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Abstract 
To obtain reliable at-site flood quantile estimates from a small sample of observations is a trivial 
exercise. To over come this problem, attempts to (i) use Probability Weighted Moment (PWM) 
method of parameter estimation and (ii) to increase the length of database through the incorpora-
tion of discontinuous extraordinary events by making the new sample a censored one have been in 
vogue.  Though the use of PWM method has generally been accepted as a means of reduction of 
bias in the estimates, the usefulness of the later is yet to be established. This study, through a com-
puter simulation, tries to bring out the worth of incorporation of the extraordinary events, particu-
larly while such events as well as the observed sample are likely to have been corrupted with 
varying degrees of measurement error. It is found that incorporation of extraordinary event(s) 
yielded reliable estimates of quantiles, particularly with small sample sizes, even if the extraordi-
nary event and the sample had measurement error up to 30 and 10% respectively.  
 
INTRODUCTION  
 
Flood, among others, is probably the most feared disaster with the highest public profile. 
In spite of extensive research in the last twenty five to thirty years, in the area of flood 
prediction, this century has witnessed extensive loss of human and animal lives including 
loss property worth billions of dollars caused by extraordinarily large magnitude of 
floods.  
 
To model these floods and prepare management strategies therefrom needs an appropri-
ate choice of distribution and method of parameter estimation. Though it is generally 
agreed that method of Probability Weighted Moments (PWM) can provide unbiased es-
timates of design floods, the choice of an underlying parent distribution describing the 
extreme flood behaviour at a site is made apriori and has always been a problem. Be-
cause of the limited experience a small sample of floods has gone through at a gauged 
site, it can provide only limited information about the flood frequency distribution at that 
site. To obtain more precise estimates of design flood would require incorporation of 
additional information on extraordinary events, which might have taken place in the near 
future, or in the distant past, such that extension of record could be possible (Condie and 
Lee,1982). Such additional information however, can be obtained from paleo-hydrologic 
studies or records and chronicles or even from visible flood marks at the sites of interest.  

 
Further, as the uncertainty in peak flow is related to the uncertainty in various hydraulic 
parameters involved in computation of discharge, it can involve measurement errors in 
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the observations, which in turn can influence the choice of distribution. This can be much 
different from the choice of distribution made apriori. It is reported by Herschy (1985) 
that uncertainty in measurements taken using current meters are of the order of 5 % and 
can even go up to 20% while computing discharges through indirect methods such as 
slope-area or fall-discharge methods. Since, the magnitudes of extraordinary events are 
usually estimated using the indirect methods, it is natural that they are likely to be cor-
rupted with large measurement errors. It is in this context, worth of incorporation of such 
additional information need to be assessed so that the estimates from flood frequency 
analysis remain reliable.  
 
In one of the recent researches, Hosking & Wallis (1986) undertook a simulation exercise 
and showed that inclusion of extraordinary information was useful for at-site flood fre-
quency analysis, particularly when the site contained small sample of observations. But, 
they used the method of maximum likelihood (MML) procedure of parameter estimation 
as suggested by Prescott & Walden (1983) for undertaking flood frequency analysis with 
the discontinuous extraordinary observations (i.e. censored samples), as no procedure to 
undertake such an analysis using PWM was available.  

 
To overcome this difficulty, Ding & Yang (1988) not only suggested a PWM procedure 
for parameter estimation incorporating extraordinary information but also showed that 
these estimators performed better both in terms of bias and efficiency even when com-
pared to the results from MML, besides others. But their simulation study used different 
magnitude of extraordinary values in different samples and also has not considered the 
effect of measurement error in extraordinary values, which are not the normal case. 

  
In this study, an attempt has been made to study the worth of incorporation of extraordi-
nary event(s) to a small sample of observations, both of which are likely to be infested 
with varying degrees of measurement error in the estimated quantilesevaluated through 
the use of a PWM procedure. To assess their usefulness particularly with some com-
monly used two and three-parameter distributions, analyses have been carried out using 
the Extreme Value Type 1 (EV-1) and the Pearson Type III (PT-III) distributions.  
 
THEORY 
 
If  xI(N), i = 1, 2, 3.. …, n,… …, N  is the sample of annual maximum floods observed 
over n years ranked in ascending order of magnitude and followed by say h numbers of 
discontinuous extraordinary events observed in a total period N years,  the of sample 
PWMs, (br
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, r = 0,1, 2) can be estimated (Ding & Yang, 1988) as: 
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In particular, the first three moments can then be defined by substituting r = 0, 1 and 2 as: 
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In a closer perspective, it can be seen that the first part in each of the above three equa-
tions is the contributed by the sample flood observations while the second part corre-
sponds to the contributions of extraordinary flood values. Now these sample PWMs can 
be used to estimate the parameters for the two chosen distributions as given below : 
 
PT III Distribution  
Using the first three sample sample PWMs viz: b0, b1 and b2, the unbiased estimate of 
the scale(β), location(x0) and shape(θ) parameters for the PT III can be computed 
(Parida, 1993) from: 
 
θ = 4 / Cs

 2           (5) 
β = (1/3) [ {(3b2 – b0) . B(1/2, θ) } / { I ↓ (θ, 2θ)} ]       
  (6)  
 
and  x0 = b0 - βθ            (7)  
 
where, Cs = Co-efficient of skewness of the observed sample, 
I↓ (θ, 2θ)=Incomplete Beta Function evaluated at ↓ (θ,2θ) = (↓)[(3b2-b0)/(2b1-b0)] 
and B(1/2, θ) = Complete Beta Function evaluated at (1/2, θ)  
 
Then the flood quantile for any return period T can be computed from 
 
XT = x0 + β θ + β θ 1/2. KT(θ)            (8)  
 
where, KT(θ) is the Chow’s frequency factor for the given θ (or Cs), and can be obtained 
using Wilson-Hilferty transformation.     
 
EV-1 Distribution 
For this case however the first two sample PWMs viz: bo and b1 can be used to compute 
the location (u) and scale(α) parameters of the EV 1 distribution (Greenwood et al.,1979) 
from Eqns (9) and (10) as given below: 

 
α = (2b1-b0) / ln 2                      (9) 
 
u = bo – 0.5772α                     
(10) 
 
Then the flood quantile for any return period T can be computed from 
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XT

STATISTICAL EXPERIMENT AND ANALYSIS 
 = u + α [ -ln {-ln (1-1/T)}]                    (11) 

 
Assuming the flood sample to have emerged from a Pearson Type III parent, 10000 flood 
like values with a mean of 100 m3/s, Co-efficient variation = 0.3 and Coefficient of 
skewness = 2.0, were generated. From the so generated values, different samples of size 
10(10) 60(20) 100 were obtained. Using the population statistics, magnitude of an ex-
traordinary event having an assumed return period of 150 years (N=150) was computed. 
To observe the usefulness of this value on the flood estimates two return periods were 
chosen, one within the period of within the period of observation of the extraordinary 
event, N, (say T=100) and the other beyond N (say T=500). Using the population pa-
rameters true values of 100 year (x100

true) and 500 year (x500
true) flood values were com-

puted. Each of the sample so drawn for a given sample size, were then subjected to six 
different cases of measurement error as given in Table 1 and for each case estimates at 
T=100 and T=500 were computed separately using PTIII and EV 1 as the underlying 
distributions. 

 
To arrive at the amount of error in sample and the error in the extraordinary event(s), 
though a first order analysis as suggested by Tung and Mays (1981) can be undertaken, 
values based on the experience from the field have been used as a simple exercise. Ac-
cordingly most error values of 10 and 30 % have been considered as the most likely val-
ues in current and extraordinary observations respectively. Extensive simulation studies 
have then been carried out with a chosen parent distribution having measurement errors 
of various magnitudes with or without the presence of extraordinary historic information 
having various degrees of measurement error as illustrated in Fig. 1. 
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Figure 1. Simulation scheme with different combinations. 
Table 1. Scheme for statistical experiment. 

Case Sample Extraordinary Event(s) 
Without Error With !0% Error Without Error With 30% Error 

1 x    
2  X   
3 x  X  
4  X X  
5 x   x 
6  X  x 

 
Table 2. Effect of extraordinary observation(s) on Mean Absolute Rela-

tive Deviation in 100 year flood estimates computed using PT 
III and EV-1 distributions with varying sample sizes. 

Sample 
Size (n) 
&  
No. of 
Samples 
(ns) 

Distri-
bution 

Mean Absolute Relative Deviation in Estimated 100-Yr Flood Quantile (%) 

No ExtraOrd Ob-
servation         

ExtraOrd Observation (True 150-Yr Flood) Considered 

S.E.= 
0% 

S.E.=1
0%   

  S.E.= 0% 
+E.E.= 0%     

S.E.=10% 
+E.E.= 0%     

  S.E.= 0% 
+E.E.=30% 

S.E.=10% 
+E.E.=30% 

10 
(1000) 

PT III 25.72 27.62 17.63 19.45 21.35 24.04 
EV – 1 18.30 18.66 14.31 14.92 17.43 17.46 

20 
(500) 

PT III 16.53 17.37 11.97 12.22 15.30 15.90 
EV – 1 15.04 15.62 11.81 13.06 14.40 14.80 

30 
(333) 

PT III 14.83 15.30 10.91 10.54 13.80 14.28 
EV – 1 13.34 14.05 9.97 11.82 12.43 12.89 

40 
(250) 

PT III 12.12 12.53 8.27 8.35 10.55 11.33 
EV - 1 12.55 13.28 9.62 11.28 11.71 12.02 

50 
(200) 

PT III 10.60 11.01 7.20 7.46 9.05 9.52 
EV - 1 11.65 12.31 8.88 10.58 11.31 11.36 

60 
(166) 

PT III 8.80 9.46 6.70 7.02 7.93 8.38 
EV - 1 11.29 11.73 8.51 10.11 10.86 11.01 

80 
(125) 

PT III 8.09 8.62 5.77 6.02 6.98 7.41 
EV - 1 11.02 11.38 8.17 9.18 9.80 10.86 

100 
(100) 

PT III 7.16 7.31 5.34 5.40 6.57 7.01 
EV - 1 10.76 11.06 7.81 8.58 9.15 10.63 

S.E. = Observation Error in Sample(s) ; E.E. = Observation Error in Extraordinary (ExtraOrd) 
Event(s) 
 
In natural sequences, the errors (ε) usually have the properties of being random and 
multiplicative. And to achieve this, these values were assumed to be log-normally dis-
tributed with a zero mean and a standard deviation of log(1+ε). 
 
Then the PWM’s for each sample of the assumed sample size were estimated with the 
help of equation (2), (3) and (4). Using the equations (5), (6) and (7), the parameters xo

β
, 

 and θ  for the PTIII distributions were obtained and in turn used to estimate the flood 
quantile values for T = 100 and 500 years from equation (8). 
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Table 3. Effect of extraordinary observation(s) on Mean Absolute Rela-

tive Deviation in 500 year flood estimates computed using PT 
III and EV-1 distributions with varying sample sizes. 

Sample 
Size (n) 
&  
No. of 
Samples 
(ns) 
 

Distribu-
tion 

Mean Absolute Relative Deviation in Estimated 500-Yr Flood Quantile (%) 
No ExtraOrd Obser-

vation         
ExtraOrd Observation (True 150-Yr Flood) Considered 

S.E.= 0% S.E.=10
%   

  S.E.= 0% 
+E.E.= 0%     

S.E.=10% 
+E.E.= 0%     

  S.E.= 0% 
+E.E.=30% 

S.E.=10% 
+E.E.=30% 

10 
(1000) 

PT III 35.15 35.25 23.04 24.70 27.18 30.66 
EV - 1 21.52 21.57 17.64 18.67 19.29 20.92 

20 
(500) 

PT III 20.86 22.16 14.96 15.17 18.63 19.50 
EV - 1 19.50 20.01 16.77 17.49 18.58 18.98 

30 
(333) 

PT III 18.87 19.61 13.86 13.30 17.43 17.84 
EV - 1 16.99 18.51 15.62 16.03 16.54 16.83 

40 
(250) 

PT III 15.64 16.19 10.72 11.90 13.38 14.83 
EV - 1 16.37 17.65 15.40 15.85 16.15 16.28 

50 
(200) 

PT III 13.42 14.22 10.43 9.63 11.71 12.68 
EV - 1 15.48 17.05 15.05 15.20 15.28 15.33 

60 
(166) 

PT III 11.51 12.45 9.04 9.91 10.39 11.01 
EV - 1 15.38 16.88 14.97 15.13 15.17 15.24 

80 
(125) 

PT III 10.29 11.18 7.26 7.99 9.00 9.50 
EV - 1 15.02 15.66 14.18 14.54 14.73 14.82 

100 
(100) 

PT III 8.72 9.02 6.60 6.77 7.81 8.20 
EV - 1 14.35 15.35 13.45 13.54 13.72 14.17 

S.E. = Observation Error in Sample(s) ; E.E. = Observation Error in Extraordinary (ExtraOrd) Event(s) 
 
The mean of the quantile values thus obtained were used to compute the Absolute Mean 
Relative Deviation as 

AMRD (%) = ∑
=

×
−ns

i
true
T

true
TiT

x
xx

ns 1
100

)(1
                 (12) 

 
where   ( Tx )i

true
Tx

  = Computed flood quantile for return period T for the sample i. 

   = True value of flood quantile for return period T 
  ns  = Number of samples 
 
For arriving at the values of true

Tx , the parent distribution was assumed to be unknown. 
The two parameter EV-1 distribution was used in the given data set to historic true 100-
year and true 500-year flood values in the manner narrated below. 
 
First the sample PWM’s viz 0b  and 1b were computed using equations (2) and (3), which 
were then incorporated into equations (9) and (10) to obtain parameters u and α . The 
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quantile Tx for return period T was obtained for the EV-1 distribution using equation 
(11). 
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Figure 2. Changes in AMRD values of quantiles estimated at t = 100 

years with sample size using EV-I and PT III distribution for 
six different cases. 

 
Effect of Sample Size or AMRD Values 
The overall examination of the Tables 2 and 3 as well as the Figs. 2 and 3 reveal that 
AMRD values decreased with increase in sample size. This decrease was significant 
when the samples varied from 10 to 50 in size. Thereafter, the decrease was marginal. 
Thus, it can be concluded that for flood quantile estimation for large return periods, it is 
preferable to use observations with large sample size. 
 
Effect of Extraordinary Observations and Errors on AMRD Values 
As shown in column (4) and (5) of Table 2, for a sample size of 10, where no extraordi-
nary observation(s) was available, there was an increase of 2% in the AMRD values just 
by the introduction of a measurement error of 10%. On the inclusion of extraordinary 
observation of 150 years with the rest of the sample and assuming that both the extraor-
dinary and sample observations were free from any error, it was observed that the AMRD 
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values decreased by 2.7%. However, with the consideration of error to the extent of 30% 
in the extraordinary observations and to the extent of 10% in the observed sample the 
AMRD values were comparable with the results obtained from consideration of sample 
observations alone without the consideration of extraordinary observation(s).  

0

5

10

15

20

25

30

0 20 40 60 80 100 120
Sample size

A
M

R
D

 (i
n 

%
)

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6

Error in 
current obs. 
(%)
0
10
0
10
0
10

Error in 
historic obs. 
(%)
NA
NA
0
0
30
30

LEGEND

_______ EV-I Distribution
----------- PT III Distribution

 
Figure 3. Changes in ARMD values of quantiles estimated at t = 500 
years with sample size using EV-I and PT III distribution for six different 
cases. 
 
The negligible differences between the two sets of results shown in column (3) and col-
umn (8) of Table 2 and 3, give a clear indication that incorporation of historic observa-
tions into sample with measurement error upto 10% was better than non-consideration of 
historic events, even though the samples were free from measurement error. It was fur-
ther observed that introduction of more error in the sample and/or the extraordinary ob-
servation was counter-productive. 
 
Effect of Choice of Distribution on AMRD Values 
The above generated flood sample were subjected to analysis using EV-1 / PWM 
method. The AMRD values computed in this case were smaller than the values obtained 
from using PT-III / PWM distribution, for all cases at small sample sizes up to 30, even 
when the parent distribution was PT-III. In cases 3 to 6 i.e. the ones, which take into ac-
count the incorporation of extraordinary observations, EV-1 / PWM yielded higher 
AMRD values than the PT-III / PWM distribution for higher sample sizes. In summary it 
can be said that a two-parameter EV-1 / PWM method yielded less biased estimate of 
flood quantiles when the sample size was less than or equal to 30, and no historic obser-
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vations available. However, for larger sample size, PT-III / PWM procedure was pre-
ferred to get better results. 
Table 4. Effect of Historic Events on Mean Absolute Relative Deviation of 

Quantiles Estimated from Different Sample Sizes and Co-
efficients of Skewness. 

Sample 
size , n  
& No. of 
Samples 
(ns) 

Coeffi-
cient of 
Skew-
ness 
C

Absolute Mean Relative Deviation (in %) of Estimated Flood Quantiles * 

s 

No Extraordinary  
Observation 

One Extraordinary Ob-
servation**

One Extraordinary Ob-
servation with 10% 

Error  
** with 30% 

Error  
T=100 T=500 T=100 T=500 T=100 T=500 

 
10 

(1000) 

3.0 31.05 40.01 20.76 27.06 24.59 31.09 
2.0 25.72 35.15 17.63 23.04 21.35 27.18 
1.0 19.97 26.01 14.60 19.44 17.86 22.65 

 
20 

(500) 

3.0 20.57 26.12 14.59 18.35 17.42 21.45 
2.0 16.53 20.86 11.97 14.96 15.30 18.63 
1.0 13.67 16.08 9.32 11.97 11.81 15.76 

 
30 

(333) 

3.0 18.26 23.21 13.32 16.80 15.80 20.04 
2.0 14.83 18.87 10.91 13.86 13.80 17.43 
1.0 11.17 14.37 8.47 11.07 11.07 15.22 

 
40 

(250) 

3.0 15.45 19.85 10.34 13.34 12.15 15.44 
2.0 12.12 15.64 8.27 10.72 10.55 13.38 
1.0 9.03 11.97 6.58 8.92 9.02 12.75 

* Based on 10000 PT III flood like values generated with parameters average=100 m3/sec, 
Cv=0.3, Cs=1.0(1.0)3.0;  Period of Extraordinary observation N=150 years and random 
multiplicative error. 

** Extraordinary value is considered as true 150 year value i.e. 220.02 m3/s for Cs=3.0, 208.40 
m3/s for Cs=2.0, 191.0m3/s for Cs=1.0 

 
Effect of Skewness on AMRD Values 
To study the effect of incorporation of extraordinary observations on samples which have 
been drawn from populations with varying skew properties, flood like values were gener-
ated separately with different coefficients of skewness, keeping the location and scale 
parameters same as before. For a meaningful comparison, two sets of 10,000 Pearson 
Type III distributed flood like values with Cs = 1.0 (less than the originally assumed 
value) and Cs 

i. No extraordinary observation considered 

= 3.0 (more than the originally assumed value) were generated. To each of 
these series, appropriate values of extraordinary events with recurrence interval of 150 
years had been incorporated. Each series containing the flood like values were then di-
vided into 1000, 500, 333 and 250 number of samples of size 10, 20, 30, 40, respectively 
and were subjected to analysis under three categories viz: 

 

ii. One extraordinary observation and no measurement error 
iii. One extraordinary observation and 30% measurement error 

and for each case, quantiles were estimated at T=100 and T=500 years, as earlier. 
 
AMRD values were then computed for the above 3 cases and for varying sample skew-
ness values and have been listed in Table 4. For the case with higher skewness i.e. Cs = 
3.0, AMRD showed a marked decrease with increase in sample size, in all the three cate-
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gories as listed above. But for skewness as low as 1.0, though reduction in the AMRD 
values were observed, but the extent of reduction was not that pronounced as in the case 
of large Cs

1. While undertaking at-site flood frequency analysis with some of the commonly used 
distributions such as EV-1 or PT-III distribution even with PWM method of parame-
ter estimation, incorporation of extraordinary or paleologic events yielded results that 
are close to reality.  

 and when the sample size was small. In conclusion it is observed that results 
from T = 500, T = 100, though were similar but the reduction in AMRD value were more 
pronounced in case of quantiles estimated at T=500 years than at T=100 years. 
 
CONCLUSIONS 
 
From the present study aimed at identifying some of the benefits of incorporation of ex-
traordinary information in flood frequency analysis, the following conclusions can be 
drawn.  
 

It is also evident from the result of the statistical experiment that it is worthwhile to 
incorporate the extraordinary events even if these events contained upto 30% meas-
urement error while the sample contained up to 10% measurement error. 

2. It is also inferred that, when the sample size was small and the skewness was large 
(typically more than 2.0), the incorporation of extraordinary information signifi-
cantly reduced the likely error in the quantile estimates. 

3. When no extraordinary observations were available and the sample sizes were small, 
typically less than or equal to 30, the use a two parameter EV-1 distribution are pref-
erable to the three parameter PT III distribution. 

 
Based on the above findings, it can be concluded that at the sites which have experienced 
unprecedented extreme floods in the near past, the design procedure be revisited to in-
corporate these events and obtain a reliable estimate which can be used for evolving 
flood management strategies in these areas as well as to bring back confidence in the 
minds of people. 
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