DESIGN FLOQOD ESTIMATION FOR NARMADA SAGAR PROJECT USING

PARTIAL DURATION SERIES

SATISH CHANDRA

DIRECTOR

STUDY GROUP
S.M.SETH

N.K.GOEL

NATIONAL INSTITUTE OF HYDROLOGY
JAL VIGYAN BHAVAN
ROCRKEE-247667

1985-86

Cs-11



1.0

2.0

3.0

4.0

5.0

6.0

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

INTRODUCTION

REVIEW

STATEMENT OF THE PROBLEM

DESCRIPTION OF STUDY AREA

AVAILABILITY OF DATA

METHODOLOGY

ANALYSIS

RESULTS

CONCLUSION

REFERENCES

CONTENTS

PAGE

ii

iii

10

1"

18

21

28

29




FIGURE

LIST OF FIGURES
TITLE
Relationship between ratio R, of sampling variances
Q{T)a and Q(T)p based on exact theoretical approach
and the return period T for given A
Relationship between ratio R2 of sampling variances
Q(T)a and Q(T)p based on approximate theoretical

approach and the return period T for given A

PAGE

- 26

27




TABLE

LIST OF TABLES
TITLE
partial Duration Series with Date and Time
variation of values ),B and(qO+B In} Jwith
Truncation level 9, for the Partial Flood Series
Annual Peak Stage and Discharge Series at Mortakka

Results of Frequency Analysis

ii

PAGE

14

17

22

24




ABSTRACT

The report highlights the details of the study for the estimation
of flood magnitudes for different return periods for Narmada S5agar
dam(India) wusing partial duration series. The data of hourly stages
and discharges at Mortakka located at 40 km downstream of proposed
dam site have been used.

The comparison of the efficiencies of annual and partial flood
series has been given on the basis of exact theoretical approach and
approximate theoretical approach. On the basis of exact theoretical
approaoch it is seen that the partial flood series estimate of T year
flood Q(T)} alwaysl for any value of) ) has a smaller sampling variance
than that of the annual flood series for the return period T less than
11 years. For the whole range of return periods the partial flood series
estimate of Q(T) has a smaller sampling variance than that of the annual
flood series, if the average number of peaks per year (} ) is at least 1.65.

On the basis of approximate theoretical approach, it is seen
that in the fange of A studied (1.0 to 2.437) the sampling variance

of annual flood series is lesser than that of partial flood series.
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1.0 INTRODUCTION

The basic requirement of flood frequency analysis is to know
the probability with which a flow is equalled or exceeded during the
stated design life of a particular project. The three approaches which
are generally used for frequency analysis are based on the analysis
of (i) time series (ii) the peaks over a threshold or partial duration
series, and (iii) the annual maximum series.

In the time series model, the flow hydrograph is considered
as a time series of daily flows. The time series of mean daily flows
closely represents instantaneous peak £flows on large catchments but
on small flashy catchments this would not be necessarily so, since
the flood peaks would be somewhat smoothed out by daily averaging.
A time series model may be written as the sum of deterministic and
stochastic components. The deterministic component includes trend and
periodicity. This type of model allows both estimation of parameters

and model formulation to proceed together through the three components

beginning with trend and finishing with the stochastic effect. Exam-
ples of the use of such a model on United States data for mean daily
flows have been given by Quimpo (1967), and on British data by Hall
and O'Connell(1972}.

The partial duration series model concerns the distribution
of the number and magnitude of peak flows that exceed a threshold.
Such peak flows are said to constitute a partial duration series.
The threshold level may be raised or lowered so as to involve a desir-
able number of peaks per year ( A ). Most of the models proposed in

literature for partial duration series assume Poisson distribution




for number of exceedances and exponential distributions for magnitude
of exceedances.

Annual maximum model is a special case of time series model
in which the unit of time is one year and the flow representing that
time is the highest flow during the year. In practice, this time
series is statistical rather than stochastic, since there is no depe-
ndence between successive peaks which may be considered as identically
and independently distributed. B&Annual maximum approach has gained
popularity because of application of theory of extremes by Gumbel
{1941-45).

The classical dilemma in flood fregquency analysis is whether
to use annual maximum model or partial duration series model. The
most frequent objection for the use of annual maximum model is regar-
ding its use of only one largest flood for each year. In certain
cases, the second largest flood in a year which the annual flood
series appreach neglects, may outrank many annual floods of other
years. The maximum annual discharges in dry years of some rivers
in arid or semi arid regions may be so small that calling them floods
may be somewhat misleading. Another shortcoming of annual flood series
approach is that only a small number of floods is considered. The
estimate of higher moments like coefficient of skewness of historical
flood series will not be reliable in case of annual flood series
with small sample size.

On the other hand, partial duration series model contains
more floods than annual maximum model "and as such the estimate of
parameters of annual flood distribution from the partial flood series
would be subjected to lesser uncertainty. Secondly, the theoretical

expressions for annual flood distribution obtained through characte-




ristics of partial flocds have physical relevance and often are exact

distributions rather than asymptotic (Viraphol et.al 1978).




2.0 -REVIEW
The earliest approaches for the estimation of future floods
in a drainage basin were based upon simple empirical formulae involving
the correlation of past peak discharges with various parameters.
The most popular of these parameters were the area, width and length
-of the basin.

' Statistical methods were introduced in hydrology about” sixty
years ago. The main objective of these methods is to fit theoretical
distributions to flood data. The mean, the standard deviation and
the coefficient of skewness of the flood magnitudes are used to fit
the parameters of the distribution function. The work on partial
duration series model started with the theory of Langbein (1949).
Langbein's theory relates recurrence interval of annual maximum series
and partial duration series as per the following eguation.

: Ta = 1/[1—exp(1-T/Tp)] caef 1)

where,

Ta is the recurrence interval of annual maximum series and

Tp is the recurrence interval of partial duration series.

Borgman (1961) gives a simplified technigue for computing
the probability that a near extreme occurrence of a physical phenomenon
will exceed a selected type. Further Borgman (1963) discussed the
return period concept with other risk criteria such as (i) encountered
probability (ii) distribution of waiting time (iii)} distribution
of total damage (iv) probability of zero damage, and (v) mean total
- damage.

Shane and Lynn (1964) developed a probability model based
on the time independent Poisson process and theory of sums of a random

‘number of random variables for the use in analysis of flood data.




The first attempt to develop a theory by Todorovic (1970),
Todeorovic and Zelenhasic (1970) was based on streamflow partial duration
series. The series of flows in a partial duration series within
an arbitrary but fixed time interval is represented by a random number
.of random variables. The time aependent Poisso.n proces;s was used
to describe the distribution of the random number of exceedances.
It is applied to streamflow by further assuming that the individual
exceedances form a sequence of identically independent random variables
which are represented by an exponential distribution. Todorovic
and Zelenhasic (1970) applied this model to 72 year record of the
Susquehanna river at Wilkes-Bar¥e, Pensylvania. Todorovic and Rousselle
{1971) extended the work of Todorovic and Zelenhasic (1970) by realizing
that for a time interval equal to a year the assumption for exceedances
being identically distributed is unrealistic, since different storm
types can produce different fiood characteristics from one season to
anothe_r. Accordingly, they derived a distribution function for the
largest flood peak for the case where two or more different exceedance
distribution functions occur within a time interval. The results
were applied to the 72 year record of the Greenbrier river at Aldergen,
West Virginia. Todorovic (1971) used the above method together. with
the mathematical assumptions of Todorovic and 2Zelenhasic (197C) to
derive another important property of the extreme flood, namely, its
time of occurrence within a selected time interval. The expression
for the time of occurrence of the extreme flood obtained by Todorovic
(1970) is exact.

Todorovic and Woolhiser (1972) applied the above theory to
two rivers of United States. Gupta, Duckstein and Peebles (1976)

extended the work of Todorovic and Woolhiser{1972) and developed. the




expression for the joint distribution function of the largest flood
peak and its time of occurrence. They derived distribution function
of the time of occurrence of the largest flood for the Misjsissippi
river . St.Paul, Minnisota, énd Licking river, Catawaba, Kentucky.

Todorovic (1978a) presented stochastic models of extreme
flows and their application to design. Todorovic (1978b) discussed
the two approaches i.e. annual flood series and partial duration
series for flood frequency analysis. viraphol and Yevjevich (1978)
estimated the probability distribution of maximum annual flood peak
by using a combination of probability distributions of the number
and the magnitude of flood peaks., that exceededa selected truncation
level. They compared the efficiency of annual flood series model
and partial duration series model based on the sampling variance
of the estimates. By using the generated samples of daily flows
the efficiency of estimated annual flood peaks of given return periods
rwas also investigated by using both the annual and the partial
flood peak series.

The models available for partial duration series differ from
each other only in the way in which the number of peaks over the
threshold each year is treated. These models vary from the simplest
in which a constant number of exceedances A is assumed to occur
each year to one where the rate of occurrence of peaks and distribution
of peak magnitudes vary with season in a year. A good description
of these models has been given in Flood Studies Report, Vol.1l, NERC,
1975. Detailed review of partial duration series models has been
given by Seth and Goel, 1985.

The practitioners often remain in dilemma whether to use

annual maximum model or partial duration series model as the recurrence




intervals calculated from two approaches are not mutually comparable.
Langbein (1%49) gave a solution to this problem by deriving a relation-
ship between the two recurrence intervals i.e. recurrence intervals
given by partial duration series and annual maximum series. Chow (1950}
discussed Langbein's formula and pointed out that the difference between
Ta and Tp evaluated by relative difference (Ta - Tp)/Tp is less thaﬁ 5%

for Tp > 10 years and greater than 10% for ﬂk)éi 5 years. In ordinary
engineering practice a five percent difference is tolerable and that
the two methods give essentially identical results for intervals
greater than about ten years. The development in the field of partial
duration series freezed to some extent after Chow's discussion.

But it again gained popularity with the work of Todorovic (1967 onwards)
for the development of more and more sophisticated models for partial
duration series and Cunnan (1973). Cunnan{1973) gave a method for
_comparing the statistical efficiency of the estimate of T year flood by two
approaches. The present study is an attempt in the direction of compa-
ring statistical efficiency of the estimate of T year flood by two

approaches.




3.0 STATEMENT OF THE PROBLEM

The objective of the present study is to estimate flood magnitu-
des for different return periods (100, 500, 1000 and 1000 years) using
partial duration series approach. The results of frequency analysis
using annual peak discharge series have been presented earlier (Goel
and Seth, 1985). The efficiencies of annual and partial flood series

models in the estimation of T year flood have alsc been compared.




4.0 DESCRIPTION OF STUDY AREA

River Narmada is one of the major rivers of India. This rises
in the Amarkantak plateaﬁ of Maikala range in fhe Shaddl district of
Madhya Pradesh at an elevation of 1057 meters above sea level. Narmada
Sagar dam is a major project‘on river Narmada in Madhya Pradesh proposéd
to be located upstream of Mortakka site at about 22%10° latitude
and 76%10° longitude. The total cost of project is expectéd to be
Rs.1393 c¢rores (about 1200 million US Dollars, CBIP 1984). The dam is
expected to be completed by 1994 A.D. and canal system by 2004 A.D.
The catchment area of river Narmada upto Mortakka is 67170 km2 and

that upto Narmada Sagar is 61642 kmz.




5.0 AVAILABILITY OF DATA

The data of hourly stages and daily discharges was available
from 1951-1982. The stage-discharge relationship was developed specially
. for the higher range of stages. The information obtained from river
cross section was also used in identifying the realistic values of

parameters of the relationship. The stage-discharge relationship, thus

developed is as follows:

Q= 317.18 (8 - 155.2) " % 2
where

Q Discharge in m3/sec

H Stage in meters above mean sea level

The above stage discharge relationship has been used to convert

peak stages to corresponding discharges.

10




6.0 METHODOLOGY
6.1 Model Used
The model used in present study acknowledges variation between
years in the number of peaks but ignores variation between seasons.
The number of peaks in a year is considered to be random variable
with mean ), . The distribution of the number of exceedances in a year
is assumed as Poissonian and the distribution of the magnitude of the
exceedances as exponential.
6.1.1 Derivation of flood magnitudes for the model
Since, the distribution function for magnitude of exceedances
[H(X)] is exponential, as such
H(X) = 1 - exp { - XB ) e (3)
Since, the distribution of the number of exceedances [P(Ek)] is Poiss-
onian, therefore,
-3 k
P(E) =e A /k! co ()
The distribution of largest exceedance in a year will be given by
@
FiX) = 3 A B(E))] . (5)

k=0
by putting the values of H({X) and P(Ek) in equation (4)

[+ v]
F(x) =5 [(1-e By 2 A K g .o (6)
k=0
which in the limits becomes
L, X/B
F(X) =e € A7)

The relationship between the distribution function of the largest
exceedance and the return period is

T = 1/[1-F(X) ] ...(8)
by eliminating F(X) from equation 7 and B the flood exceedance for

a given period is expressed by

1




where

So

where

6.2

-~ ™~
X¥=B81nk+ By (T ve {9)

y(T) = =1n [-1In(1- %)1
X = Q(T) - 9,

’

~o, fal
Q(T)=q‘o +BinX +B y(m) LG (10

a(T) Annual flood magnitude for a given return period T.
q, Truncation level (estimated)

M

B parameter estimated from partial duration series

A

A

average number cof peaks per year

Preparation of Partial Duration Series

There are two methods of abstracting data from the discharge

record depending upon whether threshold is fixed first or number of

floods to be extracted from the data is fixed first.

The method in which the threshold flood 9, is a fixed quantity,

the number and magnitudes of floods are used to estimateh and@ . If
N is the number of years{also fixed) sufficient estimates of A and
g are

M

A = M/N ces (11)

A M

B = I (qi/M) -4, - ... 012)

~ i=1 A A -~
and oiT) = q +g81ln ) + B 1n (T) e (13D

In the second method, fixed number of floods (M) are extracted

from the data. This means that the average number of floods per annum

in the sample is fixed before extraction and that 9, and B are initially

unkhown and must be estimated from the sample.

scale

It is therefore, required to estimate jointly the location and

parameters q, and B of an exponential distribution from a sample

12




of fixed size M. The maximum likelihood estimate of q, and B ({after

correction for bias) are:

A

q, = (quin - q)/M-1) L. (14)
and

A -

B = Mlg~g . )/(M-1) ...{15)

The estimated T year flood is

o(T) = SO 8 [1my + 1n(T)] . (16}

In the method adopted for this study the threshold level for
peak stages was kept as 161.54 meter as first approximation, keeping
in view the stage corresponding to minimum peak discharge value in
annual maximum series being 162.68 meters. All the peak stages above
161.54 were compiled and converted to corresponding peak discharge
values,

Two neighbouring peaks were included only if (a) the flow between
them dropped ﬁo less than two thirds of the eérlier two and the time
between the peaks exceeded 3'1‘p (531 hours) where Tp is the average
time to peak of the first five hydrographs on the record. Average Tp
in case of Narmada river upto Mortakka is 77 hours. Total 78 peaks
which satisfied above mentioned criterion were selected for further
study. The peak discharges with date and time are given in Table 1,

Lag one autocorrelation coefficient, given by the following

equation M- - -
£, - D
t=1
ry = o 017
-~ 2
T {Q -Q
t=1 t

was calculated for the series and it comes out to be 0.04471, which
falls within the 95% tolerance limits to test the hypothesis of zero
autocorrelation. The limits are -0.234 and 0.208.

For other values ofj; . the number of exceedances were fixed first.

13




TABLE 1

PARTIAL DURATION SERIES WITH DATE AND TIME

S.N. Date Time of day Stage Discharge
(hrs) (m) ( m3/sec)

1 9.8.51 8 162.68 11127
2 4.8.52 8 163.59 13631
3 28.8.52 8 162.07 9573
4 1953 165.48 19521
5 10.9.54 7 162.54 10761
6 23.9.54 24 169.25 33915
7 18.8,55 18 162.03 9475
8 1.9.55% 1 165.84 20746
9 14.9.55 8 163.49 13345
10 3,10.55 23 163.15 12392
11 15.7.56 3 163.00 11982
12 31.7.56 15 161.85 9038
13 11.8.56 10 162.73 11258
14 23.8.57 21 167.03 25023
15 1.9.58 15 161.66 8586
16 11.9.58 15 163.37 13005
17 25.9.58 17 163.19 12503
18 13.7.59 17 168.40 30372
19 8.8.59 6 163.62 13717
20 3.9.59 17 168.22 29644
21 15.9.59 7 165.48 19521
22 5.8.60 10 164.65 16822
23 19.8.60 1 165.78 20540
24 19.7.61 B 162.64 11022
25 8.8.61 17 162.37 10324
26 25.8.61 2 165.75 20437
27 6.9.61 4 163.68 13890
28 16.9.61 1 173.73 55323
29 27.9.61 21 163.37 13005
30 72.10.61 24 162.54 10761
31 6.9.62 21 163.25 12669
32 20.9.62 6 168.70 31604
33 15.8.63 16 163.68 13890
34 26.8.63 15 161.57 8376
35 5.9.63 23 164.53 16446
36 16.9.63 4 164.43 16135
37 13.8.64 1 166.60 23438
38 28.8.64 13 161.73 8751
39 29.7.65 7 165.20 18591
40 2,9.65 22 161.88 9110
41 2.8.66 16 162.76 11338
42 3.8.67 17 163.28 12753
43 22,8.67 17 162.28 10096
44 31.8.67 24 165.53 19690
45 5.8.68 22 168.70 31604
46 5.8.69 7 167.79 27935

14




47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

18.8.69
23.9.69
4.7.70
19.8.70
6.9.70
5.7.71
30.7.7M
7.9.1M
18.8.72
2.9.72
16.7.72
23.7.73
31.8.73
20.8.74
14.8.75
25.8.75
11.9.75
6.8.76
29.8.76
14.9.76
8.8.77
31.8.77
15.9.77
14.7.78
17.8.78
29.8.78
10.8.79
6.8.80
30.8.80
9,7.81
10.8.81
1982

162.00
161.63
163.77
161.84
170.99
163.49
162.46
165,05
172.27
165,96
168.10
167.58
173.49
169.86
167.00
163.86
169.10
163.13
164.93
162,22
166. 36
164.71
166.85
162.72
166,40
168.20
167.35
163,60
166.41
162,03
167.20
164.58

15

9401
8516
14152
9014
4169
13345
10555
18101
47851
21162
29163
27117
54063
36562
24911
14416
33278
12337
i7713
9946
22572
17011
24354
11232
22716
29564
26232
13659
22751
9475
25662
16602




The variations of values ofA ,B and (q0 +B In A ) with truncation level q, for
the partial flood series are given in Table 2. The values of u and O for Gumbel

distribution are also given in the bottom of table for the sake of comparison.
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7.0 ANALYSIS

To compare the efficiency of flood peaks of given return periods
using annual and partial duration series, the sampling variance of
0{T) obtained from both flood series have been compared. It was shown
by Zelenhasic (1970} that partial duration series gives double expone-
ntial or Gumbel distribution for annual floods when we assume Poisson
distribution for number of exceedances and exponential distribution
tor magnitude of exceedances. This theoretical finding is used in the
comparison of sampling variances of Q(T)} obtained from the two flood

series, assuming the Gumbel distribution for annual maximum series.

7.1 Flood Magnitudes and their Sampling Variances for Given Return
Periods from Annual Flood Series Using Gumbel Distribution
For Gumbel distribution the probability density function is

given by

o ~((x-u) /g }]
£(x) = é J-Ux-u)/a ).e L (18)

and the cumulative density function by
_e-(x—u)ﬂu
f(X) = e e 119)
In equation (18) and (19) u is the locationparameter and ¢ is

the scale parameter.

The mean, variance and skewness are

L =u + 6.5772a ... (20)
g? = n?al/e
Cs = 1.139 cee (0229

The parameters u and g are obtained by the method of maximum

likelihood. (Jenkins,1969,NERC 1975).

A
The estimate of T year flood denoted by Q(T)a is given by

18
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I A Fal
Q(T)a=u+ay(T) ’ ...(23)
in which y(T) = -1ln(-1n{ -T:-]T— )} and T is the return period.
The sampling variance of a(T)a is
2, ~ n A Fay
vVar (Q(T)a)= Var u + 2 Cov{u.a y(T)) + Var [0 y(T}] ... (24)

The variance-covariance matrix of the maximum likelihood esti-

mates of u and o (Kimball,1946) is

var GA ACov(G,aAl]=02 [.1+ _5___“_\‘52 6 {)-{
Coviu,d ) var (Q )J N 2 ;2( -
t 6 2
- -~ i

ot o 0.2 g2 1Y) 6/
N ' 0.26 0.61
A 2 A ) 2 AA
Therefore Var(u) = t.11 &°/N,var (Q } = 0.61 /N and Cov(uf }

=0.260%/N. By substituting these in equation ( 24)

2
var (Q(Tla = Eﬁ [1.11 + 0.52 y (T) + 0.61 yz(T)] ...(25)

7.2 Sampling Variance of Flood Magnitudes for given Return Periods
From Partial Flood Series by Using Combination of Poisson and
Exponential Distributions.

Sampling variance of Q(T) for partial duration series is mainly

based on the work by Cunnane (1973}. The sampling variance of Q('I‘)p

is given by the following equation(NERC, 1975 pp.135)

A g’ (1-1nA _-1nT)? 2
= ... (26
Var (Q(T)p) e | S + inXx + 1n T)" } (26)
7.3 Comparison of Efficiencies

The following two approaches have been used to compare the

sampling variance of Q(T) of annual and partial flood series:

7.3.1 Exact theoretical approach

”~
Let R, be the ratio of the sampling variances of Q(T)a and

19




S(T)p obtained theoretically from annual and partial flood series respectively.

Hence for a given return period(T), R1 will be.

_ Sampling variance of Q(T)a
Ry = Sampling variance of Q(T)p
2
c—:]--[ 1.11 + 0.52 y (T) + 0.61 Yzm ]

2 _ _ 2
%—A[Tm‘kl" s (1 +1n T2

under the assumption that Q(T}a = Q(T)p:a will be equal to B .

s© JA L1011+ 0,52 yim) + 0.61y2(T)]

. (1-InA -1n T)°
y NA -1

* {InX +1n T)zl

7.3.2. Approximate theoretical approach

...(27)

-.{28)

+s4 (29}

In this approach, the parameters u and @ are estimated from the annual

flood series and parameters d, and B from the corresponding partial flood

A
series. Let R2 denote the ratio of sampling variances of 6(T)a and Q(T)p,then

e (.11 4 0.52 v (T) + 0.61 y3(T)]

dnA - 2
BZI(INI?\ -'ln T) + {InA + 1n Tf]

2

+.. (30)

The difference between R1 and R2 is that the difference between

@ and B is taken into consideration in computing R, .

20




8.0 RESULTS
8.1 Annual Maximum Series Using Gumbel Distribution

The annual peak stage and discharge series is given in table 3 along
with statistical parameters. Using equation (20) and (21) the values of. location
parameter{u} and scale parameter (& ) for the Gumbel distribution come out
to be 20705.05 and 9061.48 respectively. 100,500,1000 and 10000 years return
period floods are 62389, 77009, 83295 & 104163 cumecs. The sampling variances
corresponding to these are 4.21 x 107, 7.15 x 107, 8.67 x 107 and 1.47 x 108
respectively.

8.2 Partial Duration Series Using Combination of Poisson and Exponential

Distribution

The variation of values of A,8 and a, + B In A with trupcation level
level 9, for the partial flood series is given in Table 2,

For 9, = 8376 cumecs the values of A and B are 2.437 and 10583.098
respectively. Using equation (10)the 100, 500, 1000 and 10000 years return
period floods are 66487, 83562, 90903 and 115277 cumecs respectively which
are slightly higher than the estimates of annual maximum flood series.

Using exact theoretical approach ie.Q = B the sampling variances,
of 100, 500, 1000 and 10000 years return period floods are 3.2)1:107,'5.36:-110,7
6.46x107 and 1.08 x 108 respectively.

Using approximate theoretical approach i.e.B #a & B = 10583.098 the
sampling variances are 4.37x107, 7.32x‘|07, 8.82x10 and 1.48x108. These results
have been tabulated in Table 4.

8.2.1 Exact theoretical approach

Equation (29) shows how the ratio of sampling variances obtained

by the exact theoretical approach varies with the return periocd T. For a

21




TABLE 3

ANNUAL PEAK STAGE AND DISCHARGE SERIES AT MORTAKKA STAGE
STAGE DISCHARGE RELATIONSHIP: Q=317.18*(H-155,2)1-7 68

Year Peak stage Peak Discharge
above MSL (m3/sec.)
{(m)
1951 162.68 11127
1952 163.59 13631
1953 165.48 19521
1954 169.25 33915
1955 165.84 20746
1956 163.00 11982
1957 167.03 25023
1958 163.37 13005
1959 168.40 30372
1960 165.78 20540
1961 173.73 55323
1962 168.70 31604
1963 164.43 16135
1964 166.60 23438
1965 165.20 18591
1966 162.76 11338
1967 165.53 19690
1968 168.70 31604
1969 167.79 27935
19270 170.99 41691
1971. 165.05 18101
1972 172.27 47851
1973 173.49 54063
1974 169.86 36562
1975 169.10 33278
1976 164,93 17713
1977 166.85 24354
1978 168.20 29564
1979 ) 167.35 26232
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166.41 22751

1980

1981 167.20 25662

1982 164.58 16602
Mean = 25935.344 cumecs

Standard deviation

Coeff.of skewness

11615.904 cumecs

il

It

1.044
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TABLE - 4

RESULTS OF FREQUENCY ANALYSIS

Recurrence Interval in Years
100 500 1000 10000

Estimated peak flow in 66487 B3562 90903 115277
cumecs from partial
duration series using
Poisson and Exponential
Distributions

. . . 7 7 7 8
Sampling Variance using 3.2x10 5.36x10° 6.46x10 1.08x10
exact theoretical approach

. : . 7 7 7 8
Sampling variance using 4,37x10 7.32x10 8.82x10 1.48x10
approximate theoretical
approach
Estimated peak flow 62389 77009 83295 104164
in cumecs from annual
maximum series using
Gumbel distribution

. . 7 7 7 8
Sampling variance 4.2x10 7.15x10 8.67x10 1.47x10
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given value of ) , the relationship between the ratio R. and the return period

1
T expressed as the Gumbel reduced variate y{T) can be aer.'wed. The results
of these relationships for the range of )} =0.8 to 10.0 are shown in Figure 1.
It is evident from the figure that the partial flood series estimate of Q(T)
always has a smaller sampling varianr= than that of the annual flood series
for the return period T less than 11 years. For the whole range of return
periods the partial flood series estimate of Q(T) has a smaller sampling var-
iance than that of the annual flood series if the value of )Ais atleast 1.65.
8.2.2 Approximate theoretical approach

The values of u and a for annual flocd series and 9, +8 In)land B
for partial duration series are tabulated in Table 2. I is clear from the table
that u is slightly higher than the q, # Inx for the rangedl = 1.0 to 2.437.
g is slightly higher than .

By substituting the estimates of o, A and B for each threshold level
into equation (30) relationships between R2 and T are obtained for various
A values. {Fig.2 ). By comparing Fig.1 & Fig 2,{relationships between ratio
of Var {Q(T}] and T, based on exact theoretical approach{Fig.1) and approximate
theoretical approach (Fig.2)) R2 is always lower than Rl’ The value. of R2
increases with ) . For ) =2.437 the ratio R2 comes closer to unity. In the

range of ) studied (1.0 to 2.437) the sampling variance of annual flood series

is less than that of partial flocd series.
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9.0

(A)

(B)

(c)

CONCLUSIONS
For Narmadasagar dam the 100,500,1000 and 10000 years return period
floods are 66540, 83573, 90909 and 115277 cumecs respectively using

partial duration series, which are slightly higher than corresponding

estimates of annual flood series assuming that annual. flood
series follow Gumbel distribution.

On the basis of exact theoretical approach it is séen that the partial
flood series estimates of Q(T) always have a smaller sampling variance
than that of tﬁe annual flood series for the return periocd T less than
11 years. For the whole range of return periods the partial flood
series estimate of O(T) has a smaller sampling variance than that
of the annual flood series, if the value of is atleast 1.65.

On the basis of approximate theoretical approach (Computed estim-
ates of g and g are taken} it is observed that in the range of ) studied
(1.0 to 2.437) the sampling variance of partial flood series is more
than the sampling variance of annual flood series. However, this diff-
erence reduces when ) increases. For) = 2.437, the sampling variances

of the two series are comparahble.
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