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ABS tRACT 

Reach transmissivity for a canal or stream is a site specific 

constant which depends on canal geometry and aquifer boundary. The 

reach transmissivity, when multiplied with depth to water table position 

from the water surface in the canal measured at soame observation ploint 

in the vicinity the canal, gives the seepage rate. In the present report, 

the reach transmissivity for various sub-soil conditions have been 

reviewed. Analytical solution for-reach transmissivitY pertaining to a 

canal embeded in a porous medium underlain by a highly permeable layer, 

has been obtained using Zhukovsky'sfunction and conformal mapping. 

-Results have been presented for various position of water table above 

the highly permeable layer. The active seepage zone is under the canal and 

the phreatic lines merge with the water table within a distance of thrice 

the width of water surface from the centre of the canal. 



1.0 INTRODUCTION 

Prediction of seepage from canals and stream is based on the 

hydraulic properties of soils of which the flow domain is comprised of and 

the prevailaing boundary and the initial conditions. Seepage from a body 

of-surface water under a steady state condition can be estimated by 

solving Laplace equation satisfying the pertinent boundary conditions. 

The study on seepage from canals and streams under steady state conditions 

are exhaustive and well documented. However, the unsteady seepage problems 

being complicated have been solved for idealized boundary conditions such 

as: exchange of flow between a fully penetrating river and an infinite 

homogeneous confined aquifer. For a stream or canal hydraulically 

connected with an aquifer, it has been assumed that the exchange flow rate 

is linearly dependent on the potential difference between the aquifer and 

the stream. The constant of propertionalaity has been designated by Morel 

Seytoux et al (1973) as reach transmissivity. The reach transmissivity for 

particular flow boundary could be derived assuming a steady state 

Condition but it can be used to predict seepage under unsteady state 

situation as unsteady states cana be assumed to be succession of steady 

states. In the present report, the reach transmissivity, for various 

hydrogeological condition, available in literature has been enlighted. 

Expression for reach transmissivity for a partially penetrating canal in a 

,homogeneous aquifer underlain by a highly prervious layer at a finite depth 

has been derived. 
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2.0 REVIEW 

There are three basic aconditions to which the natural profiles 

of soil hydraulic conductivity can be reduced for theoritical treatment 

of seepage flow system (Bouwer, 1965). These are: 

The soil in which the channel is embeded is uniform and 

underlain by a less permeable (considered as impermeable 

material) soil, 

The soil in which the channel is embeded is uniform and 

underlain by a more permeable (considered as infinitely 

permeable) soil, 

ii) The soil in which the chananel is embeded is of much lower 

hydraulic conductivity than the original soil for a relatively 

short distance normal to the channel perimeter (clogged soil, 

semipermeable linings). 

The geometry of a channel cosnstructed in an aquifer conforming to 

situation 1 is shown in Figure 1. The channel is hydraulically connected 

with the aquifer. For a specific case in which the channel is rectangular 

and the bottom of the chananel extends to the impermeable layer, the seepage 

loss is given by (Bouwer, 1965b). 

Q = 2 K(Hw  - 0.5D)/(L - 0.5wb)Dw ... (2.1) 

Half of the above seepage quantity enters to the aquifer to 

he right of the canal and the other half enters to the aquifer in the 

left. The reach transmissivity for a fully penetrating canal of reach 

length It  is 

r
r 
 = 2KLr(Hw  - 0.5Dw)/(L - 0.5wb) ... (2.2) 

2 



Impel-mathle 

FIGURE I. GEOMETRY FOR CHANNELS IN SOIL UNDERLAIN BY IMPERMEABLE 
MATERIAL 
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dividing line being at a distance 

w + H + D. 
w 1  
2 L1 ... (2.5) 

L can be regarded as the distance of the observation well where the 

drawdown 'Dw' is observed. 

An approximate expression for seepage from a chananel shown 

in Figure 1 is given.by  (Bouwer, 1969) 

= K2(Hw+Di  - 0.5Dw)/(L - 0.25wb 
 - 0.25ws

)D ... (2.3)w  

Hence,the approximate expression for rach transmissivity for a canal 

conforming to the configuration depicted in Figure 1 is 

t
r 
 = 2KLr(Hw+Di  - 0.5Dw)/(L - 0.25w

b  - 0.25ws) ... (2.4) 

The above expression is not exact and the error in rr will increase 

with increasing Di. 

The error in equation (2.4) is due to the curvature and 

divergence of the stream lines in the vicinity of the chananel. To 

atcount for the extra head losses in this zone, Dachler (1936) divided 

the flow system on the basis of model studies into a region with curvili-

near flow (region I) and one with Dupuit Forchheimer flow (Fig. 2), the 

from the centre of the canal. The flow in region I was analysed with an 

approxialmte equation for the potential and the stream line distribution 

.under a plane source of finite width. A factor 'F' has been determined 

to estimate flow in region I as 

= 2FKAH ... (2.6) 

where AH is the vertical distance between the water surface in the canal 

and the groundwater table at the dividing line between the two flow 

regions. Values of F given by Dachler are presented in Figure 3. 

4 



FIGURE 2. DIVISION OF FLOW SYSTEM IN REGIONS I AND II FOR DACHLER'S 
ANALYSIS 
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The flow in region II has been expressed with Dupuit 

,Forchheimer theory as 

12 
QII [D. + H - 0.5AH - 0.5Dw] 1 w ... (2.7) 

Since it is requaired to calculate the seepage for a given value of 

Dw at a distance L1 + L2 from the chananel centre,AH will not be known 

initially. AH is found by trial error which satisfies the condition 

= %I. The reach transmissivity for a canal of length Lr  will be 

given by 

2KLr r
r L

2 
[1 i'4[11-][D,4- H_ - 0.5AH - 0.5Dw] ... (2.8) ww  s w 

Bouwer has applied Ernst's approach to analyse seepage from a 

canal constructed in a porous medium of finite depth underlain by an 

impervious layer. Following Ernst's approximate solution for potential 

distribution pertainaing to flow to a line sink, the head loss, h
r, due 

to radial flow in the vicinity of the canal has been expressed by 

Bouwer as 

D. +H 
hr  - 14:  loge( lw  w  ) ... (2.9) 

The head loss, hh,  due to horizontal flow in the region away from 

the canal has been expressed by Bouwer as 

h - Q h 2K 

  

... (2.10) D. + H - 0.5D w w  

Since Dw  = hr  + hh, Bouwer dhas combined equations (2.9) and (2.10) 

to obtain the relation 
KDw 

- 1 r 0.5L  ir  log[(Di+Hw)/wp] Lp
i
+H
w 
 - 

... (2.11) 

6 
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rr 1 0.5L  
iloge[Mi+Hw)/wpi [ Di+Hw  - 0.5D1  

r ... (2.12) 

The reach transmissivity for a canal reach of length Lr  from equation' 

(2.11) can be obtained as 

Using a simple potential theory Morel Seytoux et al (1979) have 

derived the following expression of reach transmissivity for a canal 

embeded in a porous medium underlain by an impervious layer: 

TL 0.5w + e 
r r - ... (2.13) 5w +0.5e 

in which 

L = length of a canal reach, 

T = transmissivity, 

w = wetted perimeter of the canal, and 

e = saturated thickness below the canal bed 

Herbert (1970)has related the flow from a partially penetrating 

river having semicircular cross section (Fig. 4) to the potential 

difference between the river and in the aquifer below the river bed. 

The expression is given by 

Qr nLr  K (hr-h0)/loge(0.5m/rr) ... (2.14) 

in which 

Lr length of river reach, 

hr potential at the river boundary, 

ho potential in the aquifer below the river bed, 

saturated thickness of the aquifer, and 

rr radius of the semicircular river cross section. 

The reach transmissivity which could be obtained from equation (2.14) is 

7 



7 K/log (0.5m/r r ) 
r e r  ... (2.15) 

For a rectangular chananel shown in Fig.5,Aravin (1965) has derived 

the following expression for flow to the chananel: 

K(H+h)(H-h) + K(H - h)  

L - - L 1 
- log

e 
 sin e B  n h 2 

B 

U) 2T .if  

Thus reach transmissivity for a canal reach of length L
r 
 could 

be written as 
KLr(H+h) KL 

r - r ... (2.17) 
r L - 0.5B 0.51 1 . TrB T  - TT  logesin h(47-) 

Seepage flow from a canal embeded in a porous medium of finite depth 

underlain by a highly pervious layer (Figure 6), has been analysed for 

simplified canal geometry by Hammad (1959). The analysis is valid 

for the situation in which the piezometric head in the underlying highly 

pervious layer is very near the canal water level. According to Hammd 

2 K
1 ... (2.18) 

in which 

Ki  and Ki are the complete elliptic integral of the first kind 

corresponding to modulus ki  and comaplementary modulus WI  respectively. 

The moduli are defined as 

w' 
= 0.5 [-Y-- 

ki = (1 - k4)1/2  

The other constants are: 

2H'2)1/2
] 

C = 

H' - tan [ 
2(1-i  1.4:1)  )] for H < D w p w p 

8 

... (2.16) 

= KDw  K, 
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and 
1TW

s w' - 2 tan h [ 4(H +1 ---,- 1 for H < D 
s D w p• w p 

The reach transmissivity for a canal reach of length lr  can be 

written as 

KL 
rr = r  

2K1  

K' - C 
... (2.19) 

Aravin has analysed the seepage from a canal which has very shallow 

water depth in it. The water table lies above the highly permeable layer 

as shown in Fig. (7). The analysis has been carried out using 

Zhukovsly's function and conformal mapping. The seepage quantity is 

given by 

= K(T - K)Ki/K1 ... (2.20) 

in which K1 
is the complete elliptic integral of first kind with 

- (b + 2  ) 
mudulus k - exp( 211 ), KI is comaplete elliptic integral of 

K 1  

first kind with modulus k', where k' is given by 

k' = 41-k2) 

when k is very near to zero 

Q = K(T - H)(b + .882H)/T 

Thus 

Pr  = KLr(b + .882H)/T ... (2.21) 

The case of seepage from a canal in a two layered soil 

(Fig.8) underlain by an impermeable layer has been analysed by Ernst 

(vide Bower, 1969). Following Ernst's solution, the reach transmissivity 

pertaining to a two layered soil system can be written as: 

10 



FIGURE 7. SEEPAGE FROM A CANAL WITH SHALLOW WATER DEPTH EMBEDED IN A 
POROUS MEDIUM UNDERLAIN BY A HIGHLY PERMEABLE LAYER 
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... (2.22) 
0.5K1L .1  a (H + D1) 

+ ±ln w  
K1(D1+Hw - 05Dw) + K2D2 7 W

p 
 

in which K1  and 1<2  are permeabilities of the top and bottom layer 

respectively. The parameter a given by Van Beer (vide Bouwer, 1969) 

is shown in Fig. 9. 

12 



3.0 PROBLEM DEFINITION AND METHODOLOGY 

3.1 Statement of the Problem 

Figure 10(a) shows a schematic cross section of a canal in Z 

plane. A highly pervious stratum is underlying at a depth Di  below the 

canal bed. The depth of water in the canal is H. The bed width of the 

canal is 2b'. The water table in the aquifer is at a depth Dw 
 below the 

level of water in the canal. It is required to find the quantity of 

seepage from the canal to the aquifer. 

3.2 " Methodology 

The pertinent complex potential plane w, where w =t + iT, is 

shown in Figure 10(b);  in which T is the stream function and t is the 

velocity potnetial function defined as 

t = -K (-2- + y) +c 

In equation 1, 

K = coefficient of permeability, 

p - pressure, 

v
w = unit weight of water, 

y - elevation head, and 

c = constant which has been takend as zero. 

At large distance from the canal the water table is at a depth 

D
w below the water level in the canal. Therefore, the potential at large 

distance from the canala is -K(H - D
w). Since the underlying layer is 

highly pervious, the interface of the pervious and highly pervious 

layer cana be regarded as an equipotential line. The potential along the 

interface is assumed to be -K(H - D
w). 

14- 
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The. flow domain consists of phreatic line which is curvilinear 

and unknown a priori. Conformal mapping can be applied to analyze the 

unconfined flow after transforming the flow domain to Zhukovskey's 

plane. The pertinent 0 plane, in which 0 = Z + = (x - + y), 

is shown in Figure 10(c). The locus of DE is not known though the 

locations of points A, E are known. In Figure 10(d), the idealized e plane 

plane has been shown. According to Schwarz-Christoffel transformation the 

conformal mapping of the polygon,  in 0 plane on to the upper half of the 

auxiliary t plane (Fig. 10(e)) is given by (vide Harr, 1962) 

. (e - t? dt 

6 =M a 
0 t (1-t) (8 - t)2  

the vertices C,D,E,A,B being mapped onto points - o, e, 1, 

respectively on the real axis of the t plane. M is a comaplex constant 

to be evaluated. The lower limit of-integration determines the other 

constrant N. For point D, t = 0 and e = b - q/K. In equation 2, as the 

lower limit of integration has been chosen to be zero, accordingly the 

constant N = b - q/K. For point E, where e = b'-q 1 /K-iH and t=e 

equation (2) becomes 

bl_ _ # m  fe (e-t)?dt  

ta(1-t)1/2(0 -t) 

Equating the arguments of terms on either side of equation (3) 

[(b-b'- 2  + 2L)2  K K a 
(e-t? dt (4) 

t (1-0 (0 - 

For ests 1 , the relation between e and t planes is given by 

m (e-tf4 dt b' - - iH .,. (5) 
e t(1-t)(5 - t)-2  

15 
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For point A, where Ni and e = -iH, equation (5) becomes 

1 
+ - M I 

(e-Orldt  

0(1-02  (8 - t)2  

Equating the arguments of terms on either side 

1 (t-e )a  dt  
b' _2_  - IMI f ... (7) 

K  
e t (1-02(8 - 0 2  

For 15. t 58 the relation between0 and t planes is 

t' 
(e-tft dt 

i 
 

8 = M I iH ... (8) 
1 el(1-0103 - 01  

For point B, t=8 and 8 - - i(H+Di-Dw). Making use of this condition 

in equation (8) and equating the argument of terms on either sie the 

following relationship is derived 

IMI f 
(t-eft dt  

1 ta(t-0(8 - t)1  

Form equation 2 

M(e-Oadt  
-11 Ci  t (1-0 2  (0 - 

t Reir Let =  

dt = Reir  idr 

when one moves around point C in t plane at infinite there is a jumap 

equal to i(H+Di-D) in 9. 

Therefore, 

Jr 
= limit f 

11+03 o (Reirft(1-Reir)(8-Reir) 

= (+) (-1S1 i M7 
H+D.-D 

or MI - 
w 

... (10) 
Jr 

17 
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The conformal mapping of the polygon in the complex potnetial w 

plane to upper half of the t plane is given by 

t' 
= dt  

° t1(1-0 ( - tY 
- KH + iq ... (11) 

2 1 = F(sin -1 , - KH + iq 

in which M' is a constant. 

For point A, w - KH and t=1. Using this relation in equation (11), the 

following relation is obtained: 

2M1 . -iq 1. 7 ‘ ... (12) F kr-,/ F) 

in which F631  ,A1) is complete elliptic integral of first kind with 2 ' 0 

modulus equation to ,/ 

For point E, t = e, and w -KH + iq'. Using this relation in 

equation (11) 

2M' - iq' - iq - 
is 

F(sin1 v'e
113  
21) 

'  

For 1st 5 0, the relation between w and t planes is given by 

t,  dt  w = m' I , KH .. (14) 
t2(1-0 O.- 0 

For point B, t = 0, and w = -K(H-Dw). Making use of this relationship 

in equation (14) the constant, M' is found to be 

-1CD 
M' _ w ... (15) 

2 F(  IT )  7,  0- 1  ) 
v'$ 2 " 

Substituting for M' in equation (12) the expression for seepage loss 

from the canal is found to be 

18 



- F(77 r 2 1  )/F(71- /( 8  - 1H y' 

The seepage loss through the bed of the canal is found from 

equation (13) to be 

KD F(I,L-1) KDw /1-) w 2 S s 

F(1-r ) ' 

From geometry of Figure 1(d) 

H 
am = tan-1 ( ) 

b + 91— S. _ bl 
K K 

The locus of the phreatic line is determined as follows: 

Fort t'< 0, 0 = x - a and K 

t' 
0 = M f (e-t)x dt  

o ta  (1-01/20 -01/2  

(19) 

Hence, 

t' 
x =- b+ 01 [ (e-tia dt  

et ... 
o Ft) (1-02(0 -0 

(20)
'  

Values of t' are negative for the phreatic line, subsituting 

t = -T in equation (20) 

(e+T? dT ... (21) x = b + 01 f 
Ta(l+T)1/2(0+T)-1/2  

For t=t' <0, w = -Ky+q and 

_mi f dt  - KH+iq 
t' t1/2(1-0( 0 -02  

... (22) 

19 
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Hence, 

y = H - IMI 
dt  

ti 
(a —t) 2 0.—da(o—t) 

... (23) 

Or 
e F(sin-1 (1.t  ),v/( $ 1   )) 

S 
H-D

w 
13- 1  ) ) 

Thus for a given balue of t', x and y co-ordinates.  of phreatic 

line can be known from equations (21) and (24) 

20 
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4.0 RESULTS AND DISCUSSIONS 

Let the integrals 

(e-t)dt  
k 0 ta 0.-t)%(13 - t) 

1 t-e dt  

e 
- A2 ' 

t(1-t)1/2 ($_t)½ 

and 

(t-e? dt - A3 ' 
taft-1)1/2(8 - 01/2  

Substituting for M in equation (9) and dividing terms on either 

side by H 

D. D A3 
D. D

w 1 w  
[1 + 

7 H ' 

 

Or 

D. A3  

-h- - 

  

... (25) 

  

Considering equation (18) 

H cot ar 

Using this relation in equation (4) the following relation is 

obtained: 

D. TT 

Al 
cosec 'a TT 

D
w 

 
- 1 + —Fr ... (26) 

Equating equations (25) and (26) 

21 



A3  
n - A

3 A
1 

 cosec an - 1 ... (27) 

Equation (27) indicates that if e and B are assigned values, then a 

has to be determined by an iteration procedure. Thus the three 

parameters e,a , and a cannot be assigned independent values . For 

numerical calculations, e and S are assumed and a is obtained by 

iteration procedure using equation (27). It may be noticed that Ai  

and A
3 are also function of a With assumed valaues of e,a and D

w, 

q/K and ql/K are evaluated using equation (16) and (17) respectively. 

Using equation (7) and (4) 

A
2 

[(b'- b + - A
1 

Using the relation given at equation (18) and equation (28) the 

following relation is obtained: 

 

b' - cc
< 

 

  

A2 ... (29) 

    

    

[(H cot orr )2  

  

For the assumed values of e,5 , and iterated valaue of a , b' is 

obtained from equation (29) since all other terms are known except b'. 

The width of the canal b is calculated from equation (18) and the 

depth to highly permeable layer, Di, is calculated marking use of 

equation (26). 

The seepage rate for various canal configurationa and for 

various depth to the highly permeable layer, and the reach transmissivity 

per unit length of canal areS presented in Table 1. The implicit nature 

22 
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of the equations prohibits to present the variation of seepage quantity 

with respect to one of the variables keeping other variable constant. 

If the depth of water in the canal is small, the seepage quantity 

estimated by the present analytical method compares well with the seepage 

quantity calculated by Aravin's solution. For example if b = 28.04.m, 

D
w
=25m,H=0.01m,D.=25.03m, the seepage quantity, q, obtained from 

the present analaysis is 28.02K. According to Aravin's solution the 

seepage occurring from half of the canal section is 28.017K. Hammad has 

analysed seepage from canal for small valaue-of D. The seepage 

quantity, q, estimated by the present method compares well with that of 

Hammad's solution for small value of Dw
. For example if b = .2635m, 

b' = .1820m, Dw  = 0.1m, H = 0.1m, D
i  = .405, the seepage quantity, q, 

obtained from the present analaysis is 0.1165K. The corresponding seepage 

quantity estimated using Hammad's solution is 0.1187K. 

The loci of the phreatic line for various canal geometry and 

for different depths to the highly permeable layer are presented in 

Figure 11. Because of the existence of the draining layer, the 

phreatic linesmerge with the water at a finite distancesfrom the 

caval. 
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5.0 CONCLUSION 

An analytical solution for estimating seepage from a canal embeded 

in a porous medium of finite depth underlain by a highly permeable layer 

has been obtained using Zhukovsky's function and conformal mapping for any 

position of water table above the highly permeable layer. The depth of 

canal, bottom width of canal, and width of canal at the water surface have 

been preserved in the analysis. For small depth of water in the canal, the 

results obtained from the present analysis compares with the result given 

by Aravin. If the difference in potentials at the canal surface and in the 

aquifer at large distance from the canal is small, the seepage quantity 

estimated by the present analysis compares with Hammad's solution. The 

reach transmissivity has been quantified for a canal which is underlain 

by a highly permeable layer at a finite depth. The locus of phreatic line 

has been determined. The phreatic linesmerge with the water table at 

finite distancesfrom the canal because of the presence-cf the highly 

permeable layer. 
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