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3.1 Introduction

According to Mitchell (1999), “In the 1950s and the 1960s several computer

scientists independently studied evolutionary systems with the idea that evolution

could be used as an optimization tool for engineering problems. The idea was to

evolve a population of candidate solutions to a given problem, using operators

inspired by natural genetic variation and natural selection.” All these techniques

are collectively referred to as evolutionary computation (EC) techniques. EC tech-

niques, also known as heuristic search methods, mostly involve nature-inspired

metaheuristic optimization algorithms such as evolutionary algorithms (EAs), com-

prising genetic algorithms (GAs); evolutionary programming, evolution strategy,

and genetic programming; swarm intelligence, comprising ant colony optimization

and particle swarm optimization; simulated annealing; and tabu search (Rani and

Moreira, 2010).

GAs are a particular class of EA based on the mechanics of natural selection

and natural genetics (Goldberg, 1989). GA uses techniques inspired by evolu-

tionary biology such as inheritance, mutation, selection, and crossover. The

method was invented by John Holland (1975) and was later popularized by

one of his students, David Goldberg, who solved a difficult problem involving

the control of gas-pipeline transmission for his dissertation. His book (Goldberg,

1989) provides GA methodology using both mathematical and computational

aspects. He was the first to develop a theoretical basis for GAs through

the schema theorem. The work of De Jong (1975) showed the usefulness of the

GA for function optimization and made the first concerted effort to find opti-

mized GA parameters. Unlike conventional optimization search methods based

on gradients, GAs work on a population of possible solutions, attempting to find
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a solution set that either maximizes or minimizes the value of a function of

those solution values (Loucks and van Beek, 2005).

Like other optimization algorithms, a GA starts by defining decision variables

and objective function. It terminates like other optimization algorithms too,

by testing for convergence. Nevertheless, it is very different than the others with

regard to the steps involved in the process. GAs are typically implemented as

a computer simulation. GAs have a main generational process cycle. The GA pro-

cess begins with a population of chromosomes, which is the set of possible solu-

tions for the decision variables of an optimization problem, and moves toward

achieving better solutions through evolution. The decision variables are encoded

as binary or real-valued strings (genes) for a given search space. A chromosome

is the set of these substrings (genes). The evolution starts from a population of

completely random chromosomes and occurs in generations. In each generation,

the fitness of the whole population is evaluated, and multiple chromosomes are

stochastically selected from the current population (based on their fitness) and

modified using genetic operators such as crossover and mutation to form a new

population. The new population is then used in the next iteration (generation)

of the algorithm (Davis, 1991). Population size depends on the nature of the

problem, but typically there are hundreds or thousands of possible solutions.

Traditionally, the population is generated randomly, covering the entire range of

possible solutions (the search space). This algorithm is repeated sequentially until

the desired stopping criterion is achieved.

Advantageous features of GAs in solving large-scale, nonlinear optimization

problems are that they can be used with continuous or discrete parameters, require

no simplifying assumptions about the problem, and, unlike gradient methods, they

do not require computation of derivative information during the optimization

(Haupt and Haupt, 2004). Davis (1991) has identified three main advantages of

GAs in optimization: “First, they generally find nearly global optima in complex

spaces. This is important because the search spaces for our problems are highly

multimodal, a property that leads hill-climbing algorithms to get stuck in local

optima. Second, genetic algorithms do not require any form of smoothness, that is,

they can handle nonlinearity and discontinuity and third, considering their ability

to find global optima, genetic algorithms are fast, especially when tuned to the

domain on which they are operating.” Another advantage of GAs is their inherently

parallel nature, i.e., the evaluation of individuals within a population can be con-

ducted simultaneously, as in nature.

Most of the early works in GAs came in the fields of computer science and arti-

ficial intelligence. More recently, interest has extended to essentially all branches

of science, engineering, economy, and research and development, where search and

optimization are of interest. The widespread interest in GAs appears to be due to

the success in solving many difficult optimization problems. Today, many applica-

tions of GAs in different fields can be found in literature. GAs have been applied

to many real-life optimization problems by several researchers. Goldberg and Kuo

(1987) developed a study for pipeline optimization by making use of GAs. Soh

and Yang (1996) used GAs in combination with fuzzy logic for structural-shaped
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optimization problems. Feng et al. (1997) applied GAs to the problem of cost-time

trade-offs in construction projects. Halhal et al. (1997) applied GAs to a network

rehabilitation problem having multiple objectives. A methodology based on GAs

has been developed by Li and Love (1998) for optimizing the layout of construction-

site-level facilities. Wang and Zheng (2002) studied a job shop scheduling problem

with a modified GA. Wei et al. (2005) employed GAs in their research, with the

aim of optimization of truss size and shaping with frequency constraints. In water

resources, GAs have been applied in many fields, for example, rainfall-runoff

modeling (Wang, 1991), water supply network design (Dandy and Engelhardt, 2001;

Simpson et al., 1994), and groundwater management problems (Cieniawski et al.,

1995; McKinney and Lin, 1994; Ritzel et al., 1994). Davidson and Goulter (1995)

used GAs to optimize the layout of rectilinear-branched distribution (natural gas/water)

systems.

Theoretical aspects of GAs are already available in many textbooks, and this

chapter does not aim to discuss them. It is intended here to give a simple presentation

that can be helpful in understanding the basic GA procedure, and one can apply

the GA to solve problems related to water resource development and management.

The references cited within the text and provided at the end of this chapter should

be able to guide the readers to more advanced topics in GAs. Overall, this chapter

will provide enough material for anyone curious about GAs and their applications in

water resources.

This chapter is organized as follows. Section 3.2 provides an overview of GA

and the individual steps involved in a typical GA process. This is followed by

Section 3.3 giving a review of applications of GAs in water resource problems,

followed by an example of a reservoir operation problem and its solution, describing

the steps involved in the GA procedure.

3.2 Genetic Algorithms

There are many publications that give excellent introductions to GAs: see, for

example, Holland (1975), Goldberg (1989), Davis (1991), Michalewicz (1999),

Mitchell (1999), Deb (2003), and Haupt and Haupt (2004). A GA is a mix of

principles behind natural evolution in biology and artificial intelligence in

computer science. Therefore, GA terminology uses both natural and artificial

terms.

As stated earlier, GAs search for the optimum solution from one set of possible

solutions that is an array of decision-variable values. This set of possible solutions

is called a population. There are several populations in a GA run, and each of

these populations is called a generation. Generally, at each new generation, better

solutions (i.e., decision-variable values) that are closer to the optimum solution

as compared to the previous generation are created. In the GA context, the set of

possible solutions (array of decision-variable values) is defined as a chromosome,

while each decision-variable value present in the chromosome is formed by genes.
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Population size is the number of chromosomes present in a population. The GA

process is briefly described below, and the overall GA process is shown in Figure 3.1.

At the start of the GA optimization, the user has to define the GA operator,

such as type of chromosome representation, population size, selection process,

types of crossover and mutation, and crossover and mutation probabilities. The

initial population is generated according to the selected chromosomal representa-

tion at random or using a priori knowledge of the search space. For example,

given the upper and lower bounds for each decision variable, the chromosomes

are created randomly so as to remain within their upper and lower limits. The

initial population provides the set of all possible solutions for the first generation,

according to the user-defined decision-variable ranges, which have been created

randomly. The objective function is used to evaluate each chromosome in the

population. Each chromosome in the population has an assigned fitness value,

which is used to select the chromosomes from the current population. This pro-

cess is known as selection. Genetic operators, such as crossover and mutation,

are performed on the selected chromosomes to create a new set of chromosomes

that make the population for the next generation. This algorithm is repeated sequen-

tially until the stopping criterion is achieved. The stopping criterion of a GA is

governed either by the number of generations or by the rate of change in the objec-

tive function value. Fitness values are expected to improve, indicating the creation of

better individuals in new generations. Several generations are considered in the GA

process until the user-defined termination criteria is reached.

3.2.1 GA Operators

The GA operators, namely chromosome representation, population size, selection

type, and crossover and mutation, control the process of GAs. These operators play

an important role in the efficiency of GA optimization in reaching the optimum

Initial
population

Chromosomes
representation

Start

Stop

Evaluate fitness
for the current

population

Termination
criteria met?

Results
Yes

No

Selection

Crossover

Mutation

Figure 3.1 Overall GA process.
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solution. One of the challenging aspects of using GAs is to choose the optimum

GA operator set for the relevant problem.

Representation of Chromosomes

Physical parameters in the search space constituting the phenotypes are encoded

into genotypes. The genotype of an individual is the chromosome, and the potential

solution to a problem corresponding to the chromosome is the phenotype. In GAs,

genetic operators are applied to the genotype to generate better solutions until the

optimum is obtained. Then the individual (genotype) representing the optimum

solution is decoded to phenotypes. Chromosome representation or encoding is a

process of representing the decision-variable values in GAs such that the computer

can interact with these values. The decision variables, or phenotypes, in the GA are

obtained by applying some mapping from the chromosome representation into the

search space. Coding in GA is defined by the type of gene expression, which may

be expressed using binary, gray, integers, or real coding. In general, a chromosome

(genotype) is presented as

ðx1; x2; . . . ; xnÞ such that x1AX1; x2AX2; . . . ; xnAXn ð3:1Þ

where, x1, x2, . . ., xn are bits, integers, real numbers or a mixture of these, and X1,

X2, . . ., Xn are the respective search spaces for x1, x2, . . ., xn.
In principle, any character set and coding scheme can be used for chromosome

representation. However, the initial GA work of Holland (1975) was done with

binary representation, as it was computationally easy. Furthermore, the binary

character set can yield the largest number of possible solutions for any given

parameter representation, thereby giving more information to guide the genetic

search. The GA operators work directly on this representation of the chromosomes

to get the optimal solution.

The conventional GA operations and theory were developed on the basis of binary

coding, which was used in many applications (Goldberg, 1989). The use of real-

valued genes in GAs is claimed by Wright (1991) to offer a number of advantages in

numerical function optimization over binary coding. Binary coding and real coding

differ mainly in how the crossover and mutation operators are performed in the

GA process. There has been growing interest in real-value coding for GAs. In real-

value coding, each chromosome is coded as an array of real numbers, with the same

length for the decision variable. Gray coding is another type of bit string coding,

which uses adjacent variable values where the code occurs as only one binary digit.

It was developed to overcome a problem called “Hamming Cliffs,” which exists in

binary coding and has been used in a number of studies in the water resources field

(Dandy et al., 1996).

Binary Coding
The most commonly used representation of chromosomes in the GA is binary

coding by using binary numbers 0 and 1. In this coding, each decision variable in
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the parameter set is encoded as a binary string, and these are concatenated to form

a chromosome. The length of the binary substring (i.e., number of bits) for a

variable depends on the size of the search space and the number of decimal places

required for accuracy of the decoded variable values (Michalewicz, 1999). If each

decision variable is given a string of length L, and there are n such variables,

then the chromosome will have a total string length of nL. For example, let there

be two decision variables, x1 and x2, and let the string length be 5 for each variable.

Then the chromosome length is 10, as shown in Figure 3.2.

The search space is divided into 2L intervals, each having a width equal to

(xi,max2 xi,min)/2
L for a binary string of length L, where xi,max is the upper

bound of the decision variable, and xi,min is the lower bound of the decision

variable:

d5 ðxi;max � xi;minÞ=2L defines the solution accuracy ð3:2Þ

The binary numbers have a base of 2 and use only two characters, 0 and 1.

A binary string, therefore, is decoded using Eq. (3.3):

N5 an2
n 1 an212

n21 1?1 a12
1 1 a02

0 ð3:3Þ

where

ai is either 0 or 1 (ith bit in the string),

2n represents the power of 2 of digit ai,

n is the number of bits in binary-coded decision variable (i.e., L2 1),

N is the decoded integer value of the binary string,

and the corresponding actual value of the variables is obtained using Eq. (3.4):

xi 5 xi;min 1
xi;max 2 xi;min

2L 2 1
N ð3:4Þ

For this example, let the search space for decision variables x1 and x2 range

from 0 to 5 and 1 to 10, respectively. For the chromosome shown in Figure 3.2,

the decoded value for the substrings and the corresponding value of the decision

variables will be as shown in Table 3.1.

Using string length L5 5, the entire search space for decision variable x1 can be

divided into 31 intervals of 0.16 width each, as shown in Table 3.2. The solution

accuracy may be increased by increasing the length of the string. The lower and

upper bounds of the real-value search space (i.e., 0 and 5) can be mapped into

binary numbers using Eq. (3.2), and all the other intermediate values (i.e., 0�31)
can also be easily expressed in binary numbers using Eq. (3.3). The entire search

String 1 String 2
Chromosome  10001 01111

Figure 3.2 Formation of chromosome.
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space for x1 in binary encoding and decoded real values are given in Table 3.2.

Different ranges and accuracies can be considered in GAs through different binary

substring lengths for different decision variables. All GA operators are performed

on binary strings and once GA optimization is completed, the binary strings can be

decoded into real values.

Gray Coding
Gray coding is an ordering of binary character sets such that all adjacent numerical

numbers differ by only one bit, whereas in binary coding, adjacent numbers may

differ in many bit positions. Gray coding representation has the property that any

two points next to each other in the search space differ by one bit only (Haupt and

Haupt, 2004). In other words, an increase of one step in the value of the decision

variable corresponds to a change of only a single bit. The advantage of gray coding

is that random bit flips in mutation are likely to make small changes and therefore

result in a smooth mapping between the real search space and the encoded strings.

To convert binary coding to gray coding, truth table conversion, as shown in

Table 3.3, is followed.

When converting from binary to gray, the first bit of the binary code remains

as it is, and the remaining bits follow the truth table conversion, two bits taken

sequentially at a time, giving the next bit in gray coding. An example of representa-

tion of binary and gray coding of numeric numbers of 1�31 is shown in Table 3.4.

The number of bit positions that differ in two adjacent bit strings of equal length

is known as Hamming distance. For example, the Hamming distance between

01111 and 10000 is 5, since all bit positions differ, and require alteration of 5 bits

when converting the number 15 to 16 in binary representation. The Hamming

distance associated with certain strings, such as 01111 and 10000, poses difficulty

in transition to a neighboring solution in real space, as it requires the alteration

of many bits. In gray coding, this distance between any two adjacent binary strings

is always 1. Caruana and Schaffer (1988) reported that gray coding can eliminate

Table 3.1 Coding and Decoding in GAs

Decision Variables

x1 x2

Chromosomes represented as

binary strings assuming string

length, L5 5

10001 01111

Decoded integer value 1.241 0.231 0.22

1 0.211 0.205 17

0.241 1.231 1.221 1.21

1 1.205 15

Corresponding value of decision

variable with solution accuracy

(xmax2 xmin)/(2
L2 1)

2.74 4.84
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Table 3.3 Truth Table Conversions (B1 and B2 are

adjacent bits in a binary string)

B1 1 0

B2

1 0 1

0 1 0

Table 3.2 Binary and Real Value Search Space for Decision

Variable x1

Binary encoding Decoded value Corresponding real value

of x1, in the search space

00000 0 0.00

00001 1 0.16

00010 2 0.32

00011 3 0.48

00100 4 0.65

00101 5 0.81

00110 6 0.97

00111 7 1.13

01000 8 1.29

01001 9 1.45

01010 10 1.61

01011 11 1.77

01100 12 1.94

01101 13 2.10

01110 14 2.26

01111 15 2.42

10000 16 2.58

10001 17 2.74

10010 18 2.90

10011 19 3.06

10100 20 3.23

10101 21 3.39

10110 22 3.55

10111 23 3.71

11000 24 3.87

11001 25 4.03

11010 26 4.19

11011 27 4.35

11100 28 4.52

11101 29 4.68

11110 30 4.84

11111 31 5.00
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the hidden bias in binary coding and that the large Hamming distances in the

binary representation could result in the search process being deceived or unable

to locate the global optimum efficiently. Gray coding has been preferred by

several researchers while using GAs in water resource applications (Wardlaw and

Sharif, 1999).

Real-Value Coding
For problems with a large number of decision variables, having large search spaces,

and requiring a higher degree of precision, binary-coded GAs have performed

Table 3.4 Representations of Integer Numbers in Binary and Gray

Coding

Integers Binary Coding Gray Coding

0 00000 00000

1 00001 00001

2 00010 00011

3 00011 00010

4 00100 00110

5 00101 00111

6 00110 00101

7 00111 00100

8 01000 01100

9 01001 01101

10 01010 01111

11 01011 01110

12 01100 01010

13 01101 01011

14 01110 01001

15 01111 01000

16 10000 11000

17 10001 11001

18 10010 11011

19 10011 11010

20 10100 11110

21 10101 11111

22 10110 11101

23 10111 11100

24 11000 10100

25 11001 10101

26 11010 10111

27 11011 10110

28 11100 10010

29 11101 10011

30 11110 10001

31 11111 10000

51Genetic Algorithms and Their Applications to Water Resources Systems



poorly (Michalewicz, 1999). Wright (1991) claims that the use of real-valued genes

in GAs overcomes a number of drawbacks of binary coding. In real coding, each

variable is represented as a vector of real numbers with the same length as that

of the solution vector. Efficiency of the GA is increased because genotype into

phenotype conversion is not required. In addition, less memory is required because

efficient floating-point internal computer representations can be used directly; there

is no loss in precision due to formation of discreteness to binary or other values;

and there is greater freedom to use different genetic operators. Nonetheless, real

coding is more applicable and it seems to fit continuous optimization problems

better than binary coding. Eshelman and Schaffer (1993) suggested choosing any

of these coding mechanisms, whichever is most suitable for the fitness function.

Other authors, such as Michalewicz (1999), justify the use of real coding, showing

their advantages with respect to the efficiency and precision reached compared to the

binary one. Real coding has been the preferred choice for variable representation

in most of the applications found in water resources using GA.

Another form of real number representation is integer coding. In integer coding,

the chromosomes are composed of integer values rather than real numbers. The only

difference between real coding and integer coding is in the operation of mutation.

Population Size

The population size is the number of chromosomes in the population. The size of

a population depends on the nature of the problem, but typically a population

contains hundreds or thousands of possible solutions. Traditionally, the popula-

tion is generated randomly, covering the entire search space. Given upper and

lower bounds for each chromosome (decision variable), chromosomes are created

randomly so as to remain within the given limits. The principle is to maintain a

population of chromosomes, which represents candidate solutions to the problem

that evolve over time through a process of competition and controlled variation.

Each chromosome in the population has an assigned fitness to determine which

chromosomes are used to form new ones in the competition process, which is

called selection. The new ones are created using genetic operators such as cross-

over and mutation.

Larger population sizes increase the amount of variation present in the population

but require more fitness evaluations (Goldberg, 1989). Therefore, when the popula-

tion size is too large, users tend to reduce the number of generations in order to

reduce the computing effort, since the computing effort depends on the multiple of

population size and number of generations. Reduction in the number of generations

reduces the overall solution quality. On the other hand, a small population size can

cause the GAs to converge prematurely to a suboptimal solution. Goldberg (1989)

reported that a population size ranging from 30 to 200 was the general choice of

many GA researchers. Furthermore, Goldberg pointed out that the population size

was both application dependent and related to string length. For longer chromosomes

and challenging optimization problems, larger population sizes were needed to

maintain diversity because it allowed better exploration.
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Selection

Selection is the survival of the fittest within the GA. The selection process

determines which chromosomes are preferred for generating the next population,

according to their fitness values in the current population. The key notion in selection

is to give a higher priority or preference to better individuals. During each genera-

tion, a proportion of the existing population is selected to breed a new generation;

therefore, the selection operator is also known as the reproduction operator. All

chromosomes in the population, or in a proportion of the existing population, can

undergo the selection process using a selection method. This percentage is known as

the generation gap, which is defined by the user as an input in GAs. The selection

process emphasizes to copy the chromosomes with better fitness for the next genera-

tion than those with lower fitness values. This may lose population diversity or the

variation present in the population and could lead to a premature convergence.

Therefore, the method used in the selection process should be able to maintain the

balance between selection pressure and population diversity. There are several selec-

tion techniques available for GA optimization. Proportional selection, rank selection,

and tournament selection (Goldberg and Deb, 1991) are among the most commonly

used selection methods. These are briefly discussed below.

Proportional Selection Method
The proportional selection method selects chromosomes for reproduction of the

next generation with a probability proportional to the fitness of the chromosomes.

In this method, the probability (P) of selecting a chromosome for reproduction can

be expressed as

P5
ftiPN
i51 fti

ð3:5Þ

where fti is the fitness value of the ith chromosome in the current population of

size N, and
PN

i51 fti is the total fitness, which is the sum of fitness values of all

chromosomes in the current population.

This method provides noninteger copies of chromosomes for reproduction.

Therefore, various methods have been suggested to select the integer number of

copies of selected chromosomes for the next generation, including Monte Carlo,

roulette wheel, and stochastic universal selection. The roulette wheel selection

method is discussed next.

Roulette Wheel Selection The most common selection method is roulette wheel

selection. Goldberg (1989) reported that it is also the simplest method. The basic

implementation of the roulette wheel selection method assigns each chromosome

a “slice” of the wheel, with the size of the slice proportional to the fitness value of

the chromosome. In other words, the fitter a member is, the bigger slice of the

wheel it gets. To select a chromosome for selection, the roulette wheel is “spun,”

and the chromosome corresponding to the slice at the point where the wheel stops

is grabbed as the one to survive in the offspring generation.
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The main steps for the roulette wheel selection algorithm may be generalized as

follows:

1. The fitness of each chromosome, fti, and their sum
PN

i51fti are calculated, where the

population size is N.

2. A real random number, rand ( ), within the range [0,1] is generated, and s is set to be

equal to the multiplication of this random number by the sum of the fitness values,

s5 rand ð�Þ3 PN
i51 fti:

3. A minimal k is determined such that s#
Pk

i51 fti; and the kth chromosome is selected for

the next generation.

4. Steps 2 and 3 are repeated until the number of selected chromosomes becomes equal to

the population size, N.

Tournament Selection
Another selection technique is tournament selection, where randomly selected pairs

of chromosomes “fight” to become parents in the mating pool through their fitness

function value (Goldberg, 1989). Tournament selection runs a “tournament” among

two or more chromosomes chosen at random from the population, and selects the

winner in accordance with their fitness values, such that the one with the best

fitness is selected for crossover. This process is continued until the required number

of chromosomes is selected for the next generation. Selection pressure can be easily

adjusted by changing the tournament size. If the tournament size is larger, weak

chromosomes have less chance to be selected. In general, in tournament selection,

N chromosomes are selected at random and the fittest is selected. The most

common type of tournament selection is binary tournament selection, where just

two chromosomes are selected.

Rank Selection
In the rank-selection approach, each population is sorted in order of fitness, assigning

a numerical rank to each chromosome based on fitness, and the chromosomes are

selected based on this ranking rather than the fitness value using the proportionate

selection operator. The advantage of this method is that it can prevent very fit

chromosomes from gaining dominance early at the expense of less fit ones, thereby

increasing the population’s genetic diversity (Goldberg and Deb, 1991).

Roulette wheel selection, tournament selection, and rank selection are considered

to be the most common and popular selection techniques and have been used

frequently in many studies. However, there are many other selection techniques,

namely, elitist selection, generational selection, steady-state selection, and hierarchical

selection. These techniques may be used independently or in combination. Brief intro-

duction of those selection techniques are given next. A detailed review of selection

techniques used in GAs is presented by Shivraj and Ravichandran (2011).

Elitist Selection
The fittest chromosomes from each generation are selected for the next generation,

a process known as elitism. Most GAs do not use pure elitism, but instead use a

modified form where a single chromosome or a few of the best chromosomes from
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each generation are copied into the next generation. Elitism can be combined with

any other selection technique.

Generational Selection
The offspring of the chromosomes selected from each generation become the entire

next generation. No chromosomes are retained between generations.

Steady-State Selection
The offspring of the chromosomes selected from each generation go back into the

previous generation and replaces some of the less fit members. This process helps

to keep some chromosomes between generations.

Hierarchical Selection
Chromosomes go through multiple rounds of selection each generation. Lower-level

evaluations are faster and less discriminating, while those that survive to higher

levels are evaluated more rigorously. The advantage of this method is that it reduces

overall computation time by using faster, less selective evaluation to weed out the

majority of chromosomes that show little or no promise, and subjecting only those

who survive this initial test to more rigorous and more computationally expensive

fitness evaluation.

Crossover

The crossover operator is used to create new chromosomes for the next generation

by combining randomly two selected chromosomes from the current generation.

Crossover helps to transfer the information between successful candidates—

chromosomes can benefit from what others have learned, and schemata can be mixed

and combined, with the potential to produce an offspring that has the strengths of

both its parents and the weaknesses of neither. However, some algorithms use an

elitist selection strategy, which ensures that the fittest chromosome from one genera-

tion is propagated into the next generation without any disturbance. The crossover

rate is the probability that crossover reproduction will be performed and is an input

to GAs. For example, a crossover rate of 0.9 means that 90% of the population

is undergoing the crossover operation. A higher crossover rate encourages better

mixing of the chromosomes.

There are several crossover methods available for reproducing the next genera-

tion. In general, crossover methods can be classified into two groups depending on

the chromosomes representation (i.e., binary coding or real-value coding).

A number of crossover methods are discussed by Herrera et al. (1998) for binary

coding and real coding. The choice of crossover method primarily depends on the

application.

Crossover Operators for Binary Coding
In bit string coding, crossover is performed by simply swapping bits between the

crossover points. Different types of bit string crossover methods (Davis, 1991;

Goldberg, 1989) are discussed next.
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Single-Point Crossover Two parent chromosomes are combined randomly at a

randomly selected crossover point somewhere along the length of the chromosome,

and the sections on either side are swapped. For example, consider the following

two chromosomes, each having 6 binary bits. After crossover, the new chromo-

somes (i.e., referred as offspring or children) are created as follows if the randomly

chosen crossover point is 2 (Figure 3.3).

Multipoint Crossover In multipoint crossover, the number of crossover points are

chosen at random, with no duplicates, and sorted in ascending order. Then, the bits

between successive crossover points are exchanged between the two parents to

produce two new chromosomes. The section between the first bit and the first

crossover point is not exchanged between chromosomes. For example, consider the

same example of two chromosomes used in a single crossover. If the randomly

chosen crossover points are 2 and 4, the new chromosomes are created as shown in

Figure 3.4.

The two-point crossover is a subset of the multipoint crossover. The disruptive

nature of multipoint crossover appears to encourage the exploration of the search

space, rather than favoring the convergence to highly fit chromosomes early in the

search, thus making the search more robust.

Uniform Crossover Single-point and multipoint crossover define crossover points

between the first and last bit of two chromosomes to exchange the bits between

them. Uniform crossover generalizes this scheme to make every bit position a

potential crossover point. In uniform crossover, one offspring is constructed by

choosing every bit with a probability P from either parent, as shown next using the

same example, by exchanging bits at the first, third, and fifth position between

the parents (Figure 3.5).

Parents

Chromosome 1 0 1 1 1 1                                Offspring 1 0 1 0 0 0

Chromosome 2 1 0 0 0 0 Offspring 2 1 0 1 1 1

Crossover point

Figure 3.3 Single-point crossover.

Parents

Chromosome 1 0 1 1 1 1                                Offspring 1 0 1 0 0 1

Chromosome 2 1 0 0 0 0                                Offspring 2 1 0 1 1 0

Crossover points

Figure 3.4 Multipoint crossover.
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Crossover Operators for Real Coding
In real coding, crossover is simply performed by swapping real values of the genes

between the crossover points. Different types of real-value crossover methods have

been used. Assume that x1 5 ðx11; x12; . . . ; x1nÞ and x2 5 ðx21; x22; . . . ; x2nÞ are the two

chromosomes selected for crossover operation from the current population.

Different crossover operators that can be used in real-coded GAs are discussed

next.

Two-Point Crossover Two points of crossover i,j A (1,2, . . ., n2 1) are randomly

selected, provided that i, j and the segments of the parent, defined by them, are

exchanged for generating two offspring (Eshelman et al., 1989), y1 and y2, such that:

y1 5 ðx11; x12; . . . ; x2i ; x2i11; . . . ; x
2
j ; x

1
j11; . . . ; x

1
nÞ ð3:6Þ

y2 5 ðx21; x22; . . . ; x1i ; x1i11; . . . ; x
1
j ; x

2
j11; . . . ; x

2
nÞ ð3:7Þ

Random Crossover Two offspring are created:

y1 5 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; . . . ; y2nÞ

The value of each gene in the offspring is determined by the random uniform

choice of the values of this gene in the parents:

yki 5
x1i if u5 0

x2i if u5 1

( )
; k5 1; 2 ð3:8Þ

where u is a random number that can have a value 0 or 1 (Syswerda, 1989).

Arithmetic Crossover Two offspring, y15 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; . . . ; y2nÞ; are
produced, such that

y1i 5λ � x1i 1ð12λÞ � x2i ð3:9Þ

y2i 5λ � x2i 1ð12λÞ � x1i ð3:10Þ

where λ A[0,1].

Parents

Chromosome 1 0 1 1 1 1                                Offspring 1 1 1 0 1 0

Chromosome 2 1 0 0 0 0                                Offspring 2 0 0 1 0 1

Figure 3.5 Uniform crossover.
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Geometrical Crossover Two offspring, y1 5 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; y2nÞ; are
created, where

y1i 5 x
1μ
i � x2ð12μÞ

i ð3:11Þ

y2i 5 x
2μ
i � x1ð12μÞ

i ð3:12Þ

where μA[0,1].

Geometric crossover in shown in Figure 3.6 (Michalewicz, 1999).

BLX-α Crossover Two offspring, y1 5 ðy11; y12; . . . ; y1nÞ and y2 5 ðy21; y22; . . . ; y2nÞ are

generated. where, yki is a randomly, uniformly chosen number from the interval

[Xmin2 Iα, Xmax1 Iα] and Xmax, Xmin, and I are defined as shown here:

Xmax 5maxfx1i ; x2i g ð3:13Þ

Xmin 5minfx1i ; x2i g ð3:14Þ

I5Xmax 2Xmin ð3:15Þ

Generally, BLX-α crossover gives the best results. And it is observed that the

higher value of α results in better solutions. As α increases the exploration level

increases, since the relaxed exploitation zones are spread over exploration zones,

thereby increasing the diversity levels in the population (Herrera et al., 1998).

For detailed descriptions of these and other crossover operators (e.g., Fuzzy,

SBX (Simulated binary crossover), UNDX (Unimodal normally distributed cross-

over), and simplex crossover), real-coding readers are referred to Deb (2003) and

Herrera et al. (1998).

Mutation

One further operator in GA is the mutation operator, which works on the level

of chromosome genes by randomly altering a gene value (Deb, 2003). Mutation

introduces innovation into the population by randomly modifying the chromosomes.

The operation is designed to prevent GA from premature termination, since it

prevents the population from becoming saturated with chromosomes that look alike.

Usually considered as a background operator, the role of the mutation operator is

often seen as guaranteeing that the probability of searching any given chromosome

3

xi
1 xi

2ai bi

2 3
μ=  2 μ= 1 μ=1

Figure 3.6 Geometrical crossover with different values

for μA[0,1].
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will never be zero. In GAs, mutation is randomly applied with low probability and

modifies elements in the chromosomes. Large mutation rates increase the probability

of destroying good chromosomes but prevent premature convergence. The muta-

tion rate determines the probability that mutation will occur. For example, if the

population size is 200, string length is 10, and mutation rate is 0.005, then only

10-bit positions will mutate in the whole population (i.e., 2003 103 0.0055 10).

Similar to crossover techniques, mutation methods can be classified according

to the binary coding or real-value coding of the GA.

Mutation for Binary and Gray Coding
In binary and gray coding systems, a chromosome mutation is performed at

randomly chosen genes by flipping bit 0 to l and vice versa (Goldberg, 1989;

Holland, 1975).

Mutation for Real Coding
Mutation in real-coded GA is performed, either by disarranging the gene values or

by randomly selecting the new values. For example, let x5 ðx1; x2; . . . ; xnÞ be a

chromosome and xi be a gene to be mutated. Then a random number x0i may be

chosen from a given search space of xi and will replace xi. Mutation for integer

coding is performed analogous to real-value coding, except that after mutation, the

value for that gene is rounded to the nearest integer.

A detailed discussion of other mutation operators may be found in related

textbooks and publications, for instance, see Herrera et al. (1998) and Deb (2003).

3.3 Review of GA Applications to Water Resource Problems

GAs can successfully deal with a wide range of problem areas. Briefly, the reasons

for this success, according to Goldberg (1994), are “(1) GAs can solve hard

problems quickly and reliably, (2) GAs are easy to interface to existing simulations

and models, (3) GAs are extensible, and (4) GAs are easy to hybridize. All these

reasons may be summed up in only one statement: GAs are robust.” GAs are

more powerful in difficult environments where the search space usually is large,

discontinuous, complex, and poorly understood. They are not guaranteed to find

the global optimum solution to a problem, but they are generally efficient at finding

acceptable solutions to many real-life problems.

Goldberg (1989) gives a comprehensive review of GA applications before 1989.

During the recent years, GA applications have grown enormously in many fields.

GAs have been the most commonly applied nature-inspired metaheuristic algorithms

in the water resource planning and management literature. Reviews of their applica-

tion in different fields of water resources are reported in Nicklow et al. (2010), Rani

and Moreira (2010), Labadie (2004), and Cunha (2002).

In this section, applications of GAs in the field of water resources have been

classified in different groups.
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3.3.1 Water Distribution Systems and Pump Scheduling Problems

Over the past two decades, considerable investment has been made in developing

and applying GAs to improve the design and performance of water distribution

systems. Interestingly, one of the earlier applications of GAs in water engineering

was the optimization of pump schedules for a serial liquid pipeline (Goldberg and

Kuo, 1987). Since then, there has been increasing interest in the application of GAs

to a wide variety of water distribution system problems, such as calibration of water

distribution models, optimal system design, and operation and pump scheduling.

Simpson et al. (1994) were the first to use GAs for water distribution systems.

They applied and compared a GA solution to enumeration and to nonlinear pro-

gramming. Vairavamoorthy and Ali (2005) presented a GA for the least-cost pipe

network design problem that discards the regions of the search space where

impractical or infeasible solutions are likely to exist, therefore improving search

efficiency.

Dandy and Engelhardt (2001) demonstrated the use of a GA to find a near-

optimal pipe replacement schedule so as to minimize the present value of capital,

repair, and damage costs. Mackle et al. (1995) were among the first to apply a

binary GA to pump scheduling problems by minimizing energy costs, subject

to reservoir filling and emptying constraints. Subsequently, Savic et al. (1997)

developed a multiobjective GA (MOGA) approach to determine pump scheduling.

To reduce the excessive run times required by the GA, van Zyl et al. (2004) devel-

oped a hybrid optimization approach, in which they combined a steady-state GA

with the Hooke and Jeeves hill-climbing method. Rao and Salomons (2007) devel-

oped a process based on the combined use of an artificial neural network (ANN)

for predicting the consequences of different pump and valve control settings and

a GA for selecting the best combination of those settings. The methodology has

successfully been demonstrated on the distribution systems of Valencia (Spain)

and Haifa (Israel). Munavalli and Mohan-Kumar (2003) and Prasad et al. (2004)

used GA for optimal scheduling of multiple chlorine sources.

Besides the above-mentioned papers, many other applications of MOGAs have

appeared in the water distribution system literature (Savic and Walter, 1997).

Prasad and Park (2004) and Vamvakeridou-Lyroudia et al. (2005) employed the

MOGA approach for optimal design of water distribution networks.

3.3.2 Sewer System Design Optimization

The optimal design of a sewer network aims to minimize construction costs while

ensuring adequate system performance under specified design criteria. GAs have

been the most popular and successful optimization techniques for the design of

sewer systems (Afshar et al., 2006; Farmani et al., 2006). Hybrid GAs and MOGAs

are becoming attractive in this field of study as well. Farmani et al. (2006) and

Guo et al. (2006) employed local search techniques to seed an NSGA II (Non-

dominated sorting genetic algorithm II) in the design of sewer networks.
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3.3.3 Water Quality and Waste Management

GAs have been applied successfully in the design and operation of water and

wastewater treatment plants and to other water quality management problems.

GA was applied by Suggala and Bhattacharya (2003) to identify process parameters

to remove organics from wastewater cost-effectively to meet pollutant removal

standards. For operation of a domestic wastewater treatment plant, Chen et al.

(2003) investigated the use of a GA to identify real-time control strategies, such as

pH and nutrient levels, electricity consumption, and effluent flow rates, for meeting

cost goals and effluent standards. Chen and Chang (1998) introduced a GA to solve

a nonlinear fuzzy multiobjective programming model, considering biochemical

oxygen demand and dissolved oxygen as water quality parameters, where the water

quality calculation was based on the Streeter�Phelps equation. Burn and Yulianti

(2001) explored waste load allocation problems using GAs. Yandamuri et al.

(2006) similarly proposed optimal waste load allocation models for rivers using

NSGA II. Kerachian and Karamouz (2005) extended some of the classical waste

load allocation models for river water quality management for determining the

monthly treatment or removal fraction to evaporation ponds. The high dimensionality

of the problem (large number of decision variables) was handled by using a sequen-

tial dynamic GA.

3.3.4 Watershed Planning and Management

Yeh and Labadie (1997) introduced the application of GAs to watershed planning

and presented a multiobjective watershed-level planning of stormwater detention

systems using MOGAs to generate nondominated solutions for the system cost and

detention effect for a watershed-level detention system. Harrell and Ranjithan

(2003) applied a GA-based methodology to identify detention pond designs and

land-use allocations within subbasins to manage water quality at a watershed scale.

Combined use of GA and simulation models can be seen in many watershed man-

agement studies. Muleta and Nicklow (2005) linked a GA with the Soil and Water

Assessment Tool to identify land-use patterns to meet water quality and cost objec-

tives. Perez-Pedini et al. (2005) combined a distributed hydrologic model with GA

for an urban watershed to determine the optimal location of infiltration-based best

management practices for stormwater management.

3.3.5 Groundwater System Optimization

Groundwater optimization problems include groundwater remediation design,

monitoring network design, groundwater and coastal aquifer management, param-

eter estimation, and source identification. Cunha (2002) and Mayer et al. (2002)

presented reviews of design optimization problems that apply traditional and

heuristic solution approaches to solving groundwater flow and contaminant trans-

port processes and remediation problems, while Qin et al. (2009) also reviewed

both simulation and optimization approaches used in groundwater systems.
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Rogers et al. (1995) was the first to apply a GA to a field-scale remediation

problem by using an ANN in place of numerical groundwater flow and the contam-

inant transport simulation model. Yan and Minsker (2006) proposed an adaptive

neural network GA that incorporates an ANN as an approximation model that

is adaptively and automatically trained within a GA, to reduce the computational

requirement of groundwater remediation problems. Zheng and Wang (2002)

applied a GA with response functions to solve a field-scale remediation problem

at the Massachusetts Military Reservation that included 500,000 nodes in the

simulation model and a 30-year planning horizon. Espinoza et al. (2005) proposed

the self-adaptive hybrid GA and demonstrated its ability to reduce computation

cost for groundwater remediation problems. Sinha and Minsker (2007) proposed

multiscale island injection GAs, which includes multiple population functions at

different spatial scales, to reduce the computational time to solve a field-scale

pump-and-treat remediation optimization problem.

Many studies have considered parameter uncertainty in solving groundwater

remediation optimization problems. Smalley et al. (2000) applied a noisy GA to

bioremediation design, with health risk included in the formulation. Wu et al.

(2006) compared a Monte Carlo simple GA (SGA) with a noisy GA to solve a sam-

pling network problem with uncertainty in the hydraulic conductivity. Hu et al.

(2007) presented an application of two-objective optimization of an in situ biore-

mediation system for a hypothetical site under uncertainty. Singh and Minsker

(2008) developed a probabilistic MOGA, which combines a method similar to the

noisy GA, with an additional archiving step with the NSGA II, and applied it to

two pump-and-treat problems—a hypothetical and a field-scale case study.

A number of works have proposed GA approaches to groundwater monitoring

network design (Chadalavada and Datta, 2008).

3.3.6 Parameter Identification

Parameter identification can be defined as a generalized term that denotes any

practice, including field or experimental work, to identify parameters for a model.

The parameter identification problem for most hydrologic applications is ill-posed,

multimodal, nonlinear, and nonconvex (Yeh, 1986). Wang (1991) was among the

first to apply the “simple” GA to the calibration problem (Nicklow et al., 2010).

Subsequently, many other studies have applied GAs and their variants to watershed

calibration. Zechman and Ranjithan (2007) developed a combined GA and genetic

programming methodology to address the difficulties associated with models used

for parameter estimation.

Tsai et al. (2003) and Mahinthakumar and Sayeed (2005) presented a similar

global�local optimization approach, where a GA was used as a global optimizer

to provide approximately optimal solutions that were fed in local optimization

approaches. Other applications of GAs for groundwater calibration can be found in

Wang and Zheng (1998).

NSGA II (Deb et al., 2000) and its variants have been widely used for multiob-

jective parameter identification in watershed modeling (Khu and Madsen, 2005;
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Tang et al., 2006). NSGA II, used for watershed calibration, has employed the

Pareto ranking scheme (used in Goldberg (1989)) to deal with multiple objectives.

3.3.7 Optimization of Reservoir System Operation

Optimization of reservoir operations involves allocation of resources, development

of stream flow regulation strategies, formulating operating rules, and making real-

time release decisions. A reservoir regulation plan, which is also referred to as an

operating procedure or a release policy, is a group of rules quantifying the amount

of water to be stored, released, or withdrawn from a reservoir or system of reser-

voirs under various conditions.

In a multireservoir system, input to a reservoir includes natural inflows, including

all other inflows from surface runoffs, streams, and undammed rivers and all releases

from adjacent upstream reservoirs on the same river or its tributaries. The output

from a reservoir may be through diversion (for irrigation or other uses), spillways

(for flood management), release to maintain ecological flow required in the river,

and penstocks (to generate power). Also, some water is lost due to evaporation from

the water surface and seepage into the ground.

A typical reservoir operation optimization model deals with constraints such as

the continuity equation, maximum and minimum storage in the reservoirs, maximum

and minimum releases from the reservoirs, and some case-specific obligations.

The most commonly accepted objectives are the optimality of the water supply for

irrigation, industrial and domestic use, hydropower generation, water quality improve-

ment, recreation, fish and wildlife enhancement, flood control, and navigation.

The reservoir operation rule is commonly defined by a function in which the

release of water from a reservoir for the given time interval is computed by using

the values of current reservoir storage and current and expected demands and

inflows. Generally speaking, the optimization problem takes the following form.

Maximization or minimization of the objective function, subject to the following

constraints:

� The continuity equation is satisfied.
� Storage is within the upper and lower bounds.
� Releases are within the upper and lower bounds.
� Final storages are satisfied.

Several approaches have been developed for the optimization of reservoir opera-

tions, defining reservoir operating rules, and many different techniques have been

studied with regard to this optimization problem. Numerous optimization models

have been proposed and reviewed by many scientists (Labadie, 2004).

Esat and Hall (1994) applied a GA to the four-reservoir problem. The objective

of this problem was to maximize the benefits from power generation and irrigation

water supply, having constraints on both storage and release from the reservoirs.

They concluded that GAs have a significant potential in reservoir operation

optimization, and GAs are superior over standard dynamic programming (SDP)

techniques in many aspects.
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Oliveira and Loucks (1997) used a GA to evaluate operating rules for multire-

servoir systems and indicated that optimum reservoir operating policies can be

determined by means of GAs. Wardlaw and Sharif (1999) evaluated GA formula-

tion to different reservoir operation problems, along with a range of sensitivity

analysis using different combinations of chromosome representation (binary, gray,

and real coding) and crossover and mutation probabilities. Further, they applied

GAs to the optimization of multireservoir systems (Sharif and Wardlaw, 2000), and

the results were found to be comparable with DDDP (Discrete differential dynamic

programming). Jothiprakash and Shanthi (2006) developed a GA model to derive

optimal operational strategies for a single reservoir and concluded that GA can be a

good alternative for real-time operation. It is important to highlight here that most

researchers have agreed that GA could be a potential alternative to SDP.

A number of researchers have come to advocate that a real-coded (or floating-

point) GA has a definite advantage over a binary-coded GA (Michalewicz, 1999).

In real-value coding, there is no discretization of decision-variable space. Attempts

have been made by many researchers to compare the performance of both GA

approaches in the context of reservoir systems optimization. Chang et al. (2005)

and Jian-Xia et al. (2005) compared the two approaches and found that real-coded

GAs were more efficient and faster than binary-coded GAs. Chen and Chang

(2007) proposed a real-coded, hypercubic-distributed GA (HDGA). Application

of this method to a multireservoir system in northern Taiwan showed that HDGAs

can provide much better performance than conventional GAs.

To reduce the computational requirements of the GA, it has been applied

in combination with other optimization methods. Cai et al. (2001) presented a

combined genetic algorithm�linear programming (GA�LP) strategy to solve the

large nonlinear reservoir systems optimization model. GA was used to linearize the

original problem in each time period, which is later solved sequentially using LP.

The hybrid GA�LP approach was able to find good approximate solutions to the

nonlinear models. In view of the computational advantages of combined GA�LP
strategies to deal with nonlinearities, Reis et al. (2006) proposed and evaluated a

stochastic hybrid GA�LP approach to the operation of reservoir systems, which

admits a variety of future inflow variability through a treelike structure of syntheti-

cally generated inflows.

Huang et al. (2002) presented a GA-based SDP model to cope with the

dimensionality problem of a multiple-reservoir system. A combination of GA and

DDDP was proposed by Tospornsampan et al. (2005) for the irrigation reservoir

operation problem. The main advantage of the hybrid approach is to save computa-

tional resources for optimizing parameters. Also, the good solutions obtained from

the GA are used as the initial policy for DDDP, therefore reducing the probability

of DDDP to trap in the local optima. Kuo et al. (2006) used a hybrid-neural GA for

water quality management of the Feitsui Reservoir in Taiwan.

Ganji et al. (2007) developed a modified version of the SGA, for application to

a reservoir operation problem. The SGA reduces the overall run time compared

to the SGA through dynamically updating the length of chromosomes. Karamouz

et al. (2007) solved a similar problem using a GA-K nearest neighborhood
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(GA-KNN) based optimization model. In this methodology, the lengths of chromo-

somes are increased based on the results of a K-nearest neighborhood (KNN) fore-

casting model. Nagesh Kumar et al. (2006) developed a GA model for obtaining an

optimal reservoir operating policy, but focusing on optimal crop water allocations

from an irrigation reservoir in the state of Karnataka, India. The objective of the

study was to maximize the relative yield from a specified cropping pattern.

Kerachian and Karamouz (2006, 2007) used an algorithm combining a water qual-

ity simulation model and a stochastic conflict resolution GA-based optimization

technique for determining optimal reservoir operation rules. Zahraie et al. (2008)

solved a similar problem using a GA KNN-based optimization model. The KNN

method is a nonparametric regression methodology that uses the similarity

between observations of predictors and K similar sets of historical observations to

obtain the best estimate for a dependent variable. K vectors of the past observa-

tions are obtained based on the minimum Euclidean norm from the present condi-

tion among all candidates.

Recently, Hinçal et al. (2011) applied GAs to a multireservoir system operation

to maximize the energy production in the system by using two different approaches:

the conventional (monthly) approach and the real-time approach. Comparison of

the results revealed that the energy amounts optimized by using the conventional

approach were higher than the energy produced in a real-time operation. However,

by using the real-time approach, a close approximation to the real operational data

had been achieved.

3.4 The GA Process for a Reservoir Operation Problem

The purpose of optimal reservoir operation is to obtain a policy to specify how

water in a reservoir is regulated to satisfy the desired objectives. The optimal

operating policy serves to reap the maximum benefit from the reservoir system

satisfying the system demands. Here, we assume that the operating policy is

composed of a decision variable, which is the release from the reservoir at each

time period. The benefit is the return from release of water, and the benefit function

is supposed to be given for each time period. Figure 3.7 shows a single reservoir

system and the variables associated with a reservoir operation problem.

Evpt (Evaporation)

It + Ppt (Inflow + precipitation)

Rt

Target release

Spill

Figure 3.7 Variables associated with a reservoir

operation problem.
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Optimization aims to find the optimum combination of releases that will

maximize the return for the system. There are upper and lower limits for releases and

storages. These limitations form the constraints of the problem. Another constraint of

the problem is that the continuity equation is to be satisfied for each time period.

In general, a reservoir operation optimization problem may be expressed as follows:

The objective function is:

Maximization of net benefit

gtðRtÞ5Max
XN

t51
½NBtðRtÞ� ð3:16Þ

where NBt(Rt) is the benefit function, which is a function of the release at time

period t. Rt is the release for period t.

The objective function is subject to:

The continuity equation being satisfied, which is stated as:

St11 5 St 1 It 2Rt 1 Ppt 2Evpt ’t5 1; . . . ;N ð3:17Þ

where St, It, and Rt are the storage, inflow, and releases for the given reservoir

at time period t, and N is the time horizon for the problem under consideration.

Ppt and Evpt are precipitation over reservoir surface and evaporation from reservoir

surface during time period t, respectively.

Limits on storage impose constraints are of the form,

Smin # St # Smax ’t5 1; . . . ;N ð3:18Þ

which ensures that storage (St) will be within specified minimum and maximum

values.

Limits on release are as follows:

Rmin #Rt #Rmax ’ t5 1; . . . ;N ð3:19Þ

and release (Rt) should be within specified minimum and maximum ranges.

Releases are the decision variables in the problem. Decision variables exist

in the composition of the chromosomes of the population in the GA. Constraints

of releases are identified during the generation of the initial population, and as a

matter of fact, they are satisfied. The continuity equation is readily satisfied since

the storages are computed by using the continuity equation given in Eq. (3.17).

Other constraints are embedded into the objective function as a penalty function

(Chang et al., 2010; Hinçal et al., 2011). Thus, the constrained optimization

problem is converted to an unconstrained optimization problem. The reason why a

constraint problem is transformed into an unconstrained problem is to be able to

handle the problem by means of the GA. This is done as follows:

If St. Smax, then the penalty term
PN

t51fc1ðSmax2StÞ2g is introduced in an

objective function, i.e., Eq. (3.16).
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If St, Smin, then the penalty term
PN

t51fc2ðSmin2StÞ2g is introduced in an objec-

tive function, i.e., Eq. (3.16), where the deviations from maximum and minimum

storage are penalized by the square of deviation from constraints. Constants c1, and

c2 are defined as the weight of the penalty term in order for them to be in the order

of the benefit terms. The optimization problem, the objective function, and con-

straints of which are given above are adapted into the GA. Forthcoming steps will

show how GAs are used to solve this problem.

3.4.1 Generation of Initial Population

A chromosome representing search space will be

Cj 5 fR1;R2; . . . ;Rt; . . . ;RNg ð3:20Þ

Each gene within the chromosome represents a release made from a reservoir at

a specific time period and can take up any value between the upper and lower

bounds of releases. Since the decision variables are releases (Rt), and the maximum

and minimum releases are known for the reservoir, the number of chromosomes

generated within these upper and lower limits represent the entire search space for

the problem. The population may be generated using binary or real coding. In real

coding, randomly generated numbers within the upper and lower limits of the

releases will constitute chromosomes of the population. The number of chromo-

somes generated will depend on the assumed size of the population (population

size j5 1, . . ., M).

3.4.2 Calculation of State Variables

After the generation of the initial population, which is composed of chromosomes

containing releases (decision variables), calculation of storages (state variables)

comes next. Storage for every gene of the individuals is computed making use

of continuity Eq. (3.17), which is the equality constraint of the problem. Usage of

Eq. (3.17) in calculation of storage ensures that the continuity equation is satisfied

for every gene created. The inequality constraints ensure that the storages remain

within their limits and are satisfied by incorporating the related penalty terms into

the objective function.

3.4.3 Calculation of Fitness Values

In the next step, the fitness value for each chromosome is calculated. The fitness

assigned to each gene has direct influence on the eligibility for each chromosome

to live in the next generation. Penalty terms originating from violation of the con-

straints will make sure that the chromosomes violating the storage constraints will

not be selected in the next population.
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3.4.4 GA Operators

GA operators and selection, crossover, and mutation operators are implemented

on the population to get the best solution, as already discussed in Section 3.3.

The choice of selection technique depends on the nature of the problem, and

various techniques may be applied and compared to choose the best solution for

a particular problem.

Crossover operation is performed using a predefined crossover probability.

Crossover probability leads to deciding whether to put the parent chromosomes

under the process of crossover. A random number is generated and compared with

the crossover probability to specify whether to apply the crossover operators.

The selected chromosomes undergo crossover operation only if the random number

generated is greater than the probability of crossover. There is no rule to define

crossover probability, and usually a sensitivity analysis is carried out to get the best

value for crossover probability for a particular problem. The crossover operator

chosen also depends on the problem, and different crossover techniques may be

compared to select the best one for the problem chosen.

Mutation is randomly applied with low probability, typically in the range 0.001

and 0.02, to modify the genes of some chromosomes. The role of mutation is often

seen as a safety net to recover good genetic material that may be lost during selec-

tion and crossover operations. The mutation operator has been constructed to alter

the gene randomly with consideration to the predefined probability of mutation.

Ifthe random number generated is greater than the probability of mutation, the gene

is reproduced using a suitable mutation operator; otherwise, it remains the same.

3.4.5 Example: A Four-Time-Period Reservoir Operation Problem

To illustrate the main features of GAs, let us consider a reservoir operation problem.

The reservoir has an active storage capacity of 20 Million Cubic Meter (MCM). The

active storage volume, St, in the reservoir can vary from 0 to 20. Let Rt be the release

or discharge from the reservoir in time period t. Each variable is expressed as a vol-

ume unit for the period, t5 1, 2, 3, 4. In these time periods, the inflows to the reser-

voir are It5 14, 12, 6, and 8, respectively. The net benefit function for each time

period for unit release from the reservoir is defined by ft 5 11:51 1:5R2
t : Suppose

that only integer solutions are to be considered and the maximum release from the

reservoir cannot exceed 9, which is fixed as the target demand for each time period.

What is the optimal release Rt for each time period? Evaporation losses and precipi-

tation may be ignored.

Solution

Here, the objective of the problem is to maximize the net benefit from the released

water; therefore, the overall objective function may be written as

Max
X4

t51
ð11:51 1:5R2

t Þ2 cðRt29Þ2 ð3:21Þ
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where the first term defines the benefit from releases and the second term

minimizes the deviation from target demand. In this problem, c is a coefficient to

be chosen such that the objective function remains positive, and the value of c is

supposed to be 0.1.

The following are the constraints for this function:

The continuity equation:

St11 5 St 1 It 2Rt ’t ð3:22Þ

Limits on storages are as follows:

0# St # 20 ’t ð3:23Þ

Limits on releases are as follows:

0#Rt # 9 ’t ð3:24Þ

Since GA cannot explicitly handle constraints, these are taken care of by penalty

functions. If St$ 20, then penalty term
P4

t51fc1ð202StÞ2g will be introduced in

the objective function, and if St# 0, then penalty term
P4

t51fc1ð02StÞ2g will be
introduced instead.

Each individual solution set contains the values of all the decision variables

whose best values are being sought. For example, if there are four decision vari-

ables x1, x2, x3, and x4 to be obtained, these variables are arranged into a string

or chromosome, x1x2x3x4. If each decision variable is expressed using three digits,

then the chromosome 005021050279 would represent x15 5, x25 21, x35 50, and

x45 279.

Pairs of chromosomes from two parents join together and produce offspring,

who in turn inherit some of the genes of the parents. Altered genes may result in

improved values of the objective function. These genes will tend to survive from

generation to generation, while those that are inferior will tend to die.

A population of possible feasible solutions is generated randomly. Each chromo-

some contains the values of all the decision variables whose best values are being

sought. In this example, we are using numbers to the base 10; therefore, a sample

chromosome 8376 will represent the releases R15 8, R25 3, R35 7, and R45 6.

Another chromosome representing the solution to this problem, chosen randomly,

would be 2769. These two chromosomes, each containing four genes, can pair up

and have two children. Population size is a GA parameter—that is, the number

of solutions being considered. To show the iterations for this example, we assume

a population of 10 individuals. However, the best values of GA parameters are

usually decided by trial and error.

The GA process begins with the random generation of an initial population

of feasible solutions, proceeds with selection, random crossover, and mutation

operations, and then randomly generates the new population for the next iteration.

This process repeats itself with the new population and continues until there is no

significant improvement in the best solution found.
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For this example, the process includes the following steps:

1. Initial population is randomly generated, which is a set of solutions/chromosomes having

randomly generated decision-variable values within the range 0�9. The release cannot

exceed 9, therefore satisfying the release constraint.

2. The corresponding storages in the reservoir are calculated using the continuity Eq. (3.22),

assuming that the storage at the beginning of operation is 0. This ensures that the continu-

ity equation is satisfied. If the value of storage for any chromosome is bigger than 20 or

less than 0, then the penalty terms are added in the objective function. A negative value

of penalty coefficients is considered here, which will decrease the value of objective

function and the chromosome will not appear in the next generation. This will prevent

the violation of storage constraints.

3. The initial population undergoes the selection operation, and best decision variables are

selected using the roulette wheel selection method, as discussed in section “Selection”

earlier in this chapter.

4. The selected chromosomes are paired to determine whether a crossover is to be per-

formed on each pair, assuming that the probability of a crossover is 60% (Pc5 0.6). If a

crossover is to occur, we find the crossing site randomly, by creating a random number

between 1 and 3. Note that not all five pairs will undergo crossover operation. With 60%

probability, in iteration 1, it was seen that only the first, second, and fifth pairs (shown in

bold in Table 3.5) will crossover at randomly chosen site 3. The single-point crossover

operation is used in this example.

5. Next, determine if any chromosome in the resulting intermediate population is to be

mutated. For mutation, we assume the probability of mutation (Pm5 0.05) for each gene.

For this example, we assume that mutation increases the value of the number by 1, or

if the original number is 9, mutation does not change it to 10; rather, it keeps it as it is.

With this probability (103 43 0.055 2), two chromosomes will undergo mutation

randomly. In iteration 1, chromosomes 3 and 6 are randomly chosen for the mutation

operation, and for these chromosomes, the genes to be mutated are also chosen randomly

by generating a random number between 1 and 4. The mutated genes are shown in bold

and italics for iteration 1 in Table 3.5.

6. The last step creates a new population, and steps 2�5 are repeated for a predefined

number of generations or until the best solution is obtained.

These steps are performed for two iterations (see Table 3.5). The solution found

in the second iteration increases the sum of the fitness value from 2949.2 to 3747.2.

This process can continue till the process has converged to the best solution it can

find. The whole process may be repeated for different probabilities of crossover and

mutation to find out the optimal parameters for the GA process for this problem.

3.5 Conclusions

The GA has become a popular tool for researchers to solve a wide variety of water

resource management problems. This chapter has presented a brief review of the

theory of GAs and their applications to reservoir operation, groundwater manage-

ment, water quality, parameter estimation, and other problems related to water

resource management. GA has its own advantages and limitations when applied to
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Table 3.5 GA Iteration for Reservoir Operation Example

Index for

Chromosomes

Initial

Population

(R1 R2 R3 R4)

Storages Fitness

(fti)

Probability of

Selection (P)

R and

( )

s Cumulative

Fitness

Selected

Index

Selected

Chromosome

Crossover

(Pc5 0.5)

Mutation

(Pm5 0.05)
S1 S2 S3 S4

Iteration 1
1 2695 12 18 15 18 257.6 0.09 0.35 1039.33 257.6 4 8279 8279 8279

2 3595 11 18 15 18 249.2 0.08 0.41 1199.69 506.8 4 8279 8279 8279

3 9849 5 9 11 10 406.4 0.14 0.56 1653.02 913.2 6 3497 3499 3599

4 8279 6 16 15 14 337.6 0.11 0.93 2734.76 1250.8 10 6799 6797 6797

5 6538 8 15 18 18 240.8 0.08 0.20 580.40 1491.6 3 9849 9849 9849

6 3497 11 19 16 17 272 0.09 0.01 20.63 1763.6 1 2695 2695 3695

7 2676 12 18 17 19 226.4 0.08 0.92 2720.55 1990 10 6799 6799 6799

8 5882 9 13 11 17 274.8 0.09 0.04 121.27 2264.8 1 2695 2695 2695

9 2687 12 18 16 17 269.2 0.09 0.62 1837.25 2534 7 2676 2679 2679

10 6799 8 13 10 9 415.2 0.14 0.97 2868.57 2949.2 10 6799 6796 6796

Total
XN

i51
fti

5 2949:2

Iteration 2

1 8279 6 16 15 14 337.6 0.10 0.15 502.67 337.6 2 8279 8299 8299

2 8279 6 16 15 14 337.6 0.10 0.66 2203.79 675.2 7 6799 6779 6779

3 3599 11 18 15 14 334.8 0.10 0.62 2077.63 1010 7 6799 6779 6779

4 6797 8 13 10 11 366.8 0.11 0.87 2910.91 1376.8 9 2679 2699 2699

(Continued)



Table 3.5 (Continued)

Index for

Chromosomes

Initial

Population

(R1 R2 R3 R4)

Storages Fitness

(fti)

Probability of

Selection (P)

R and

( )

s Cumulative

Fitness

Selected

Index

Selected

Chromosome

Crossover

(Pc5 0.5)

Mutation

(Pm5 0.05)
S1 S2 S3 S4

5 9849 5 9 11 10 406.4 0.12 0.63 2135.69 1783.2 7 6799 6749 6749

6 3695 11 17 14 17 266.4 0.08 0.43 1457.26 2049.6 5 9849 9899 9899

7 6799 8 13 10 9 415.2 0.12 0.40 1354.91 2464.8 4 6797 6797 6797

8 2695 12 18 15 18 257.6 0.08 0.29 970.45 2722.4 3 3599 3599 3699

9 2679 12 18 17 16 294.8 0.09 0.52 1747.39 3017.2 5 9849 9849 9849

10 6796 8 13 10 12 346.8 0.10 0.09 311.00 3364 1 8279 8279 8279

Total
XN

i51
fti

5 3364

Iteration 3
1 8299 6 12 5 5 386

2 6779 8 7 7 5 366.8

3 6779 8 7 7 5 366.8

4 2699 12 8 5 5 343.2

5 6749 8 7 10 5 315.2

6 9899 5 6 5 5 506.4

7 6797 8 7 5 7 366.8

8 3699 11 8 5 5 352

9 9849 5 6 10 5 406.4

10 8279 6 12 7 5 337.6

Total
XN

i51
fti

5 3747:2



these complex problems, and researchers continue to modify the algorithm itself

or combine the use of the algorithm with other techniques. The description of the

GA procedure, along with the illustrative example given at the end of the chapter,

will be helpful for understanding the basics of the algorithm and its application to a

water resource problem.
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