy; @080 @y30d;55: 855,
Arar 840 83408447 @150 855, Ay5. Aggs dss ) (2)
Q36+ Qg6+ Asgr Aggi  Bggs gy s gy 0 dyq i
Q4g/ Asgs Aggs g, Agy)
[AL] = [1; .8;,1: @yy08300 1; @3.845.355, 1
G51s 8520853, 854s 17 34308403650 LI @y 50856, 15 (3)

Qpqr Agss Apc o Agys 1]

The diagonal pointer array is [LIMIT] = [1,3,6,10,15,19,23,28], which will point out the
diagonal elements in both the AU and AL arrays. The compact storage schemes for matrices
save considerable amount of computational time, some times may be upto 90 % for very large
matrices. In finite element method, for one iteration, the computational time approximately
is:
(a)  Numencal integration, formulation of element matrices and global assembly
80% of total

(b)  Decomposition of global matrix into lower and upper  triangular matrices

w . 16% of total
(c)  Back substitution and forward elimination .. 4% of total.

Incorporation of Dirichlet type Boundary Condition into Global Matrix:

One of the essential boundary condition to be incorporated in to the matrix before t

2 Scientific Contribution from Indian National Committee on H;-drologL]_‘




APPLICATION OF FINITE ELEMENT
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can be solved is the Dirichlet's condition. Consider the following system of equations in
matrix form as given by Eqn. 4.

a4y 4y 43 Ay N 1
dy 8y dy3 8y PG _ 2 (4)
dy; 83; @33 dyy| X 3
Qg1 A4y g3 Q) Py 4

If x, = V is to be incorporated, then the matrix is to be rewritten as given by Eqn. 5.

a, a, 0 a,| % 1 T dn

8y 833 0 @50 Pl 2 T &2 (5)
0 0 1 0] v

a4 a4, 0 ayy ix, W~ 943

dy; 4y dyy gyl PG [ b

a1 Gz Qa3 Ay JX, - b, (6)
ay; a;, 10%¢ a, | px, v(10%°)

41 4z d43 4] P by

It is better to usc the method described in Eqn. 5 when ever there is an iterative scheme is
involved, though the method described in Eqn. 6 is simpler to adopt on computers.

1.0 ANALYSIS OF FLOW NETWORKS:

The subject of water distribution networks is of considerable interest to the hydraulic
engineers as well as environmental engineers since long. Many publications have appeared
about the analysis of flow networks in general and design of pipe distribution systems in
particular, to mention a few - Shamir Uri (1974) discussed the aspects of analysis and design
exhaustively;, Shaake and Lai (1986), Liang (1971), Jacoby (1968) discussed the designing
aspects with mathematical programming techniques. The purpose of this chapter is to present
the analysis of flow networks by using FEM (Vasudeva Rao 1987), some times known as
linear method. In order to appreciate the advantage of this method over the other two popular
methods, it is appropriate to review briefly the other two methods, namely (i) Hardy-Cross
method and (ii) Newton-Raphson method. The analysis of flow networks is based on the
analogy drawn from the Kirchoff's laws applicable electrical networks. These are: (i) the
algebraic sum of the flows into or out of any node should be zero, (ii) the algebraic sum of
the pressure head losses around any closed loop should be zero.

1.1 Hardy-Cross method for Flow Networks:

Considering a small network of four nodes and five elements (pipes) as shown in Fig.
1 for illustration purposes, the nodal continuity equations can be written in matrix form as:

{ Scientific Contribution from Indian National Committee on Hydrology 3 |
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[Al]l D} = £} where
1 0

1 0 1

11 0 0 o0 (7)
[A‘”'oo—llo
0 -1 0 -1 -1

{Q}" = {Q,,Q4Q:Q,Q} and {C}” = {-C,-C,,-C;,-C,}

Here, Q,i=1,5 are the discharges and C,i=1,4 are the consumptions at the nodal points. As
per the notation used, inputs will be negative. The loop equations in matrix form can be
written as:

(B] HF}= D} where
(5] w372 B 01
T

(8)

and {HF}; = (hf,hf,hf, hf,hf).

At high Reynolds numbers, the relationship between the pressure head loss and discharge in
any pipe is nonlinear. According to Darcy-Weisbach fonmula, the relationship is of the form
Q = K.bf** where K is the conveyance factor of the pipe, K? = 12.1D¥fL, where Q is the
discharge in cubic meters per second, f is the friction factor, D and L are the diameter and
length of the pipe in meters, hf is the pressure head loss in pipe due to friction. Before the
Eqns. 1 and 2 can be solved for discharges, it is to be noted that the matrix in Eqn. 1 is of
rank 3. The Eqn. 2 when expressed in terms of discharges is nonlinear, hence can be solved
by iterative procedure only. Out of the 4 rows in Egn. 1, any three rows can be taken into
account. Retaining the first three rows in Eqn. 1, the modified matrix is of the form given by

Eqn. 9

101 1 1 Qs
-1 10[4Qf =-4{C}-40 (9)
0 01] o C, -0,

Assuming Q" and Q; to start with, the other values Q,, Q, and Q, can be evaluated by solving
the matrix. The values thus generated will satisfy the contiruity equations, but they may not
satisfy the loop equations. Hence corrections are to be applied to the discharge values till they
satisfy the loop equations. It can be shown that the correction to the discharges in loop 1, 8Q,
cau be written as given by Eqn. 10.

B0, = By fen dad, 5,8 (10)
2Y kol

The correctidns to the discharges in loop 2, 8Q, is as given by Eqn. 11.

4 Scientific Contribution from Indian National Committee on Hydrology | |
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hf,
5Q, = _L; for i=2,3,5 (11)
2Y k.10l

Finally Q = Q, + 38Q, for i=1,2 and §;
Q =Q, +3Q, for i=2,3 and 5:
The solution procedure by Hardy-Cross method is as follows:

L. Assume Q,i=N,NE and let the iteration counter m=1

2. Compute Q,, i=1,N-]

3 ‘Compute 8Q, j=I1,NL

4, Apply corrections Q, = Q+3Q, for all the values of i, i being the clement of loop set
il

5. If ABS(8Q,) < 0.00001 GOTO step 7

6. Put m=m+] and goto step 3

A Compute the pressure heads at all the nodes and print the results, that is the values of

discharges and pressure heads.

This procedure was tested on three differcnt networks and was tound to be satisfactory
in terms of convergence. The matrix in this case is unsymmetric, hence for large networks
when stored in full form it requires considerable amount of computer memory. the presence
of constant head reservoirs will complicate the problem.

1.2 Newton-Raphson Method for Flow Networks:

This method is essentially a pressure head correction method wherein the corrections
are applied to the pressure heads at the nodes from iteration to iteration. The loop equations
are not needzd to be solved in this method which are automatically satisfied if the nodal
continuity equations are satisfied. When the nodal continuity equations are cxpressed in terms
of pressure heads at the nodes, a set of nonlincar equations are obtained which are of the form
F, = F(H,,H,,H,,H,) for i=1,4. These are:

F, = =K (H-H)Y? - K, (H-H)Y? - K (H-H)Y" +c, =0 (12)
F, = K (H-H,)'Y? - K,(H,-H)Y* -¢C, =0 (13)
Fy = K, (H-H)Y? - K (H,-H)'* -C, =0 (14)
Fy = K {H,-H)Y? + K, (H-H,)Y* + K, (H,-H,)? -C, =0 (15)

These set of nonlincar equations given by Eqns. 12 to 15 can be solved by linearising
them into Jacobian form using Taylor scries expansion. The linearised cquations in matrix
form will be as given by Eqn. 16.

Scientific Contribution from Indian National Committee on Hydrology 5




APPLICATION OF FINITE ELEMENT
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dF, 9F, 8F, AF,
9H, JH, OH, JH,

dF, dF, dF, dF,| PH -F,
OH, dH, OH, OH,| |pH,| |-F, (16)
dF, 9F, 9F, 9F,| pH,[ |-F,
OH, 0H, OH, dH, sy, |-F,

dF, - dF, 9JF, Of,
dH, OH, OH, JdH,

The rank of the matrix in Equation 16 is 3, hence an additional equation is nceded to solve
" these Eqns. uniquely. This additional equation can be in the form of fixed head at any node
of the network. the matrix in Eqn. 16 should be suitably modified suitably to incorporate this
condition before this can be solved for pressure head corrections {6H}, then H; = H, + 8H;
for j=1, NN where NN is the number of nodes. This procedure is to be repeated till the values
of nodal continuity equations. F, for j=1,NN approach a value close to zero. The matrix
formed is symmetric in this case, hence compact storage schemes can be used for matrix. The
convergence depends upon the starting values of pressure heads, if the solution converges, the
loop equations are automatically satisfied. The presence of constant head reservoirs can be
taken care of easily.

1.3 Finite Element Method for Flow Networks:

The pipe discharge versus pressure hcad relationship can be written as Q = T, hf,
where T, = [12.1 D'/(fL |hf})"? T, being the transmissivity of the pipc clement. For a typical
clement shown in Fig, 1.2, the flow entering the element at its ends in terms of the pressure
heads can be written as:

T, =T

@ e

-T, T,

0 '
0;*

H, (17)

J

For the network configuration shown, the individual element Eqns. are:

Q]lll
e:"

T, -7

i -, T,

H, (18)

2
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T, -T,| 1K, (19)
=T, T

T; -Tl 1H1> (20)
=T, TaJ ;s

{Qs‘“] | T -t (21)

~0 T |8

T, -T,| H} (22)
-1, T, | lH,

The global assembly of these element Eqns. 18 to 22 is as given by Eqn. 23.

(T,+Ty+T,)  -T, -1, =1, 1wy @ e -0
ST UU(T+T,) 0 -T, L 0V +0i" [ (23)
-7, 0 (Ty+T,) -T, A eI
=T =T, =0 (T,+T,+T,) A Q““*Q““*Qf'

or [A]{H} = {Q"“}. It can be seen that matrix formed is symmetric and the right hand side
of the Eqn. 23 can be simplified still further. From the nodal continuity equations and Fig.
1.3, the right hand side of Eqn. 23 can simplified as shown in Eqn. 24,

Q{H*Q;JJ*Q;SJ Q,+0,+0Q, (&)

0 +0" || -0+0, -G, (24)
o1 4+ i -0,+0, h =Ey
0 4+l 40® -Q,-0,~0s -Cy

The right hand side of the equation 24 can now be written as {-C,,-C,,-C,,-C,}", where the
input at any node should be treated as negative. In Finite Element formulation also the rank
of the matrix formed is NN-1, where NN is the number of node points. Hence an additional
equation in the form of boundary condition must be incorporated into the matrix equations

Ecientific Contribution from Indian National Committee on Hvdrology 7
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This additional equation can be in the form of fixed pressure head at any of the node points.

If the pressure head at node | is HFIX, the matrix should now be modificd as given by Eqn.
25.

1 0 0 0 i HFIX

0 (T,+T,) 0 -T, | -C,+T) (HFIX) (25)
0 0 (T,+Ty) =T, A -Cy+T, (HFIX)

0 -1 =T, (T,+T+Ty) | |H, ~Cy+T, (HFIX)

One complication with the element transmissivity is that it is a function of the pressure head
difference at the nodes connecting the clement. As thesc arc unknown initially, the
transmissivity values are to be evaluated with assumed values of pressure heads. If by chance
the pressure head difference hf* is zero, then it should be treated that transmissivity, T, is
equal to thc conveyance factor K, for the element. The algorithm by FEM for flow networks
proceeds as follows:

1 Evaluate the conveyance factor for all the elements of the network using the discharge
versus pressure head difference equation. Read the starting values of the pressure
heads at all the nodes. Sct the iteration counter m=0,

2, let m=m+1
3. Compute the transmissivity T,. If hff = 0 then T" = K,

4. Assemble and form the global matrix and preseribe the proper boundary conditions
and solve for the pressure heads.

5, If ABS(H™' - H™) < 10" then goto step 7.
6. Put H™ = H™' for j=1,N and goto step 2.
T Print the results and stop.

1.4 Numerical Example:

The following data has been assumed for the network shown in Fig. 1.1. The Darcy-
Weisbach friction factor is 0.02. The diameters of the pipes are 100,120,120,100,150 mm and
the lengths are 100, 120, 150, 90, 170 m respectively. The consumptions at the nodes are -60,
15, 20 and 25 lit/sce, the negative value at the node 1 indicates the input at node 1. The
starting values of the pressurc heads at all the nodes is assumed to be 20 m. The pressure
head at node | is fixed at 20 m. The solution by FEM converged in less than 10 iterations.
The solution is {H} = {20, 16.942, 16.978, 16.957} meters. The same values have been
obtained by using the Hardy-Cross and Newton-Raphson methods. Three different
networks have been studied by these three methods. The first network consists of 6 nodes and
9 pipes with one fixed head node. The second network contains 36 nodes and 38 pipes with
two constant head reservoirs. The third network consists of 158 pipes and 148 nodes with one
constant head reservoir. In all these cases the final solution by different methods converged
to the same values. In FEM, the final solution for all the networks converged in less than 10

[ 8 Scientific Contribution from Indian National Committee on Hydrology |
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. iterations with starting values of pressure heads being at a particular value for each network
for all the nodes. Convergence is faster in FEM compared to the other two methods. The time
of computation is also very less compared to the other two methods. Moreover, FEM has
been applied subsequently to about 20 different networks and it was observed ‘that
convergence is independent of the starting values.

Table No. 1.1
Comparative statement of the threc different methods for solving the flow networks.
Hardy-Cross method Newton-Raphson method | Finite element method

1. | lterative procedure based | ltcrative procedure based | Itcrative procedure to
on loop oriented on pressure head evaluatc the pressure
discharge correction correction method; heads directly.
method; Q=Q,+3Q; for H=H+3H, for all the
all pipes in loop j nodes j in the network

2, | Complete data regarding | Node-pipe connection Only the nodes
the node to pipe data is to be given in connection the clements
connections and loop proper order. are to be given
connections is needed

3. | Will lead to unsymmetric | Will lead to symmetric Will lead to symmetric
matrix matrix. Nodal continuity | matrix. Nodal

Eqns. for all nodes are to | continuity Eqns. need
be evaluated for each not be evaluated for
iteration which is a major | each iteration.

time consuming job.

4. | Data preparation is Same as Hardy-Cross Data preparation is
laborious especially for method. simple. Direction of
large networks. Direction flow in the input data
of flow is to be taken need not be taken into
into account in the data account,
preparation.

5. | Final solution is in the Final solution is in the Final solution is the
form of discharges only. | form of pressure head form of pressurc heads
Pressure heads at the corrections. Pressure dircctly. Discharges are
nodes are to be evaluated | heads and Discharges are | to be evaluated at the
separately to be evaluated at each end of the solution if

‘iteration to compute the | nceded.
nodal balance Eqns..

6. Convergence is slow, Convergence is slow, - Faster convergence,
depends upon the initial depends upon the initial Solution is independent
starting values starting values of the starting values.

|§ientiﬁc Contribution from Indian National Committee on Hydrology 9
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l APPLICATION OF FINITE ELEMENT
METHOD TO SOME FLOW PROBLEMS

2.0 FLUID TRANSIENTS FOLLOWING A VALVE CLOSURE IN A PIPE LINE OR
WATER HAMMER:

In the case of closed conduits flowing under pressure, hydraulic transients commonly
known as water hammer occur when there is cither a retardation of flow due to closure of a
valve or an acceleration due to the opening of a valve. This may sometimes cause the damage
to the pipe line, valve and other pipe fittings along with the pumps and turbines etc. in the
conduit system. Increase in pressure due to water hammer'is not serious in case the valve is
operated graduated gradually. The pressure rise can be evaluated by surge methods by treating
the liquid as incompressible and the pipe wall as rigid. But for the case of sudden closure (or
opening) of the valve, there is a sudden reduction of flow which causes an increase in the
head on the upstream side of the valve. A high pressure wave propagates upstream from the
valve at a speed equal to the sonic wave speed for the given fluid medium. This pressure
wave reduces the velocity of flow. On the downstream side of the valve, there is a sudden
decrease in the pressure and a wave of this reduced pressure travels in the downstieam
direction at the sonic speed. This also reduces the velocity. If the closure is quite rapid and
the normal pressure is sufficiently low, this may cause cavitation and produce high prcssu‘rﬁ

wave downstream on the collapse of the cavity. The transient flow phenomenon in pipes has.

been studied by a number of investigators. The derivations of the basic govering differential
equations were presented by Rich (1963), Wylie et al. (1978), Chaudhry (1979) etc.
According to Wylic et al., the method of characteristics is the widely accepted method for the
solution of the water hammer problems. Watt ct al. (I980) described an experimental rig
constructed to mcasure the transient response of a water pipeline following a rapid' valve
closure. The aim of this chapter is to present the Finite clement formulation and solution of
the basic goveming equations of the water hammer problem and compare the results obtained
by this mcthod with those obtained by the method of characteristics (Paygude D.G.,
B.Vasudeva Rao and S.G.Joshi (1985)).

2.1 Governing Equations;

In the analysis of fluid transients, two basic principles of mechanics namely (a) the
principle of the law of conservation of mass and (b) the principle of conservation of lincar
momentumn are applied to an clemental segment of fluid in a pipe, which give rise to the
following two partial differential equations as given by Eqns. 26 and 27.

_3H G av ) (26)
LL(V,H)-_B_E ?_3§+V§} VS8ing =0
LZ(V,H) = av + V ﬂ + g 9H * £V |V =0 (27)

ot 9x Tx 2D

in which V=V(x,t) is the mean velocity of flow through the pipe, H=H(x,t) is the piezometric
head, x is the horizontal distance measured along the pipe, tis the time clapsed since start of
the valve closing operation, g is the acceleration duc to gravitation, fis the Darcy-Weisbach
friction factor, D is the diameter of the pipe, C, is the celerity of the pressure wave and 0 is
the angle of inclination of the pipe to the honizontal.
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In the method of characteristics, the solution to the problem is somewhat indirect in the sense
that the governing partial differential equations arc converted into total differential equations
known as characteristic equations and then to finite difference form before the solution can
be obtained. The Finite Element mcthod deals with the goverting equations directly and
converts them into element cquations which are to be assembled and the boundary conditions
are to be substituted before the solution can be obtained.

2.2 Element Matrices:

A trjal solution of the following form is assumed: V = V(x,t) = E N,(x) V,(t) and H
= H(x,t) = & N,(x) H(t)
where N{x). i=1,2,..NN; (NN is the number of nodes) arc the interpolation functions
satisfying the boundary conditions over the domain. The functions V(x.t) and H(x.t) are the
exact solutions of the governing equations only if the residuals L,(V,H) and L,(V,H) arc cqual
to zero. As the trial solutions are not exact, the resulting error of the residual over the domain
can only bé minimized to have 2 satisfactory solution. This is possible by making the trial
functions orthogonal to the residual (Galerkin's criterion), which can be written as:
JN(x)L,(V,H) dx = 0 and [N(x)L,(V,H) dx = 0. For NN interpolation functions, there are
NN undetermined coefficients V, and H, and NN orthogonality conditions are to be satisfied.

[mxer L [Eweo v, Twam @] ax = o0 @28

Putting the Galerkin's criterion (Eqns. 28 and 29) into the governing differential Eqns. 26 and
27, the resulting equations arc as given by Eqns. 30 and 31,

IN,(x,t) LY M) v, YN H(t) ] dx = 0 (29)

J'N‘. [ 3‘3_t()'_':1vj. v) + TN v, 2 (TN

(30)
gg,-:():w*2—§3):~,-vj():~;lv,m,dx = 0
d + Cz +
ij [ = (LN, i) __B_(EN v) -
(ENjVj}_;}(ENJHJ-)-SJZDQ;(ENJVJH ax = 0

Integration of each term in Eqns. 30 and 31 can be donc by assuming suitable interpolation
functions. It is to be noted that these Eqns. 30 and 31 are based on FEM in space domain
only and Finite Difference scheme in time domain. The field variables V and H can be
expressed as, H = (H,,, + H)2 and V = (V,,, + V)2 and the derivatives of the field
variables H and V can be expressed as (6H/at) = (H,,,, - H)/At and (dV/at) = (V,.,, -V )/ At
Putting these into Eqns. 30 and. 31 and simplifying, the element equations are as given by
Eqns. 32 and 33.

Eqns. 32 and 33 can be combined together to form a combined element matrix which is as
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I
L (2Vi+W) g (2vev)) :
3At T 12 6At ~ 12 H, c,‘,[—l 1] vy

teAt t+At

L_Wis2v) p,, ve2vy) | B el
6At ~ 12 3 12 -
L, (2v,+Vv,) L _ (2v,+v,) )"
_ | 3Ac 12 6At 12 Hy (32)
L, (vi#2vy) . (Vi+2v) | |,
GAE 12 3At 12

t

R Ci[l -1Kv; & LSi‘n:p 2V1+V1
agl1 -1, 6 |v,+2V,
ceAt t+At
L_(2VeV) L 2Vew))! *
3At 12 BAct ~ 12 Vit gl—l 1] H,
+ =
L _viv2v) 1, (V2v) | [y 4l-1 1|n,
7.3 12 3 12
t t
% +_(2V1+V,) L - (2v+v)]*
34t T 12 BAE 12 | {% gll -1J H, (33)
= + 2
L, we2v) L (ve2v)| ) Td -1,
6AEt 12 3At 12

fL 3V1|V1|+V1|U’z|+|V1tV,+V11V2|
s FH L
24D (V| V| +V, |V, |+ |V, | V,+3V, | V, |

given by Eqn. 34.
2.3 Boundary Conditions:

The element equations can be assembled to form a global matrix which should be
solved for the field variables in the domain at lime step t+At, when all the field variables at
time step t are known. The global matrix formed as it is, is singular and cannot be solved
unless proper boundary conditions are applied to it. When the domain is divided into NE
elements, there are NE+1 nodes and hence there are 2(NE+1) unknowns in the problem as
there is a two degree freedom at each node. But the element equations provide for only 2(NE)
independent equations. Hence two more additional equations are nceded to determine all the
unknowns and they are provided by the boundary conditions. Constant head in the reservoir
becomes the upstream boundary condition. At the downstream end, the outlet discharge
calculated in terms of the valve data and the head at the outlet can be taken as the
downstream boundary condition.

2.4 Numerical Example:
This finite element formulation has been applied to a case of a horizontal pipe of

uniform diameter discharging water from constant level reservoir into the. atmnosphere as
shown in Fig. 2.1. a solution to this problem in the form of method of characteristics is
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! t
L _(_2V1+V1) L (2v,+V,) _g g
3At 12 6AL 12 4 a
L _(Vi#2V) 1. (V+2V) & o i
&t 1z~ 31— 1 1 v,
_G G L _evev) p o @ven)|
4g g 3At ~ 12 BAE 12 .
_G G L (V,+2V,)
dg 4g FAt 12
L, (2V+V) L (2Vs1) g o
3At 12 At 12 1 1
P 1
G _G Lo, (ve2v) L (ve2v) |y,
= ig ig 6At .12 3At 12 =
1
; S |

o I 1w o v B

dg ig 6AL 127 3At 12 |

-£L
2_4D(3V:]V=[+V1|VZI*IV:|V1+VJ|V;U
-£1,
.WJ(“'VJ*VLI‘GI+IV1le+3Vz|Vz|?.
LSing(2V,+V,)
6
Lsing(V,+2V,)

L L (34)

available. A valve is provided at the discharging end of the pipe. Closure of the valve is
gradual. The length and diameter of the pipe 4800 m and 2 m respectively. The constant head
in the reservoir is 100 m. The entire length of the pipe is divided into four elements of equal
length. The system has a valve opening C,A = 0.06 sq met. At intervals of 5 seconds, Cp A
takes the values 0.03, 0.01,0.003, 0.001, 0.0005, 0.0002, 0.0000 and remains closed. The
transients of the system for about 40 seconds after the valve starts to close, have been worked
out. The pressure transients occurring at different sections of the pipe have been worked out
and plotted for different time intervals. The results are compared with those obtained by the

methou of characteristics as shown in Figs. 2.2 to 2.5. The comparison shows that these two
results agree closely with cach other.

3.0 DISPERSION OF POLLUTANTS IN POROUS MEDIA FLOW - ONE
DIMENSIONAL APPROACH:

With the rapid growth in urbanization and industrialization, the possibilities of the
contamination of both the surface water and ground water sources are rapidly increasing. The
ground water sources which were being considered as relatively free from contamination are
gradually becoming degraded as a result of transport of soluble chemicals via the rainwater
percolating into the-subsoil and ultimately meeting the ground water. Disposal of solid wastes
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and sewage on land, agricultural activities, disposal of liquid wastes originated from industries
and disposal of radioactive waste arc the major scurces of ground water contamination.
Remedial measures arc absolutely essential to prevent this contamination. If not detected in
time, it may result in damage of the aquifers beyond repair.

Various contaminants polluting the ground water sources are in the form of soluble

~ chemicals or dissolved substances called solute. There are other forms of solutes namely the

natural constituents of minerals and artificial tracers. The transport of these solutes occur
through an aquifer by convection and hydrodynamic dispersion. Convection or advection is
the process by which the solutes are transported by the bulk motion of the flowing ground
water, Hydrodynamic dispersion involves mechanical or hydraulic dispersion and molecular
dispersion. As a result of convection and dispersion, the solute is transported by the ground
water with varying degree of concentration throughout the domain of flow, The diffcrential
equation describing the physical processes of convection and hydrodynamic dispersion known
as Convective-Dispersion Equation is basically obtained from the statement of principle of
conservation of mass which is: NET RATE OF CHANGE OF MASS OF SOLUTE WITHIN
AN ELEMENTAL VOLUME = FLUX OF SOLUTE OUT OF ELEMENT - FLUX OF
SOLUTE INTO THE ELEMENT = LOSS OR GAIN OF SOLUTE MASS DUE TO
INTERNAL REACTIONS. Convection and hydrodynamic dispersion arc physical processes
controlling the influx and efflux of the solute, whereas adsorption and radioactive decay are
chemical or biochemical processes that cause the loss or gain of the solute mass.

Looking into the need for the control of the ground water quality, it is nccessary for
a ground water hydrologist to study the engincering aspects of the problem of contaminant
transport such as distribution of solute concentration in the aquifer, estimation of the level of
contamination and planning of suitable remedial measures to prevent further contamination,
From this point of view, it is nccessary to solve the differential cquation describing the
process of solute transport, that is, the solution of the dispersion equation for the case of
saturated, homogencous isotropic porous media. Because the straight forward analytical
solution for the most gencral form of this equation is not possible, a numerica! solution using
the F.EM. has been attempted and the digital mode! is developed for the case of one-
dimensional form. As the analytical solution is availahle for this case, the results from the
digital model have been compared with the analytical solution. To simplify the problem,
adsorption and radioactive decay were not considered in this formulation.

The problem of contaminant transport has been studied extensively during the last
three decades. !In the carlicr part of this period, the investigations were mainly concerned with
the theoretical development and the experimental work, whereas in the later part, attention
seems to be focused mainly on the numerical solution of the problem using numerical
techniques. Bear (1961), (1972) and Scheidega r (1961) presented the general theory of
dispersion in the porous media flow. Bachamat and Bear (1964) described gencral equations
governing the hydrodynamic dispersion of a homogeneous fluid in a homogencous and
isotropic medium. Dagan (1967) solved the onc-dimensional dispersion cquation using
perturbation technique. Guymon (1970) gave an cquivalent variational principle to the
goveming partial differential equation of onc-dimensional diffusion-convection and developed
a F.E. solution requiring approximation in space domain only. The analytical solutions were
developed by Marino (1974) for two longitudinal dispersion problems in saturated porous
media.
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The basic differential equation describing the process of solute transport in saturated,
homogencous isotropic porous media and accounting for the effects of convection,
hydrodynamic dispersion adsorption and radioactive decay can be written (Bachamat 1964,
Freeze 1974) as given by Eqn. 35.

ac a3 d ac

na—t+(1-n) 3 " 9% nDijé-)—(J:—uxC]—l[nC+(l—n) S]+E:13§)‘

The flow through the porous medium is assumed to be steady and obeys Darcy's law.
Assuming linear equilibrium adsorption, the concentration in the solid phase can be expressed
as S = k C, where k is the constant of proportionality between concentrations in solid and
liquid phases, C is the concentration of the dispersing mass in liquid phase and S is the
concentration of the dispersing mass in solid phase.

ac d ac

R = 0 O3
ot ox, | ¥ 3x,

Yol -arc-9c¢c =0 (36)
n n

In Eqn. 36, R is the retardation factor R = [1 + k(l-n)/n]. For the case of one-dimensional
dispersion, Eqn. 36 takes the form given by Eqn. 37.

L = - —— + - A S 3 7

3.1 Formulation of Element Matrices:

In this method, a trial solution of the following form is assumed: C = C(x.t) = E N,(x).
C(t) where N(x), i=1,2,...NN; (NN is the number of nodes) are the interpolation functions
satisfying the boundary conditions over the domain. The function C(x,t) is the exact solution
of the goveming equation only if the residual L(C) is equal to zero. As the trial solution is
not exact, the resulting crror of the residual over the domain can only be minimized to have
a satisfactory solution. This is possible by making the trial functions orthogonal to the residual
over the domain, That is, [N (x) L(C) dx = 0. For NN intcrpolation functions, there are NN
undetermined coefficients C, and NN orthogonality conditions are to be satisfied. Therefore,

IN‘(X) LY N(x) cy(e) ] dx = 0 (38)

Putting Eqn. 38 in Eqn. 37, thc'resu!ting cquation is as given by Egn. 39.
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] oN; 3
J[R Ny 53 (2N, C)) + D, i (XN, -

u, oN,
= 5 (X N,C,) +ARN, Y N;C] dx = (39)

b, 9w, +J N dx
ox n

The field variable C can be expressed as, C = (C,,, + C))/2 and the derivative of the field
variable C can be expressed as (3C/at) = (C,.,, - C)/At. Now Eqn. 39 can be written- as:
[P){aC/at} + [K]{C} = {F}, where p, =[N, N, dx and

k, =/ [D, (dN/dx)dN/dx) - (u/n}(dN/dx)N; + ARNN] dx,

and f, = [D,(3C/3x) - (w/n)]N, + [(g/n)C'N, dx. Putting these into Eqn. 39 and simplifying,
the matrix form of the equations is as given by Eqn. 40.

1 | _(1 1 .
52 (7] im)ph.m (E[P’ ZKg) + ¥ (40)

The Eqn. 40 represents the general assembly of the set of Finite Element Equation. Solution
of Eqn. 40 after incorporating the initial and boundary conditions yields the unknown values
of concentration C at the nodal points at any time instance when the values at the earlier time
instance are known,

3.2 Initial and Boundary Conditions:
For the dispersion problem, the initial concentration distribution over the entire domain

under consideration is assumed to be zero, that is, C(x,0) = 0 for x > 0. The following forms
+ of upstream boundary conditions given by Marino [8] are assumed in the present problem:

Case I C(0,t) =C,, t>0
Case II: C(0,t) = C, Exp(yt), t>0
Case IIL: COt) =C, [1 - exp(-yt)], t>0

The set of simultaneous equations whose coefficients were stored in compact form solved by
Gauss-Seidel iterative scheme. This method is particularly suitable to large unsymmetric
matrices when stored in compact form using row oriented method.

3.3 Numerical Example:

Marino (1974) has given the following form of analytical solution to the one-
dimensional dispersion equation for the above cases of upstream boundary conditions.

41)

25, 2B,

CASE I: C(x,t) = %ca erfc{M]*Exp(%)erfc{. (“"’““]

In Eqns. 41, 42 and 43 ¢ = (W'+4Dy)"? and ¢ = (u’ - 4Dy)"? . In this formulation, the
adsorption and radioactive decay are not taken into consideration. The domain chosen .'for
study is 600 m long has been descretised using a simple line element with linear interpolation
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CASE IT: C(x,t) = 1c, exp(yt) Ex;{x(;;w ]erfc{ (x-yt)

2 2D, ] (42)

%Ccexp(yt) p[x(u”p e fc[w]

2D 2@

LN

CASE III: C(x,t) = ic, erfc[ (x-ut)]+Exp(u_;)erfc[ (xwt;]

2D, 25,

1 x(u-op) x-pt
=C.exp(-yt) Exp( ) er -

_exp( yt) ot ‘p)e fr.{ x+tpt]

c 2D 2@

function. The results have been obtained for all the possible combinations of the element size
and time step in order to study the variation of FEM results in terms of dimensionless
parameters Courant Number and Peclet number.

Figs 3.2 to 3.4 show the graphs of relative concentration against distance for a typical element
length of 6.25 m and for various time steps and Figs. 3.5 to 3.7 show the similar graphs for
a typical time step of 1 day and for various element sizes in respect of the three boundary
conditions stated above in cases 1 to III. The results of the analytical solution have been
superimposed on these graphs. From the graphs, it can be observed that the FEM resuits
compare well with those of the analytical solution. For oscillation free numerical solution with
regard to temporal and spatial distribution respectively, the criteria for Courant number and
Peclet number in respect of one-dimensional dispersion are specified and given by Daus and
Frind (1978) are: (i) Courant number, CN, = u,AVAx < 1.0 and (ii) Peclet number, PN, =
wLAx/D,, £ 2.0. In these studies, the Courant number ranges from 0.05 to 3.9 and Peclet
number ranges from | to 4. Even for this wider range of numbers, the FEM results are found
to be stable and oscillation free. The FEM results closely follow the analytical solution results
when the Courant number is of the order 0.5.

(43)

4.0 SIMULATION OF MULTI-AQUIFER BASINS BY FEM:

In a multiaquifer basin, the aquifers are separated by semi-impervious layers or
aqultards which transmit water from the adjoining aquifers to the pumped aquifer when there
is head difference between the pumped aquifer and the adjoining aquifer. While analyzing the
multiaquifer system, the contribution in the form of leakage from the adjoining aquifers
should be taken into account.

Amongst the earlier investigators may be mentioned the names of Jacob and Hantush
(1955), who developed type curves for radial flow towards a well in a leaky aquifer system.
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Pinder and Bredehocft (1968) developed a finite difference model for two-dimensional flow
in an artesian aquifer taking into account leakage from the adjoining aquifer through the
intervening semi-pervious layer, but neglecting contribution from storage of the aquitard and
assuming zero drawdown in the adjoining aquifer. Neumann and Witherspoon (1969)

. developed an analytical solution for the problem of flow to a well in an artesian aquifer,

receiving leakage from the upper confined aquifer separated by an aquitard and drawdown
in the unpumped aquifer. The solutions are applicable to homogencous and isotropic aquifers
which are confined and scparated by an aquitard. Bredehocft and Pinder (1970) gave a finite
difference model for two aquifer system, the upper aquifer being water table aquifer and
lower pumped one an artesian aquifer. Both the drawdown in the water table aquifer and
contribution from the storage of the aquitard taken into account. The model was tested by
comparing the solution with theoretical results obtained from Hantush's (1960) modified
leakage theory, in which drawdown in the water table aquifer is assumed to be zero, Pinder
and Frind (1972) gave a finite element model for a two-dimensional flow in a leaky aquifer
considering zero drawdown in the unpumped aquifer and neglecting contribution from
aquitard storage. Yuang and Sonnenfeld (1974) presented a numerical method based on three-
dimensional finite elements for determining the unsteady drawdown around an artesian well,
Gray and Pinder (1974) applied the finite element method to the unstcady flow in a
homogencous isotropic infinite confincd aquifer using time as the third dimension. Huang and
Wu (1975) presented a three-dimensional finite clement model for unsteady in a confined
aquifer, pumped by an artesian well. It can be used for determining the drawdown in the
aquifer by specifying the discharge or recharge at various nodes. They applied it to a
hypothetical aquifer. Gupta and Tanzi (1976) developed a finite clement model for three
dimensional ground water flow for multiaquifer basin (Sutter basin of California in USA) for
steady state condition using mixed isoparametric elements. Fuzinawa (1977) developed an
integrated finite element model for two confined aquifer systems with onc dimensional finite
element analysis of the aquitard, considering the entire aquitard thickness as one element for
the leakage flux. Frind and Verge (1978) developed finite element model for a three-
dimensional ground water flow problem, based on general saturated-unsaturated continuity
equation, The model was tested by comparing the results of one-dimensional and two-
dimensional solutions. Chorely and Frind (1978) developed a quasi-three-dimensional finite
element model for multiaquifer system. For determining the Icakage flux from the aquitard
one-dimensional finite elements were used. The model was tested by comparing the results
obtained from the analytical solution of Neumann and Witherspoon (1969) for radial flow in
pumped and unpumped aquifers having identical properties. The results were also compared
with those obtained from the finite element leaky aquifer model neglecting storage of aquitard
and drawdown in the unpumped aquifer.

The development of a digital model for simulating the behaviour of multiaquifer basin
in response to hydrologic stresses in the form of pumping or recharge through wells in
artesian and/or water-table aquifers, taking into account contribution from storage of aquitard
and drawdown in the unpumped aquifer has been presented here. This model was applied to
a multiaquifer basin Mehsana district of Gujarat state.

4.1 Governing Equations:

The continuity cquation for two-dimensional horizontal flow in a leaky aquifer can be
written as given by Eqn. 44,
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sg’g =V (IT) IV A1} + 0(%, ) + @yuy - @y = O (44)

where 2, and z, are the elevations of the lower and upper confining layers, |, and q,|,
represent the leakage fluxes from the lower and upper aquifers respectively, S is the storage
coefficient and T is the transmissivity of the aquifer, h is the piezometric head and Q is the
strength of a source or sink function defined as given by Eqn. 45,

NW
0= ?::o,,(xk.yk) & (x-x,, y-vy,) (45)
]

where Q,, is the volumetric discharge from the aquifer, 8 is the Dirac delta function and NW
the number of wells. If the principal components of the transmissivity tensor are collinear
with the coordinate axes, the cross derivatives vanish. Putting q,|,. = q,, and q,|,, = q,,, the
expanded form of the Eqn. 45 will be as given by Eqn. 46.

oh an) _ goh

9 9 - - + =
“a“)_;,(Tn 33() s 'a_j;-(Tyy 8_9 E_E Q q;: aq;; 0 (46}

For three layered system consisting of water table aquifer, aquitard and artesian aquifer Eqn.
46 will be reduced te (after putting q,,=0 and q,,=q,) the one as given by Eqn. 47.

dh an) _ goh

37T ax) * 5" 3t

" ay -Q0-q, =0 (47)
The continuity equation for the water table aquifer is similar to Eqn. 47 except that

transmissivity is a function of hydraulic head in case of water table aquifer. It will be of the
form as given by Eqn. 48.

9 ; ah,] 3[ . dh, B dh, _ N _ (48)
'a;[xxx‘b {hw) % + BT/ Ky,/b {h.‘,) ?7 Syat Q. q, = 0

In Eqn. 48, K is the hydraulic conductivity, b'(h,) is the saturated thickness, h, is the

hydraulic head, S, is the specific yicld and Q, is the strength of source or sink function for

the water table aquifer. The vertical flow in the aquitard is governed by the equation 49,
8*h* _ 5. 4n (49)

dzf kot

In Eqn. 49, h’ is the hydraulic head in the aquitard, K’ is the hydraulic conductivity and S,
is the specific storage of the aquitard. The boundary conditions are of the usual Dirichlet and
Neumann type, these are:(i) h = h , on I, and (ii) -T(dh/dn) = q, on T, for artesian aquifer
and (iii) h, = h,, on I, and (iv) -K,b'( dh,/on) = q,,, on T, for water table aquifer, where g,
and q,, normal fluxes entering the boundaries, I', + ', = I" is the areal boundary of the
domain and h, and h,, are constant piezometric heads and water levels in the artesian and
water table aquifers respectively:
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The solution to Eqn. 49 for vertical one-dimensional flow through the aquitard is
obtained using the method of Laplace Transforms (Patel and Rao, 1982). The solution for the
case of initial piezometric surface coinciding with the initial water table surface is of the form
as given by Eqn. 50,

‘ _ Ahz _ «~(2Ah\.. (nn -n'miat
h*(z,t) =h, - Ah + = * g(n_n)snn(b_) EXD[T] (50)

In Eqn. 50, h, is the initial piezometric head, « is the ratio (K'/S,") and Ah is the change in
head at the lower boundary of the aquitard in time t. The leakage flux q, entering the artesian
aquifer at the lower boundary of the aquitard (z=0) is given by q, = -(K' dh'/dz) = (K’
AbD') {1 + 2 5 exp[(n’r’atb™)]}, n varies from 1 to =. The change in head at the lower
boundary of the aquitard Ah in time t is nothing but the drawdown s=h.-h in time t.
Assuming head change to be applicd at one-half the elapsed time, the lcakage flux in terms
of drawdown and leakage coefficient is given by Eqn. 51.

_ K's - -n'n2Kk°t)| _ K's@
0 ¥ 1+2§ exp[ 25,57 ] = (513
= N2l
where 0 = 1+2% exp SO G
s 23 -b.Z

After substituting Eqn. 51 into Eqns. 47 and 48 for q,, the problem reduces to that of two-
dimensional flow in a leaky aquifer. A nondimensional plot of leakage flux versus time is
given in Fig. 4.1. It may be scen from the graph that the contribution from the aquitard
storage takes place only upto non-dimensional time approximately equal to 0.2, Leakage from
the water table aquifer begins only after this time, Hence, if the duration of continuous
pumping is less than this time, the analysis should be confined to the artesian aquifer and the
aquitard only.

4.2 Element Matrices:

A trial solution of the form h = h(x,y.t) = 2 N(x,y) H(t) is to be assumed if this.
problem is to be solved by using FEM, where N (x,y), i=1,2,..NN; (NN is the number of
nodes) are the interpolation functions satisfying the boundary conditions over the domain,
H,(t) are the undetermined time dependent cocfficients, which are shown to be solution to
Eqn. 47 at the nodal points in the solution domain. For the artesian aquifer, the standard
procedure yields a finite element equation which can be written in matrix form as given by
Eqn. 52. In the same manner, the finite elemenl Lem,]ation for the water table aquifer can be

dt

[A] #} + [B] = {}
- aN, ON; aN, N, g
where a;; = ”[ * 3% Tn Tw--ay s FGN;NJ dxdy (52)
and b, = ” S NN, dx dy
and f, = [[N,(Eveh, . Q) dx dy + § q, N, ds
] b
obtained in the matrix form as given by Egn. 53.
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(A #.) + ta,,]{d } - F)

H

dt
1 dN;, aN ON, N, k-

where a, = ”[KXJJ' 3% Ha;f *+ K, bt - yzq.FeNij] dxdy (53)

and b, = S, N,N; dx dy
and £, = JJNJ(%*BI]V - Q,,) dx dy + § q, N, ds

%en the field variable H was expressed as, H = (H. s + H)2 and the derivative of the field
variable H was expressed as (3H/ar) = (H,.a - H)/At, the Eqns. 52 and 53 can be written as
Eqn. 54,

1 41 ol _13 g
(% 187+ 3 () e = (2 180 3116, + @
and (54)
1 L 11 1 ’
(42 (5 3 (A, —(E[B,] 7 (AR

The solution of Eqn. 54 after incorporating the initial and boundary conditions yields the
unknown values of piczometric levels H and water table aquifer levels H,, at the nodal points
at any time instance when the values at the earlier time instance are known. Integration of the
parameters over the elements was performed by using the Gaussian quadrature scheme. The
above algorithm was used to handle a three layered medium. It can also be used for
multiaquifer systems with slight modifications. Compact storage schemes to store the global
matrix have been used to optimize the main memory. The matrix formed is symmetric and
only the upper half only needs to be stored.

4.3 Case Study:

Mehsana district of Gujarat state, India is a draught prone arca and depends mainly
for its irrigation requirements on ground water, which is devcloped through tube wells, Water
levels have been depleted greatly (more than 70 m in some parts) and are found to be
lowering at the rate of 1.5 m per ycar on an average. This has caused an alarming situation
demanding the scientific study of the problem and taking remedial measures in the form of
taking up schemes of artificial recharge and controlling over-development of ground water,
if necessary. Two major aquifer units have been identified within the explored depth of 600
m. The upper unit is phreatic, which consists of relatively coarsc-grained sediments. The
lower unit comprises of few hundred meters of alternatively sandy and argillaceous beds
forming semiconfined and confined systems. On account of lowering of water table levels due
to extensive exploitation for irritation and lcakage in the lower aquifer, most of the open wells
are dry and thrown out of use. At present the irrigation water is mostly supplied by the tube
wells. The area selccted for study includes that portion of the alluvial tract of Mehsana
district, for which sufficient data for determining aquifer parameters and observed water levels
are available. The boundaries are selected such that north-castern and south-eastern boundaries
are normal to the direction of flow and thus are equipotential lines, whereas the other two
boundaries are parallel to the direction of flow and are streamlines. The project arca is a
rectangle of size 90 km x 60 km, which is divided into 216 square elements, each of size §
km x 5 km. The number of nodes are 247, as shown in Fig. 4.4.
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The data of observed drawdowns in piezometric levels and water table levels and
pumping rates for the period from 1959 to 1971 and values of storage coefficients,
transmissivities for artesian and water tablc aquifers was obtained from Gujarat Water
Resources Development Corporation, Gujarat State and Gujarat Engineering research Institute,
Baroda. The entire prcject area was divided into three zones, each zone having same values
of transmissivity and storage coefficient as given in Table No. 4.1. For the purpose of
distribution of withdrawal rates the area was divided again into three zones, each zone having
the same rate of withdrawal as given in Table No. 4.2. The division of area into above zones
is as shown in Figs, 4.2 and 4.3.

Table No. 4.1
Zones according to distribution of T and S
Zone Average T Average S
A 297 m’/day 0.00015
B 930 m’/day 0.00030
C 2970 m*/day 0.001
Table No. 4.2
Zones according to distribution of withdrawal rates
Zone Average withdrawal rate
i I 45800 m’ to 458000 m’ per year per 100 sq.km.
I 458000 m* to 1375000 m’ per year per 100 sq.km.
m More than 1375000 m’ per year per 100 sq.km.

The northeast boundary of the study arca is located adjoining the recharge arca. Hence
this boundary is treated as flux boundary. The inflow flux was computed as 2.5 cumecs per
day per meter length of the boundary. This inflow is divided cqually into two parts, one
entering the phreatic aquifer and the other entering the artesian aquifer as both the aquifers
have the common outcrop arca. An average value of transmissivity of 160 m¥day was taken
for the water table aquifer (from UNDP project report). The model was calibrated using the
above data of two aquifer system of Mehsana district. The model was run continuously to
compute drawdowns of both the aquifers for thirteen years from 1959 to 1971. The values of
leakage coefficicnt and storage coefficient for the aquitard were adjusted by trial till a
reasonable match was made between the computed values and the obscrved values of
drawdown, the final values of which are shown in Fig. 4.4. Except the northeast recharge
boundary the other three boundaries are treated as Dirichlet boundaries. It was observed that
at 56% of the nodes the error is less than 5%, at 14% of the nodes the error is between 5%
& 10% that is at 70% of the nodes the results may be considered as within reasonable limits
in studies of such large regional problem. At 30% of nodcs the deviation exceeds 10%.

5.0 TWO DIMENSIONAL STREAM FLOW MODELLING:

Many problems of hydraulic engincering require information concerning surface water
elevations and magnitudes of velocities in the - and y- directions in the two-dimensional
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horizontal domain. Typical cases involve bays or creeks, estuaries, harbours and wide rivers,
Recent advent in computers made it possible to develop mathematical models to predict the
flow phenomenon in such cases. Because of the relative ease and cconomy of the
computations on one hand and the ever increasing demand for reliable information on the
other hand, mathematical modeclling has become a useful tool in the field of hydraulic
engineering. The modelling can be camied out either by using Finite Difference Method
(FDM) or by Finite Element Method (FEM). Each method has its own merits and demerits,
If the domain can be descretised as rectangular elements, then FDM with ADI (Alternating
Direction Implicit method) is advantageous. In this case, there is no need to form and store
the global matrix hefore solving for the field variable. But if the domain is irregular, FEM
scores well over the other methods. Here, the discussion will be limited to the F.E. method
only.

|

5.1 The Governing Equations:

The depth averaged hydrodynamic Eqns. used in the formulation of the finite element
model are based on the following assumptions: (a) The medium is homogeneous and
incompressible, (b) Pressure distribution is hydrostatic, (c) All the shear stresses except at the
boundary are negligible, (d) Friction losses in unsteady flow are equivalent to those of steady
uniform flow and (e) The channel bed is fixed. The equations are as given by Eqns. 55, 56
and 57.

oH o

OH . 0.1 + Som = 55
~ + ax(xdl) ay(vh) 0 (55)

=0 (56)

— tU— +tV— + g— + =0 (57)

where u=u(x,y,t); v=v(x,y,t) are the velocities in the x- and y- directions respectively, g is the
acceleration due to gravity, C is the Chezy's coefficient, H=H(x,y,t) is the water surface
elevation at any point with respect to some datum, h is the depth of flow at any point in the
stream such that H=h+z where z is the bed level at any node, t is the time elapsed. To solve
these differential equations, finite element scheme in space domain and finite difference
scheme in time domain were used.

5.2 Finite Element Formulation:

To obtain the finite clement matrices, it is necessary to write the different unknowns
by a set of trial functions, H = £ N(x,y) H(t), u = £ N(x,y)U(t), v = £ N(x,y) V1),
i=1,.,NN, where H,U,V, are the values of water surface elevation, velocity components in
the x-, and y-directions which arc functions of time. These trial functions can also be written
as: H =[N}{H}, U =[N]{U} and V =[N]{V}, where [N]=[N, N; N,] is the array of trial
functions or interpolation functions, {H}, {U} and {V} are the amrays of the values of the
field variables, H, U and V at the nodes. One can use Galerkin's procedure to obtain the
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clement equations, where the error is made orthogonal to the trial function. Let L, be the
equation 55, L, be the equation 56 and L, be the equation 57. Then according to Galerkin's
criterion, [N" L, dA =0, [N" L, dA = 0@ and [N'L,dA=0. Let us denote N,= N/ ox,
N,=dN/dy, then the governing equations can be written as given by Eqns. 58, 59 and 60.

[ [nw aa] (SE)  [[[NTh, N, aa | @) « [[[N"h, N, a4 | @1 = 0 ()

[[vw aa) &y v [[[NT U, N, ad) @)« [[[N7 ¥, N, @] 01

14
{—‘lz—i-ffNTNdA} v =0

" 69
[gf NN, aa | -

o ] 2 < (o, n, v - [, e
lgf [N"N, aa] &+ [%%E”‘NW&]M -0

Let {aH/at) = ({H}., - {H})VAL {dU/at} = ({U},,, - {U})/AL and
{dV/at} = ({V}.a - {V} VAL and also let H=H,,, U=U,,, V=V,.,, then the Eqns.
58 to 60 can bc written as as given by Eqns 61 to 63.

[iffN’NdAllm s [[NTh N @ o [[[NTR N W=

[;l-tffNTNdAl{m,

lgf[NTN, da |t [[11‘: +%Jzﬁi]ff1vf~¢4 v -
[[[wTu, N, +NTV, N) a4 } w = [ﬁfj.&’ N dA ]| o,
lef N7 N, aa | - [[i +%Jﬂnwu]m : =
Uf(N’U‘NJ+NTV.NW)¢M]{M = [ﬁffNTNdA]M,

In matrix form they can be written as given by Eqgn. 64.
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1
Lifnnan [[whnm [[NThN a4 L [nvaa tm,
gf[NNA 0 l; - iffNTNdA ) ©4)
8f f o g A3 ',.if f NTNdA (W),

= o in 414 T
where a,, =a,; =|— + NINdA +
22 33 [Ar C2 hn] ff (65)

[[ONTu N+ NTv N) dA

In Eqns. 64 and 65, At is the time step chosen, the variables with subscript t are at the
previous time step which are known. The variables at the time step t+At are to be evaluated
using the matrix Eqns. 64. Proper boundary conditions must be introduced before these Eqns.
64 are solved for each time step. These Eqns. work well for problems involving large surface
areas relative to its depths. Also, a cold start is needed for these equations, where we assume
that the field variable U=V=0 at t=C and H=constant every where in the domain. When this
finite element formulation was tried on a two-dimensional strear flow case, the results were
not satisfactory. Hence the following new formulation was tried.

5.3 New Finite Element Formulation for Stream Flow

The main assumption involved in the alteative formulation is that the order of
magnitude of the convective terms in the momentum equation is small compared to the other
terms and that the velocity in the x- and y- dircctions can be written using the Chezy's
formula as U = C h,”* S,°* and V = C h,”* S,°*, where C is the Chezy's cocfficient, h,, is
the mean depth of water over the clement, S is the gradient cf the water surface elevation
in the x-direction, S, = - dH/dx, S, is the gradient of the water surface elevation in the x-
direction, S, = - dH/8y. The equations for U and V can be lincarized and can be rewriiten

as given by Eqn. 66.
Cjh_
vo. S oM oM,

JToHjax] ox !ox 66)
yo. S om g oH
JToH3y] & dy
Putting Eqns. 66 into Eqn 55, the resulting equations are:
M. gy ﬂ)_i[lgh_é‘ﬂ] < i (67)
ot ox "o dy dy

Inw Eam. 68
+ K, = C b'¥(aH/ax|)’* and K, = C h'*/(|oH/3y|)*’
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Yoa ol fax) oyl oy

Putting Galerkin's criterion, [N' L, dA = 0 into Eqn. 68, we have,

oH o oH 9 oH\|
ol sl s) s gle e @

In Eqn. 69, the field variable H = H(x,y,t) can be written as H =[N]J{H} where N, = N/(x,y)
is the array of the nodal values of the interpolation function and H, = H (t) is the array of the
nodal values of the field variable.

Partially integrating the second and third term of equation 69, the result is as given
by Eqn. 70.

I e

T T
- fxxalﬂ+xﬂaﬁdxdy
ox ox Y 9y oy

(70)

The first integral term on the right hand side of Eqn. 70 represents the flow into or out of the
domain, +ve for inflow and -ve for outflow. Combining Eqns. 69 and 70, Eqn. 71 can be
obtained.

[ an ] 2 {H{KQ_N_’QN +K§f\£%]a]m}

Y ax oy d) an
f NT Q dS
Let dH/at = ({H}..,, - {H},/At, then Eqn. 71 can be rewrifien as:
[iff"’r”‘“]”” ”'[K_@J:G_N+Kai"§g]d‘] (m =
at b * o ox Y 3y dy e (72)

H-;ffNTNdA] #, + §NTQas

The last term of Eqn. 72 represents the discharge into or out of the domain, hence it
is a flux boundary condition which is to be supplied before the equations can be solved. The
bourdary conditions play vital role in the solution. Here the field variable is H and the other
parameters U and V can be evaluated from 9H/dx and dH/dy. There are two types of
boundary conditions: (i) Dirichlet type or field variable is specified at some nodes, (ii)
Neumann type or flux condition, that is discharge is specified at some other specified nodes.
The finite element matrix formed as it is, is of the rank NN - 1 where NN is the number of
nodes and hence atleast one value of ficld variable is to be specified without which the
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solution cannot be obtained. It is important to note that these two boundary conditions cannot
be applied simultanecusly at one particular node, if applied simultaneously, the flux condition
will be nullified. In the problems solved, the field variable H is specified on the upstream side
and the discharge is specified on the downstream side.

When Manning's formula is used in place of Chezy's, the values of K, and K, will
be as given by Eqn. 73,

h5,|'3 h!ﬂ
n_ Moy g o1 P oW

In this study, the triangular elements with' linear interpolation function were used.
Here, the field variables H = H(x,y,t), u = u(x,y:t).and v = v(x,y,t) are written as: H = N, H,
+N,H; #+ NyHy u=N oy +N,u, #+ Nyuyand v =N, v, + N, v, + N, v;; where N,
=Ni(x,y), H, = H(t), u, = u(t) and v, = v(t). Here N, can be written as N, = (a, + b, x +
Y)2A, where A is the area of the element, and a, = x,y, - X;y,, 8, = X,y, - X,¥,, and a, = x,y,
“Xyp2A=a, ta,ta,b =y, -y b=y iy b Sy e E oKy, 6 =X - X
+ €= X; - X, . Also N = {N, N, N;}, {H}" = {H, H, H,}. Now, dH/dx = {b, b, b,}{H}2A
and dH/dy = {c, ¢, c;}{H}2A.
For triangular elements:

K =

3 |-

211
ffN’NdA = (%)1 2.1 (74)
112
ff[": BN, g DWWy,
dy dy
bb, bb, bb, €16 66 6 (75)

—=|b,b, bb, bb,| + _Ylc,c, c.c,
IR IRCE 24l 7 95

byb, byb, byb, C3€) €46y 30,

Because the problem is nonlinear, especially with respect to K, and K,, the problem is to be
solved iteratively till the convergence is achieved.

5.4 Program Highlights:

1. Read the initial data, element nodes, x-, y- and z- coordinates and other boundary
values to be prescribed.

2, Generate the element parameters, column heights, diagonal pointer array for compact
storage scheme and store these values in a separate file. These are to be evaluated
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only if the element mesh is changed.

Formulate the element matrix and assemble them into global matrix in compact form.

If depth < 0 at an time of computation, then depth = 0.

Prescribe proper boundary conditions.

Solve for the field variable, H, that is the water level,

Check for convergence, if abs[{H,,, - H,)H,] < 0.00C1, then stop.

Let H, = H,,, and goto step 3.

5.5 Case Study: Comparison of Experimental and Computed Results: This new simplified
formulation has been applied (Vasudeva Rao 1994) to three particular cases: two cases of
meandering channels and one channel junction. Some of the results are as shown in Table No.

5.1 and 5.2.

Table No. 5.1

S.No. Total Chezy's Discharge Water Levels in meters
Disch. Coeff. prescribed  upstream downstream

Qms C at nodes obs comp obs comp
1 147 415 {10,5(25),12} 89.25 89.25 BE.05 88.05
2 540  41.5 {15,5(100),40} 91.48 91.48 90.57 90.22
3 700 415 {25,5(130),25} 92.18 92.18 91.15 91.38
4 800 41.5 {50,5(140),50} 92.46 9246 91.45 91.3
5 850 41.5 {75,5(150),75} 92.58 92.58 91.6 91.63
6 900 415 {75,5(160),75} 92,72 92,72 91.75 91.57
7 1000 41.5 {100,5(160),100} 92.95 92.95 92.05 91.94

Number of elements used = 369 and number of node points = 222.

Table No. 5.2
S.No. Total Manning'sDischarge Water Levels in meters
Disch. Coeff. prescribed  upstream downstream
Qm's C at nodes obs comp obs comp
1 147  0.022 {10,5(25),12}) 89.25 89.25 88.05 88.23
2 540  0.022 {15,5(100),40} 91.48 91.48 90.57 90.26
3 700 0.022 {25,5(130),25} 92.18 92.18 91.15 9143
4 800 0.022 {50,5(140),50} 92.46 92.46 9145 91.74
5 850 0.022 {75,5(150),75} 92.58 92.58 91.6- 91.66
6 900 0.022 {75,5(160),75} 92.72 92.72 91.75 91.78
7 1000  0.022 {100,5(160),100} 92.95 92.95 92.05 91.74
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6.0 SURFACE RUNOFF MODELLING OF WATERSHEDS
FORMULATION AND APPLICATION TO REAL CATCHMENTS

The formulation of a mathematical model to estimate surface runoff from watersheds
using the overland flow and stream flow Eqns. has been presented here. Using the net-rainfall
as input into the overland flow Eqns., the surface runoff is calculated which will become
input into the stream flow Eqns. for each time step. The Diffusion Wave Model (DWM) is
solved using Finite Element Method in space domain and by using Finite difference in time
domain. This model has been used to simulate storm hydrographs from two real catchments
and compared with the observed hydrographs. Sensitivity of the solution with respect to the
.changes in some parameters involved in this model is presented.

For many river basins, stream flow data is either scanty or not available at all. This
adversely affects the planning and design of water resource projects. Runoff estimate by
-statistical correlations is available in some cases, but the distribution of runoff with respect
to time (hydrograph) cannot be obtained with these correlations. The hydrograph for any
given storm is important in a river basin for flood forecasting, waming and control. Any
model based on natural physical laws would give the reliable estimates of peaks and
hydrograph for a given storm. The nonlinearity of these physical laws and complexity of the
solution procedure have discouraged many of the investigators to attempt any solution. The
advent of computers in recent times and the development of efficient numerical schemes have
paved the way to obtain some solutions based on these physical laws,

The common practice to solve the gradually varied unsteady flow Eqns. is to employ
the Method of Characteristics (MOC) and the Finite Difference Mcthod (FDM). The Finite
Element Method (FEM) is relatively recent approach for solving these Eqns. (Taylor et al.,
1974; Cooley and Moin, 1976; and Jayawardena and White, 1977 and 1979). Only a few
investigators have attempted to solve the complete form of these Eqns. using FEM (Cooley
and Moin, 1976; Keuning, 1976; King, 1976; and Nwaogazic and Tyagi, 1984).

Limitations of computer resources led to the approximations such as Kinematic Wave
Model (KWM) and Diffusion Wave Model (DWM). The KWM which is popular, assumes
that inertia and pressure terms in the momentum equation are negligible compared to the
friction and gravity terms. However, some available cxamples in the literature indicate that
performance of KWM is poor compared to other methods (Hromadka et al. 1986a; Akan and
Yen, 1981; Katopodes and Schamber, 1983; Weinmann and Laurenson, 1979). The DWM
assumes that the inertia terms negligible compared to the pressure, friction and gravity terms.
Henderson (1966); Cunge et al. (1980) have shown that the incrtia terms are generally small
compared to the other terms. Ponce et al. (1978) have shown that the diffusion wave model
describes the flood wave subsidence better than the KWM. Hrumadka et al. (1986b) have
shown that DWM provides a considerable improvement over the often used KWM. Hence
DWM has been used in the present formulation.

Any complex mathematical model when applied to a real catchment may have to be
greatly simplified because of the heterogencous nature of the hydrologic parameters of the
catchment. The efficacy of any model can be evaluated to some cxtent by comparing the
computed hydrograph with the obscrved hydrograph of a catchment. The model developed
here requires the information of rainfall intensity on a continuous basis, which is not normally
available for all the catchments. But, in view of the requirement of such data for the present

L)
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study, con51derable effort has been made to collect the rainfall and runoff on hourly basis for
some catchments. The literature on runoff simulation using mathematical models from real
catchments of the sizes of few hundred square kilometres is rather rare (Refsgaard et al.,
1992; and Jain et al, 1992). In this paper, the formulation of a mathematical model,
application of the same to real catchments and -sensitivity of the solution with respect to
change in some parameters involved in the model are described. This model can be used to
simulate the hydrographs of ungauged basins, for which the observed hydrographs are not
available,

6.1 Formulation of the Mathematical Model:

The model presented here has two parts: (i) the computation of overland flow for a
given rainfall excess, (i) the computation of stages and flow rates at different points along
the stream with the computed overland flow as input.

6.1.1 Computation of cverland flow:

Though some investigators have attempted to evaluate the overland flow from*me St.
Venant Eqns., the mathematical rigor provided by the numerical solution is not merited in
light of its high cost, stability and convergence problems and uncertainty conceming friction
losses and other phenomena being modelled (Bennett, 1974). The mass balance equation on
the other hand does not pose many of the uncertainties mentioned here. Therefore, an
equation is developed (Vasudeva Rao and Panakala Rao, 1988) here from mass balance
criterion for evaluating the overland flow. The mass balance equation may be written in the
form: INFLOW - OUTFLOW = STORAGE INCREMENT, that is,

P -qg.L = AV/IA: (76)

where P is the inflow into the catchment which is mainly in the form of excess precipitation,
q is the overland flow from the catchment segment per unit length of the stream in the form
of cross flow into the stream, AV is the change in detention storage over the overland, At is
the time step chosen and L is the length of the stream segment intercepting the overland flow.
The Eqn. 76 can be rewritten as given by Eqn. 77.

0.5(P,,, +P)4, - 0.5(g,,,, +g)L = A(d,., - d)At an

In Eqn. 77, d is the depth of overland flow, A, is the area of the watershed segment and
variables with subscripts t and t+At are at the beginning and end of the time step respectively.

Assuming that the slope of the overland plane S, in the case of overland flow, is equal
to the friction slope S, the overland flow q can be written as given by Eqn. 78.

g = d.d¥® St/n (78)

In Eqn. 78, n is the Manning's roughness coefficient applicable to overland flow. If P is
expressed in mm/hour, d in mm, L in meters and A_ in squarc meters, the Eqn. 78 can be
written as given by Eqn. 79. For a given initial depth d,, the depth d,,,, can be obtained by
solving Eqn. 79 iteratively, which can be used in Eqn. 78 to obtain overland flow q.
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Kl .d, +100d,, = K2

1+41

where K =L .S?At/(2n4d) (79)
and K, = 100 d, + A(P,+P )72 - K d®

6.1.2 Computation of stream flow:

There are many forms of differential equation sets to describe a large spectrum of
unsteady flows (Lai, 1986). The one-dimensional gradually varied unsteady flow equations
used here are of the form given by Eqns. 80 and 81.

(a)ContinuityEquation: %ﬁ; L g = 0 (80)

(b)MomentumEquation: 90 A0V g A [éﬁ + Sf] =0 (81)
ot ax ax

In Eqns. 80 and 81, A is the flow area, Q is the flow rate, H is the stage or water surface
elevation, S, is the friction slope, g is the acceleration due to gravity and x, t are the spacial
and temporal coordinates. S, can be approximated using Manning's equation (Akan and Yen,
1981) as Q = A R* S/%/n, where R is the hydraulic radius, n is the Manning's roughness
coefficient applicable to channel flow. The channel bend losses and expansion losses can be
accounted for by varying the value of n.

In the DWM, the local and convective acceleration terms in the momentum equation
are neglected (Akan and Yen, 1981), thus Eqn. 81 is simplified as

e [ﬁ] ®2)
ax

aH|"* (83)

0 - K[ﬂ"] where K = - JaR®
ax n

Combining Eqns. 80 and 82 gives a diffusive type of relationship (Hromadka et al., 1986b)
which is as given by Eqn. 84,

o -E[K% g =0 (84)
a &l &

For a constant channel width, W, Eqn. 84 reduces to Eqn. 85.
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wSH _ _f’_[xi’] i ® 0 385)

ot ar{ dx

6.2 Finite Element form of the Channel Flow Equation:

The FEM formulation of Eqn. 85 for channel flow developed by the authors has
already been reported in brief (Vasudeva Rao and Panakala Rao, 1988). Over the channel
domain, the stage H can be approximated as H = £ N, H, i=],NN where NN is the number
of node points and N, are the interpolating functions. The application of Galerkin's criterion
to the Eqn. 85 can be written as (Panakala Rao, 1990):

L
o e (51} 5 o [
-0 (86)

L
[ oy Gl
2l (H) -4 dx = 0
I . (H) - [ [Mdx
Here the field variable H is approximated as H = (H,,,, + H,/2 and the time derivative of the

field variable is dH/at = (H,,,, - H)/At. The terms in Eqn. 86 are intcgrated over the length
of the element to form the element matrix, which are assembled to form a giobal matrix.

6.3 Solution Procedure: The discretization of cverland flow regions is based on drainage

" pattern, topography, soil characteristics and rainfall variation etc. All the overland flow which
is joining the stream at one place/stretch can be demarcated as one region. The depth of flow
is assumed to be the same over the whole element of the overland region The channel is
discretized keeping the following points in view, (i) the element stretch is straight, (ii) channel
bed slope is unique, (iii) no abrupt change occurs in any parameter of the channel within the
element.

If any tributary catchment area exceeds 20% of the total catchment area, then it is
considered as a separate stream with its own discretization as described earlier and joins the
main stream. If its area is less than 20 %, then it is considered as an overland flow region
contributing to the main stream to restrict the overland regions and corresponding channel
segments and also the computational time.

The success of this model dcpends on the evaluation of the excess rainfall from the
catchment area. The FESHM model (Ross et al., 1979) uses parameters like soil texture, depth
of 'A" horizon of soil, soil hydrology group and land use cover for calculating the infiltration
rate and excess rainfall. In the absence of any such type of data for the catchments
considered, ®-index method, i.c., the average rainfall above which the rainfall volume is equal
to the runoff volume, has been used. The @ - index is derived from the rainfall hyetograph
with the knowledge of the resulting runoff volume and the base flow. The @ - index method
accounts for the total abstraction and enables runoff magnitudes to be estimated for a given
rainfall hyctograph. If therc is no observed base flow or runoff volume, then a value for
minimum base flow and loss rate as recommended by Central water Commission (CWC)
report (1973 and 1982) for the specified region has been uszd.
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The roughness coefficient normally varies with flow denth, however, this variation was
not accounted for in this model. The flow depth is assumed to be z&r0 as an initial condition.
The boundary conditions imposed in the model before obiaining the solution for each time
step are: (i) upstream discharge and (ii) downstresn depth either normal depth or critical
depth depending on the end condition of the channel (Freeze, 1978). The input parameters
into this model are: (i) number of rain gauge stations and their Influence Area Factors (IAF),
(ii) duration of rainfall for each rain gauge station for a given storm at all the stations, (iii)
discharge from the catchment and its duration, (iv) number of overland flow regions, their
-areas, slo%g:& roughness values and lengths of stream segments intercepting the overland flow,
(v) number of channel elements including major tributaries, their lengths and roughness
values, bed levels and bed widths at each node of the channel clement and (vi) time step At
and the maximum duration t,,, for which the hydrograph is to be simulated.

The sequence of steps in the solution procedure is as follows:
Compute the excess rainfall for cach region. Set t=0

2. Compute the overland flow for cach region.

3 Formulate the element matrices for all the channel segmenis and assemble into giobal
form and prescribe the proper boundary conditions.

4. Compute the stage values {H} at all the node points at the end of the time step and
the discharge in each channcl segment. Set t=t+At.

5. If t > t,, then goto step 7.

6. Set {H}, = {H}..,, print {H} values and goto step 2.
7. Stop.

6.4 Application to Real Catichments:

model has been applied to two natural catchments (i) Pimpalgaon Joge and (ii)
Bhatsa m]{&:e state of Maharastra, India. The data needed for this model from these
catchments has been extracted from the Top-sheets (1:50,000) of survey of India. Some trial
runs were made for simulation using the same time step for overland flow and channel flow.
During these runs, it was found that the solution was stable when the time step At was varied
from 5 sec to 900 sec. For Pimpalgoan Joge catchment, each simulation run took 278.6 sec
for a time step At=5 sec, 6.94 sec for a time step At=300 sec and 3.35 sec for a time step
At=900 sec of CPU time on CYBER 180/840 system for Storm-1 (discussed subsequently).
A time step of 5 minutes was finally chosen when it was found that it has given near average
value of peak flow. Results are numerically unstable for time step At above 900 sec.

6.4.1 Pimpalgaon Joge catchment:

The Pimpalgaon Joge catchment, of area 102.2 square kilometres is on the leeward
side of Westcm Ghats forming the watershed of Arr river, consists of cight Self Recording
Rain Gauge stations (SRRG). The main Arr river has a tributary called Dudhwar river has a
catchment area which is ncarly 30 % of the total catchment area, hence considered as
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* tributary to Armr. The main river including its tributary has been divided into 12 channel
elements and 26 overland flow regions. Thicssen polygons have been drawn for the rain
gauge stations ‘as shown in Fig. 6.1 and influence area factors have been ca’zulated. An
average base flow of 0.05 m%/sec/sq.km is recommended by Central Water Commission report
(1982) for this-catchment region, this works out to 5§ m*/sec for this catchment. The loss rate
has been calculated as 0.34 mm/hour by the @ - index method. The Manning's roughness
coefficient for the channel is taken as 0.03 as it is a Ghat region (Chow, 1959), the overland
roughness coefficient is taken as 0.039.

Two storms have been identified which have the rainfall and corresponding outflow
hydrographs. The Storm-1-is of 18 hour duration with a peak flow of 853.26 m’/s and Storm-
2 is of 36 hour duration with a peak flow of 429.92 m's.

With the given catchment parameters, the outflow hydrograph was simulated for
Storm-1 and the results are as shown in Fig. 6.2. It can be seen that the simulated hydrograph
agrees well with the observed hydrograph, the peak flow being 3.1% less and time to peak
being 25% early (1 hour). With the calibrated values of loss ratc and overland flow and
roughness values used for the first storm, outflow hydrograph has been simulated for the
Storm-2 and the results are as shown in Fig. 6.3. Despite small differences, the simulation of
peaks and troughs is reasonably good with the peak flow being 4.5% less and time to peak
being 22% early (4 hours).

In another attempt to simulate outflow hydrograph for Storm-1, a minimum loss rate
of 2 mm/hour as suggested by CWC report (1982) was used instead of computed loss rate of
0.34 mm/hour, overland roughness of 0.03, the other parameters being the same as earlier.
The simulated hydrograph is shown in Fig. 6.2 as ungauged simulation, because the loss rate
is adopted from the CWC reports. This ungauged simulation gave a peak flow which is 5.8%
less and a time to peak which is 25% earlier compared to the observed hydrograph. This may
be treated as a fair agreement. The same simulation was repeated for Storm-2 also and the
resulting hydrograph is as shown in Fig. 6.3 as ungauged simulation. It can’be scen that the
simulation of peaks and troughs is reasonably good with peak flow being 13.8% less and time
to peak being 22.2% early. Despite the fact that 488% increase in loss rate and a 23%
decrease in overland roughness, the peak flows decreased by 2.7% and 9.7% respectively for
Storm-1 and storm-2, without any change in time to peak compared to the earlier simulation.

6.4.2 Bhatsa Catchment:

Bhatsa catchment of 398.86 sq.km area is on the western slopes of Western Ghats
covering the watershed of Bhatsa river. Here also. two storms were identified for which both
the rainfall and corresponding outflow hydrographs are available. These are referred to as
Storm-3 with a measured peak flow of 1592.4 m¥/sec and of 39 hours duration and Storm-4
with a measured peak of 1858.95 m*/sec and of 29 hours duration. For Storm-3, rainfall data
from 10 SRRG records is available while for Storm-4, rainfall data from 5 SRRG records is
available. The main river Bhatsa has a tributary Chapinai river whose catchment arca is nearly
50% of the total catchment area, hence it is considered as a channel in the computations. The
main river and its tributary were divided into 23 channel scgments and 48 overland flow
regions. The IAF values have been calculated using Thiessen polygons separately for the two
storms. The location of 10 SRRG stations, Thiessen polygons and discretization are as shown
in Fig. 6.4.
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As per the recommendations of the CWC report (1973), the base flow for this
catchment has been taken as 0.22 m'/sec/sq.km which works out to 90 m*/sec. The loss rate
has been calculated as 0.35 mm/hour by the @ - index method. The Manning's roughness for
channe! is taken as 0.03 and the overland roughness is taken as 0.036. For Storm-3, the
simulated hydrograph is shown in Fig. 6.5. It can be seen froim this figure that the simulation
of peaks and troughs is reasonably good. The simulated peak flow is about 7% less and time
to peak is about 20% earlier (2 hours) as compared to the observed hydregraph.

With the same values of loss rate and overland and channel roughness values used for
Storm-3, hydrograph for Storm-4 was simulated and the results arc as shown in Fig. 6.6. In
this case also, the simulation of peaks and troughs is reasonably good compared to the

observed one. The peak flow is about 0.4% less and the time to peak is 16.7% earlier (2

hours) compared to the observed.

In another attempt to simulate outflow hydrograph for Storm-3, a minimum loss rate
of 2 mm/hour as suggested by CWC report (1973) was used instead of computed loss rate of
0.35. mm/hour, overland roughness of 0.03, the other parameters being the same as earlier.
The simulated hydrograph is shown in Figh5 as ungauged simulation, because the loss rate
is adopted from the CWC report. This ungauged simulation gave a peak flow which is 13.7%
less and a time to peak which is 20% earlier compared to the observed hydrograph. This may
be treated as a fair agreement. The same simulation was repeated for Storm-4 also and the
resulting hydrograph is as shown in Fig. 6.6 as ungauged simulation. It can be seen that the
simulation of peaks and troughs is reasonably good with peak flow being 6.9% less and time
to peak being 16.7% early. Despite the fact that 470% increase in loss rate and a 16.7%
decrease in overland roughness, the peak flows decreased by 7.3% and 6.5% respectively for
Storm-3 and storm-4, without 2ny change in time to pcak compared to the earlier simulation.

6.5 Sensitivity Analysis: It is important to check how the solution is sensitive to the changes
in values of some parameters. Some times the solution is very sensitive to certain parameters
and these are to be identified. Some numerical investigations arc presented here.

Effect of Channel Width: It was found that the width of channel has very little influence on
the peak flow and time to peak in the simulation of the hydrograph.

Effect of Overland Roughness: It was found that the rough surface will lead to damped flow
and delayed peaks. An optimal roughness value of 0.039 for Pimpalgoan Joge catchment was
amived at by least squares solution. When the roughness value was chosen as-0.012, then the
resulting peak flow is higher by 12.6% and the time to peak is advanced by 50% (2 hours)
compared to the observed hydrograph. When the roughness value was chosen as 0.12, then
the resulting peak flow is lesser by 20.8% and the time to peak is delayed by 25% (1 hour)
compared to the observed hydrograph. This study indicates that roughness for overland flow
are to be chosen carefully as they influence the peak flow and time to peak in the simulation
of hydrograph.

Effect of Channel Roughness: Channel roughness also produces damped flow and delayed
peaks. A value of 0,03 was taken as it is the minimum value suggested by Chow (1959) for
Ghat streams, When the channel roughness value of 0.05 was chosen, then the peak flow
reduced by 13.5% and time to peak is delayed by 25%. It was observed that the channel
roughness has less influence on hydrograph compared to the overland roughness.
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_APPLICATION: OF FINITE ELEMENT :

“METHOD TO SOME FLOW PROBLEM'S_

Effect of tributary: When Dudhwar river catchment of Pimpalgoan Joge basin was

considered as an overland plane, the peak flow is reduced by 26.2% and the time to peak is

advanced by 25%. When the tributary was considered as a channel, rather than an overland
* plane, the results improved.

A distributed model has been presented in this section to simulate the runoff from the
natural watersheds. Overland flow has been evaluated by using a simple formula based on
mass balance equation. Channel flow was evaluated by using DWM based on FEM. Spatial
and temporal variations of the parameters involved have been incorporated. The model has
been applied to two natural catchments of size approximately 100 and 400 sq. km. in India.
There is a fair degree of agreement between the observed and simulated hydrographs for both
the catchments.

The study reported in this section indicates that lack of data regarding loss rate poses
no serious difficulty in simulating runoff hydrographs for natural catchments, The study also
showed that roughness of overland planes and channels affect the simulation resuls.
Sensitivity of the solution with respect to changes in parameters like channel widths and
tributary have been presented.

NOTATION:

A&Al Global matrices

Loop Matrix

Consumption array

Elements of consumption array, or consumption at node j, +ve if consumption, -ve if
input.

0w

D, Diameter of pipe i (element i).
f Darcy-Weisbach friction factor,
F, Nodal continuity equation at node j as a function of pressurc heads in the network,
g Acceleration due to gravity.
hf®  Pressure head loss in the element or pipe 'c’ due to friction.
HF  Amay of pressure head losses in the elements of the network.
H; Pressure head at node j.
8H, Correction to the pressure head at node j.
K, Conveyance factor of element e.
L, Length of pipe i.
m Iteration counter.
N Number of nodes in the network.
NE  Number of elements or pipes in the network.
NL  Number of loops in the network, NL = NE - N + |
| Q Discharge in the element i.
| Q"  Discharge entering the node j of element e.
| T, Transmissivity of the element ¢, T, = K/|hf|"?

(unsteady pipe flow)
A Area of cross scction of pipe
Cp  Cocfficient of discharge
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Celerity of the pressure wave

D Diameter of pipe

n Number of elements

N =N(x), interpolation function

v Velocity of flow in pipe

(0] Angle of inclination of pipe to the horizontal.
| (dispersion)

[A] Global assembly of matrix.

C Concentration of dispersing mass in liquid phase.
C. Concentration of source fluid.
C, Input concentration.

C/C, Relative concentration.
{C} Column vector of nodal values of C.
CN, Courant numnber.
D,D.,D,, Longitudinal dispersion coefficient.
D, Hydrodynamic dispersion tensor.
{F}  Right hand side column vector or force vector.
| )] Jacobian matrix.
| [K]  Stiffness matrix.

| k, Element of the stiffness matrix.
k Constant of proportionality between concentrations in solid and liquid phases.
N =N(x), interpolation function
n Porosity of the medium.
[P]  Capacitance matrix.
P, Element of the capacitance matrix.
PN, Peclet number.
q Discharge rate of the source fluid.
R Retardation factor.
S Concentration of the dispersing mass in solid phase.
uu,  Darcy velocity.
u, Darcy velocity component in the i* direction.

a, Longitudinal dispersivity.
At Time step.

e Tolerance criterion in the computations.
Y Cocfficient in connection with the boundary conditions.
JA. Radioactive decay coefficient.

Field variable,
erfc(x) =1 - erf(x).
erfix) = 24r) [ exp(-y?) dy.

(multi-aquifer basin)

[A] &[A,]  Global asscrbly of matrices for confined and unconfined aquifers

[B] &[B.] Global assembly of matrices for confined and unconfined aquifers

{F}&{F.,} Right hand side column vector or force vector for confined and unconfined
aquifers

N =N(x,y), interpolation function
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q.:,  Leakage through the aquitard

Q&Q, Strength of source or sink function for confined and unconfined aquifers
Storage. coefficient _

Specific storage of the aquitard

Specific yield of the uncofifined aquifer

Transmissivity of the confined aquifer

Tolerance critcrion in the computations.

-

® - wnwwm

(two-dimensional stream flow modelling)

A Area of the Element.
a,b,c, Constants of the triangular element,

C Chezy's coefficient applicable for open channels.

E Specific Energy

g Acceleration due to gravity.

h depth of flow, H - z.

h, Mean depth of flow for an element.

H Water surface Elevation, H = H(x,y,t).

KK, Coefficients of conductance in open channel flow.

n Manning's roughness coefficient.

N Interpolation function, N = N(x,y).

Q Quantity of flow or discharge.

t Time elapsed.

At Time step.

u, v Velocitics in the x- and y- dircctions.

U Vo Mean velocities of flow for element in x- and y-
directions.

x,y Coordinate directions.

z Bed level.
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