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Abstract The climate impact studies, particularly in hydrology, often require

climate information at fine scale for present as well as future scenario. Global

Climate Model (GCM) estimates climate change scenarios on coarse spatial reso-

lution. Therefore, different techniques have been evolved to downscale the coarse-

grid scale GCM data to finer scale surface variables of interest. In the present study,

the Statistical Downscaling Model (SDSM) has been applied to downscale daily

precipitation from simulated GCM data. SDSM utilizes Multiple Linear Regression

(MLR) technique. The daily precipitation data (1961–2001) representing Tawa

region has been considered as input (predictand) to the model. The model has

been calibrated (1961–1991) and validated (1992–2001) with screened large-scale

predictors of (National Centre for Environmental Prediction (NCEP) reanalysis

data. The prediction of future daily rainfall for the study area has been carried out

for the period 2020s, 2050s and 2080s corresponding to HadCM3 A2 variables. The

calibration and validation results confirm the SDSM model acceptability slightly at

a lower degree. The results of the downscaled daily precipitation for the future

period indicate an increasing trend in the mean daily precipitation.
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6.1 Introduction

Climate is a complex system, and is very difficult to quantify its’ variables. Precip-

itation is an important parameter (variable) for climate change impact studies.

A proper assessment of precipitation for past events, and its’ future scenarios is needed

for water resources planning. Global Circulation Models (GCMs) are tools available

to simulate the ongoing and future changes in climate at global scale. GCMs are

numerical models representing the physical processes of the earth-atmosphere-ocean

system (Robock et al. 1993; Hewitson and Crane 1996; Wilby and Wigley 1997;

Prudhomme et al. 2003; Crawford et al. 2007). These models are of coarse-grid

resolution, and of high accuracy at large spatial scales (Bardossy 1997; Ojha

et al. 2010; Hassan and Harun 2012). However, impact studies by hydrologists and

water resources planner require local/regional-scale hydrological variability to repre-

sent local climate phenomena. Hence, different approaches are evolved to downscale

the coarse-grid scale GCM data to finer scale surface variables in last few decades.

Such methods include canonical correlation analysis, multiple linear regressions,

artificial neural networks and support vector machines (Murphy 2000; Lall

et al. 2001; Huth 2002; Aksornsingchai and Srinilta 2011; Ghosh and Mujumdar

2006; Raje and Mujumdar 2009; Ghosh 2010; Kannan and Ghosh 2010; Raje and

Mujumdar 2011; Hashmi and Shamseldin 2011; Kodra et al. 2012). Recently, down-

scaling of precipitation has foundwide utility for scenario generation on different time

scales. SDSM is one of the statistical downscaling tools that implement the multiple

linear regression model, and provides scenario of daily surface weather variables

under the present and future climate forcing. The tool also performs ancillary tasks of

data quality control and transformation, prescreening of predictor variables, model

calibration and validation, scenario generation, statistical analysis and its representa-

tion of climate data (Wilby and Dawson 2007).

The objective of this study is to understand and utilize Linear Multiple Regression

(MLR) technique to downscalemeandaily precipitation, both for present and future, for

crop planning over a command area corresponding to HadCM3A2GCMdata utilizing

SDSM model. The running paper is subsequently structured as follows: Sect. 6.2 pro-

vides a brief description of the study area, followed by discussion on data used in

Sects. 6.3 and 6.4 describes the procedure to screen predictor variables for downscaling,

and the proposed methodology for development of the regression based model for

downscaling precipitation for the command area. Section 6.5 presents the results with

discussion, and finally, Sect. 6.6 provides the conclusions drawn from the study.

6.2 Study Area

Tawa command is spread over in an area of about 5,273.12 km2 falling in the district

of Hoshangabad, Madhya Pradesh, India. It lies between 22�540 N to 23�000 N
latitude and 76�4570 E to 78�450 E. The area is characterized by a hot summer and
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evenly distributed rainfall during the southwest monsoon period. The temperature

starts rising from beginning of February and peak is reached in the month of May

touching the mercury at 42 �C (Normal). The winter season commences with

November and temperature dips to 7.2 �C in the month of December. The relative

humidity during summer is low in the month of April i.e. about 18.1 % and is

maximum in August i.e., 86.7 %. The annual rainfall varies from 652 mm to

1,898 mm in the command area with average of 1,175 mm based on observations

recorded during 1961–2010. The location map of the study area is shown in Fig. 6.1.

6.3 Data Used

6.3.1 Meteorological Data

The daily precipitation data were collected from India Meteorological Department

(IMD), Pune for the periods 1961–2001. The daily data were converted to monthly,

seasonal and annual time scale before analysis is done.

6.3.2 Reanalysis Data

The daily observed predictor data (re-analysis data) of atmospheric variables,

derived from the National Center of Environmental Prediction (NCEP) on 2.5�

latitude � 2.5� longitude grid-scale for 41 years (1961–2001) are obtained from the

Canadian Climate Impacts Scenarios (CCIS) website (http://www.cics.uvic.ca/sce

narios/sdsm/select.cgi).

Fig. 6.1 Location map of the Tawa command with NCEP grid (2.5� � 2.5�)
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6.3.3 GCM Data

The large-scale daily predictors of Hadley Center’s GCM (HadCM3) for HadCM3

A2 future scenarios for 139 years (1961–2099) on 3.75� latitude � 3.75� longitude
grid-scale are obtained from the Canadian Climate Impacts Scenarios (CCIS)

website (http://www.cics.uvic.ca/scenarios/sdsm/select.cgi). Among the Special

Reports on Emission Scenarios (SRES) A2, being the worst case scenario with

high emission projection in future, was considered. HadCM3 is a coupled

atmosphere-ocean GCM developed at the Hadley Centre of the United Kingdom’s

National Meteorological Service. HadCM3 has been chosen because of its’ wider

acceptance in many climate change impact studies. Further, it provides daily

predictor variables, which can be exclusively used for the SDSM model.

6.4 Methodology

The Statistical Downscaling Model (SDSM) is a multiple regression-based tool for

generating future scenarios to assess the impact of climate change. It has the ability

to capture the inter-annual variability better than other statistical downscaling

approaches, e.g. weather generators, weather typing. The model requires two

types of daily data, the first type corresponds to local data known as ‘Predictand’

(Precipitation, temperature) and the second type corresponds to large-scale data of

different atmospheric variables known as ‘Predictors’(NCEP reanalysis data and

simulated GCM based data), for downscaling. Formulating an empirical relation-

ship between predictand and predictor is central to the downscaling technique. This

can be achieved by methods, both parametric (Multiple Linear Regression) and

non-parametric (Artificial Neural Network; Support Vector Machine). The study

has been carried out using SDSM tool version 4.2.9.

6.4.1 Selection of Predictors

For downscaling predictand, the selection of suitable predictors is one of the most

important and time consuming steps during downscaling. The appropriate predictor

variables are selected through scatter plots, correlation and partial correlation

analysis performed between the predictand of interest and predictors. The observed

daily NCEP reanalysis data set for the periods 1961–2001 was used to identify the

predictors.
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6.4.2 Model Calibration and Validation

Model calibration involves development of an empirical relationship, here multiple

linear regression, between the predict and of interest and identified daily observed

predictors. Part of the NCEP reanalysis data for the period 1961–1991 is used for

model calibration, and remaining data between 1992 and 2001 for validation. Vali-

dation process enables to produce synthetic daily data based on inputs of the data not

considered during model calibration and the formulated regression model. The model

performance was evaluated based on the coefficient of correlation (R), defined as:

R ¼
X

Xobs � Xobs

� �
Xmod � Xmod

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Xobs � Xobs

� �2X
Xobs � Xobs

� �2q ð6:1Þ

where,

Xobs ¼ Observed value; Xobs ¼ Mean observed value ; Xmod ¼ Modelled value;

Xmod ¼ Mean modelled value.

6.4.3 Scenario Generation

The validated regression model is applied to generate future scenario for the region

utilizing the simulated HadCM3 A2 GCMs data. The study assumes that the

relationship between predictor and predictand remains valid under the future

climate conditions. Twenty ensembles of daily synthetic precipitation for a period

of 139 years (1961–2099) have been generated. The ensemble values are averaged

and divided into three separate time period viz. 2020s (2011–2040), 2050s

(2041–2070) and 2080s (2071–2099).

6.5 Results and Discussions

6.5.1 Selection of Predictor Variables

The selection of predictor variables is the most significant and time consuming step

in statistical downscaling. A list of predictor variables (NCEP and GCM) of a grid-

box closest to the Tawa region is presented in Table 6.1. A total of 26 large-scale

predictor variables have been considered in the initial screening process. These are

categorized into six types based on the atmospheric pressure level. The predictors

are selected based on correlation and partial correlation analysis of NCEP predictors

and observed weather variables for the period 1961–2003 in SDSM. Variables with

higher correlation coefficients between precitand (precipitation) and predictors
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(NCEP) are chosen for model formulation for scenario generation. The selected

predictors with their corresponding correlation coefficients, partial correlation and

p value are given in Table 6.2. The scatter plot between selected predictors

and observed variable are shown in Fig. 6.2. These statistics help to identify the

amount of explanatory power that is unique to each predictor. A 5 % significance

level (p < 0.05) is used to test the significance of predictor-predictand correlation.

6.5.2 Model Calibration and Validation Results

The model calibration process formulates downscaling model based on multiple

regressions between the predictand (observed precipitation) and selected NCEP pre-

dictors (Table 6.2). Since the predictand-predictor relationship is governed by wet-day

occurrence, an intermediate process in the case of precipitation, a threshold value

of 0.3 mm rainfall is considered during model calibration. Calibration (1961–1991)

Table 6.1 Name and description of all NCEP and GCM predictors

Sl No.

Atmospheric

pressure level NCEP variables Name Unit

A. 1013.25 hPa (1) MSL pressure mslp Pa

B. 1000 hPa (6) Wind speed (Geostrophic) p_f m/s

Zonal (Eastward) velocity (U-component) p_u m/s

Meridional (Northward) velocity (V-component) p_v m/s

Vorticity p_z s�1

Wind direction p_th degree

Divergence p_zh s�1

C 850 hPa (8) Wind speed (Geostrophic) p8_f m/s

Zonal (Eastward) velocity (U-component) p8_u m/s

Meridional (Northward) velocity (V-component) p8_v m/s

Vorticity p8_z s�1

Wind direction p8_th degree

Divergence p8_zh s�1

Geopotential height p850 m

Relative humidity r850 %

D 500 hPa (8) Wind speed (Geostrophic) p5_f m/s

Zonal (Eastward) velocity (U-component) p5_u m/s

Meridional (Northward) velocity (V-component) p5_v m/s

Vorticity p5_z s�1

Wind direction p5_th

Divergence p5_zh s�1

Geopotential height p500 m

Relative humidity r500 %

E Near surface (3) Specific humidity shum g/kg

Mean temperature temp �C
Relative humidity rhum %
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and validation (1992–2001) result of the model downscaling (1961–1991) of daily

rainfall is presented in Table 6.3. It can be seen that the SDSM model shows a good

agreement between the observed and computed mean daily rainfall, standard devia-

tion and variance with correlation coefficient of 0.57 and 0.50 during calibration and

validation respectively. Unlike temperature, the correlation coefficient for the precip-

itation series is at a lower side. This may be attributed to considerable variation in

precipitation with respect to time and space.

Table 6.2 Selected NCEP predictors with correlation coefficient, partial correlation and p value

Sl No. Selected predictors Correlation coefficients Partial correlation P value

1 ncepp_zas 0.374 0.128 0.0001

2 ncepp5_zas 0.320 0.089 0.0001

3 ncepp8_zas 0.344 0.062 0.0006

4 ncep_mslp_as �0.214 �0.058 0.0013

5 ncepp850as �0.239 0.056 0.0022

6 ncep_shum_as 0.174 �0.047 0.0105

7 ncep_rhum_as 0.172 0.041 0.0285

Fig. 6.2 Scatter plots between predictand and selected NCEP predictors
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Figure 6.3 highlights the calibration result of the SDSM model with good

agreement between observed and computedmean daily precipitation. The computed

variance is greater for the monsoon months (June to September). However, there is

under-estimation of average dry and wet-spell length. The validation result of the

SDSMmodel for the period 1992–2001 between observed and computedmean daily

precipitation, variance, dry-spell length and wet-spell length is shown in Fig. 6.4.

6.5.3 Future Scenario Generation

The validated Multiple Linear Regression models between the predictand and

large-scale predictors are used to generate the future downscaled data using the

HadCM3 GCM data for A2 scenario. The result of the downscaled daily rainfall for

different periods is shown in Fig. 6.5. The figure clearly indicates an increasing

rainfall trend in the corresponding months for different periods.

Table 6.3 Comparison between daily precipitation (Observed) and daily precipitation (Com-

puted) during model calibration and validation

Type Period Mean SD Var Correlation, r

Model calibration Precp_61-91_Observed 3.02 11.70 136.88 0.57

Precp_61-91_Computed 3.59 7.24 52.47

Model validation Precp_92-01_Observed 3.31 14.46 209.01 0.50

Precp_92-01_Computed 3.44 6.69 44.81

Fig. 6.3 Calibration output of SDSM model downscaling (1961–1991) for daily precipitation
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Fig. 6.4 Validation output of SDSM model downscaling (1992–2001) for daily precipitation

Fig. 6.5 General trend of mean daily precipitation corresponding different scenarios

6 Multiple Linear Regression Based Statistical Downscaling of Daily. . . 81



The annual precipitation corresponding to future emission is presented in

Table 6.4. The result clearly indicates an increase in trend of annual precipitation

for successive scenarios. In the 2020s, the simulated annual precipitation is about

200 mm higher than the mean annual precipitation for the present scenario which

stands at 1,129 mm. Similarly for 2050s and 2080s, the annual mean precipitations

are 1,515.92 and 1,692.70 mm respectively.

6.6 Conclusions

SDSM is one of the downscaling tools widely used to downscale simulated GCM

data into local fine-scale data. In the present study, multiple linear regression based

SDSM model has been used to downscale daily precipitation data corresponding to

HadCM3 A2 GCM (1961–2099). The model calibration and validation has been

performed using NCEP reanalysis data for the duration 1961–1991 and 1992–2001

respectively. The calibration and validation results indicate that the model can be

used in the Tawa region to downscale climate variables at different temporal and

spatial scale. Daily precipitation for the region has been predicted for the study area

for the periods 2020s (1911–2040), 2050s (2041–2070) and 2080s (2071–2099).

The study indicates an increasing mean daily, monthly and annual precipitation

suggesting a wetter climate in the future.
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