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Abstract 
This paper presents an efficient algorithm for solving one-dimensional flow equations through a 
dendritic channel network system. The equations generated through the finite element or the finite 
difference formulations can easily solved by applying the proposed algorithm without the require-
ment of substantial computer memory, even for a large network. An algorithm proposed earlier for 
linear finite elements has been extended here to cover its applicability towards using higher order 
finite elements and implicit finite difference schemes. The maximum active memory required in 
either case is only 2N x 2N where N is the number of branches of the network. The main advan-
tage, perhaps, lies in the fact that the computational nodes of the branches can be numbered inde-
pendently for each branch. The algorithm is suitable for programming on computers using parallel 
processing technology. 
 
INTRODUCTION 
 
Steady or unsteady flow routing through a dendritic network of channels with sub-critical 
flow requires the solution of the relevant equations (i.e., the de St. Venant equations) in 
all the branches simultaneously (Akan and Yen, 1981; Choi and Molinas, 1993). Mostly, 
numerical simulations of the phenomena have been attempted through implicit finite dif-
ference schemes (Cunge et al. 1980, Chaudhry 1993). Investigators like Cooley and Moin 
(1976), Keuning (1976), King (1976), Nwaogazie and Tyagi (1984), Addeff and Wang 
(1985), Szymkiewicz (1991), etc. have also attempted the method of finite elements. 
Whichever method is adopted, it is well known that when the governing equations to-
gether with the mass conservation and energy conservation equations at the junctions are 
employed to describe the flow in a network of channels, the resulting coefficient matrix 
involved in the solution process is not banded. Different researches like Cunge and 
Wegner(1964), Wylie(1972), Fread(1973 ), Kao(1980) , Schaffranek et al.(1981), Akan 
and Yen(1981), Joliffe(1984), Ball(1985), Chaudhry and Schulte(1986), Schulte and 
Chaudhry (1987), Choi and Molinas(1990,1993), Nguyen and Kawano(1995), Naidu et 
al. (1997) and others have presented different methods for minimizing the computational 
efforts involved in solving the flow problem in channel networks. Sen and Garg (1998) 
have presented an algorithm which was shown to efficiently store and solve the system of 
equations for a dendritic channel network obtained by applying the finite element tech-
nique. The algorithm reduces the nodal equations to one node per branch in a forward 
elimination phase, and then, a system of equations containing the variables of the single 
node of each branch is solved simultaneously. A back-substitution phase is then used to 
obtain the remaining variables, independently for each branch.  
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Sen and Garg (1998) had demonstrated the applicability of their concept for solving the 
dendritic channel network problems using linear finite elements. The present paper ex-
tends the concept and demonstrates its applicability towards solving the equations using 
higher order finite elements or with any implicit finite difference scheme. As with the 
original concept of Sen and Garg (1998), a major advantage of the algorithm is that it can 
easily be programmed on a computer with parallel processing capability. Even on a serial 
machine, relatively less memory is required than for other algorithms since the reduced 
coefficients are stored branch-wise. Further, the proposed algorithm does not require any 
special node numbering scheme. 
 
THE GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 
 
The governing equations for simulating gradually varied unsteady flow are described by 
the well-known de Saint Venant equations. These equations may be derived from the 
laws of conservation and momentum and may be expressed as follows: 

  0 =SA  g - SA  g + 
  x
h  A  g + 

A
Q

  x
   + 

  t
Q 

0

2

fδ
δ

δ
δ

δ
δ











         (1) 

 

                                       0 = 
B
q - 

  x
Q   1 + 

  t
h  

δ
δ

δ
δ

Β
      (2) 

 
where t is time ; x is the longitudinal distance; Q is the discharge ; h is the water depth ; 
A is the  cross sectional area ; B is the free surface width ; S0 is the bed slope ; S f  is the 
friction slope ; q is the rate of  lateral  inflow, and g is the acceleration due to gravity . 
For channel flow, S f
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 may be estimated by any of the flow resistance equations, for exam-
ple the Manning’s equation  

         (3) 

 
where n is Manning’s roughness coefficient and R is the hydraulic radius. 
 
It is to be noted that the equations of continuity and momentum are applied only within 
the channel branch lengths and different relations are used to link the flow variables at 
the junctions (i.e., confluence in a dendritic network). The hydraulic conditions at the 
confluence may be described by the equations of mass and energy conservation. Assum-
ing no change in storage volume within the confluence, the continuity equation can be 
written as  
 
Σ Q i  =  Q o

where ‘i’ stands for the inflow branches and ‘o’ for the outflow branch . In this study two 
inflow and one outflow branches have been considered meeting at a confluence, although 
any number of inflow branches may be taken into account. When the flows in all the 

          (4) 
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branches meeting at a confluence are subcritical, the equation for energy conservation 
can be approximated by a kinematic compatibility condition as ( Akan and Yen 1981) 
 
h i + Z i   =   h o + Z  o            (5) 
 
where Z denotes the elevation of the channel bed. If the bed elevation at the confluence 
of the channels is assumed to be the same for all the channels, then (5) simplifies to: 
 
h i  =  h  o                           (6) 
 
Equations (4) and (6) constitute the interior boundary conditions. The total number of 
interior boundary conditions at a confluence is equal to the number of channels meeting 
there. The possible applications of these boundary conditions have been demonstrated in 
Fig. 1. It may be observed that a dendritic network of channels will have a single down-
stream end where an exterior boundary condition in the form of a relation between depth 
as a function of discharge or depth as a function of time is specified (Cunge et al. 1980). 
The network may have one or several upstream ends where the boundary conditions pre-
scribed is in the form of specified discharge values as function of time. Other interior 
boundary conditions may occur within a single branch, for example due to a weir, con-
strictions like bridges, etc. However, these conditions are omitted from the present study, 
as the application of this is very straightforward and no special modification of the algo-
rithm is required.  
 

 
Figure 1. A typical dendritic network of channels showing the various 

boundary conditions  
 
DISCRETIZATION OF THE FLOW DOMAIN 
 
An essential step involved in solving the flow equations (1) and (2) simultaneously in 
order to evaluate the unknown variables Q and h along the various branches of any net-
work is the discretization of the solution domain into a finite number of computational 
nodes. The variables are calculated at these nodes on applying the finite element or the 
finite difference techniques to the governing equations and solving along with the bound-
ary conditions. For demonstration purposes, a simple three-branched dendritic network is 
considered in Fig. 2(a), the idealized form of which is discretized as shown in Fig. 2(b). 
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The procedure of node numbering may be noted: node b⋅j represents the jth node of the bth 
branch. This implies that the nodes of one branch are serially numbered either in the up-
stream or in the downstream direction (as it is done here) but are independently num-
bered for the different branches. In the finite element method, one may employ linear, 
quadratic, or higher order elements. Sen and Garg (1998) demonstrated the proposed al-
gorithm for linear elements and it is extended here to quadratic elements. Thus, the ele-
ments may be assumed to span between alternate nodes of each branch, as shown in Fig. 
2(c). For deriving the finite difference equations, a computational reach is assumed to 
span between successive nodes as shown in Fig. 2(d). 
 

 
Figure 2. (a) A three branched dendritic network; (b) Computational 

nodes; (c) Quadratic finite elements; (d) Computational reaches 
for finite difference calculations 

 
ALGORITHM FOR SOLVING FLOW EQUATIONS WITH FINITE 
ELEMENTS 
 
The finite element method, using quadratic elements (Fig. 2 c), is used with the Galerkin 
weighted residual principle to solve equations (1) and (2). We thus obtain element matri-
ces of the form: 
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 are the discharges and depths at the local nodes ‘i’ of the ele-
ment ‘e’. It may be noted that for quadratic elements, there are three local nodes within 
each element. Hence,  is a square matrix of size 6x6 and { }e B  is a column matrix 
of size 6x1. 
  
Since the governing equations are applied branch wise, the element matrices pertaining to 
each branch are assembled separately, giving the branch equation  
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where { }b  Φ = { Qb ⋅  1 , hb ⋅1 , Qb ⋅  2 , hb ⋅  2 , ……, Qb ⋅  N , hb ⋅  N }T in which Qj and hj (j 
varying from b ⋅ 1 to b ⋅ N) are the discharges and depths at the jth node of the bth
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 branch. 
Further assembly of the branch matrices into a global matrix in terms of all the variables 
of the network system yields an equation of the form 

        (9) 

where { }   Φ  contains the variables of the complete network system.  
 
Equation (9) when applied with the internal and external boundary conditions produce 
the final system of equation which is required to be solved for the unknown variables. On 
replacing the temporal derivatives with a difference equation in time (assuming known 
initial values of the time dependent variables Q and h) we obtain an equation of the form  
[ ] { } { }   0   D  +      C =Φ                     (10) 
 
where [ ] C  is a global coefficient matrix; { } D  is a global column matrix and { }   Φ  
contains the unknown system variables at time (t + ∆t). For the simple three-branched 
network of Fig. 2, the arrangement of the global equation (10) would be as shown in Fig. 
3. Please note that due to space constraint, the subscript showing the node numbers had 
to be suffixed to the variable name in the figure. The general non-zero coefficients have 
been represented by dots. 
 
The coefficients of equation (10) are non-linear, i.e., they are functions of the system 
variables themselves. Equation (10), therefore, cannot be solved directly and the method 
of Newton-Raphson is used. Denoting equation (10) as 

( )   0   =Φf                      (11) 
 
we may obtain a Jacobian matrix [ W ] and a column vector { F } such that 

[ ]  
 
f    W 





Φ∂
∂

=                      (12) 

And 
{ } ( )      F Φ= f                      (13) 
corresponding to an initial guess of the variable { }   Φ as { }I  Φ . 
 
The error vector { }  ∆Φ  is then obtained from the following equation  
[ ] { } { }  F        W =∆Φ                     (14) 
 
and the improved values of the variables { }  Φ  are worked out from the relationship 
{ } { } { }      -        I1I ∆ΦΦ=Φ +                    (15) 
{ }I  Φ  is now replaced by { } 1  I  +Φ , and equations (12) to (15) are repeatedly solved till 
{ }   ∆Φ decreases below a specified tolerance. 
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Figure 3. Form of global equation (10) for the three-branched network of 

Fig. 2 obtained on using quadratic finite elements to solve the 
flow equations. 

NOTE: The upstream boundary conditions have been assumed to be in the form of Q(t) and the 
downstream boundary condition in the form of h(t). 

 
 

 
Figure 4. Form of the global equation (14) for the three-branched net-

work of Fig. 2. 
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For the simple three-branched network of Fig. 2, the arrangement of the global equation 
(14) would be as shown in Fig. 4. It is seen that the placement of the coefficients is quite 
similar to that of Fig. 3, although their actual values would be different in the two figures. 
  
The point to observe from the figures is that the matrix [ ] W  is banded except for some 
terms arising out of the implementation of the internal boundary conditions. This in-
creases the overall bandwidth of the matrix, which in turn increases the computational 
effort for solving the corresponding system of equation by any standard method, say the 
Gaussian elimination method. To reduce the bandwidth, the procedure followed by Sen 
and Garg (1998) is applied to the present system of equation. Thus, the downstream end 
variables of each branch and their corresponding equations are separated out. Of course, 
the upstream ends could have been chosen instead. The matrix [ ] W  represented by Fig. 
4 is now partitioned and rearranged as shown in Fig. 5.  
 

 
Figure 5. Global equations rearranged after separating out the lowest 

nodes of each branch.  
 
This double-bound band form of matrix [ ] W  is advantageous in that a forward elimina-
tion may be performed for all the variables of the branches, excepting those of the sepa-
rated out nodes, which would be referred to as the “Active Variables” from now on.  
 
The forward elimination process, as may be observed from Fig. 5, can be carried out one 
branch at a time, taken in any order. In a parallel-processing machine, this operation 
could be done simultaneously for all the branches using an array of processors. Further, 
the non-zero coefficients of a branch in the double-bound band form of matrix [ ] W  lie 
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within narrow bands, thus requiring very small active memory as well as less solution 
time.  
 
In the end, we are left with only the equations pertaining to the Active Variables (corre-
sponding to the lower right hand corner of the matrix of Fig. 5). These equations (six in 
our case) are solved simultaneously to get the error vector { }   ∆Φ corresponding to the 
Active Variables. 
 
In the back-substitution phase, the Active Variables of each branch are used to evaluate 
other variables of the branch. As in the forward elimination phase, the operation may be 
carried out for one branch at a time or simultaneously (as in a parallel processor).  
 
In the entire process, the number of simultaneous equations to be solved is just twice the 
number of branches in the network. Comparing the present results with that obtained by 
Sen and Garg (1998), it may be concluded that the order of element (i.e., linear, quad-
ratic, cubic, etc.) would not affect the solution time significantly. The computational 
scheme also shows that the node numbers for each branch need not have any relation to 
that of the other branches and each branch may be numbered independently. 
 
ALGORITHM FOR SOLVING FLOW EQUATIONS WITH IMPLICIT 
FINITE DIFFERENCE SCHEMES 
 
We shall now demonstrate the applicability of the algorithm towards solving the system 
of equation obtained by applying the finite difference procedure. For convenience, we 
refer to the space interval in a computational grid as a reach, as shown in Fig. 2 (d). Ap-
plication of a standard finite difference scheme, say the Preissmann four-point implicit 
scheme (Cunge et al., 1980), to equations (1) and (2) results in a system of equation for a 
reach as: 
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 are the discharges and depths at the end nodes ‘i’ of the reach ‘r’; i 
varying between 1 and 2. Derived from two equations and involving four variables, ma-
trix  would be of size 2x4 and { } r  Q  of size 2x1. 
  
On writing all the reach equations for a branch, we obtain the branch equation  
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where { } b   Φ = { Qb.1 , hb.1 , Qb.2 , hb.2 , ……, Qb.N , hb.N }T in which Qj and hj (j vary-
ing from b ⋅ 1 to b ⋅ N) are the discharges and depths at the jth node of the bth branch. 
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The branch equations can now be assembled for the entire network and the appropriate 
internal and external boundary conditions applied. This leads to a global system of equa-
tions of the form  
 

[ ] { }  0 =   Q  +  
 t
     P 


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

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∂
Φ∂                    (18) 

where { }  Φ  contains all the variables of the system.  
 
On replacing the temporal derivatives with a difference equation in time (assuming 
known initial values of the time dependent variables Q and h) we obtain an equation of 
the form  
 
[ ] { } { }  0   S  +      R  =Φ                     (19) 

where [ ] R  is a global coefficient matrix; { } S  is a global column matrix and { }   Φ  
contains the unknown system variables at time (t + ∆t). Equation (19) is quite similar to 
equation (10) and the solution procedure is also similar. Denoting equation (19) as 
 

( )  0   =Φf                      (20) 
we may obtain a Jacobian matrix [ ] W  and a column vector { F } as in equation (12) and 
(13). The corresponding global matrix (14) for the example network of Fig. 2 would be 
as shown in Figure. 6.  
 

 
Figure 6. Form of the global equation (14) for the three-branched net-

work of Fig. 2 obtained on using an implicit finite difference 
scheme to solve the flow equations. 
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Figure 7. Global equations of Fig. 6 rearranged after separating out the 

lowest nodes of each branch.  
 
Here again, it is noted that matrix [ ] W  is banded except for the internal boundary con-
dition terms. As in the finite element implementation, matrix [ ] W  is partitioned as 
shown in Figure. 7 considering the downstream variables of each branch as the Active 
Variables. Thus, the forward elimination phase of the Gaussian elimination routine may 
be carried out for all the branches independently. What remain finally are the equations 
containing the Active Variables, which are then solved simultaneously. Lastly, the back-
substitution phase is carried out, again taking the branches independently. 
 
CONCLUSION 
 
An efficient solution algorithm for solving the open channel flow equations with the 
method of finite elements or finite differences is developed to route flood hydrograph or 
carry out steady state gradually varied flow computations within a dendritic channel net-
work. Using the algorithm, the maximum size of active matrix storage required during 
simultaneous solution of equations is reduced to the order of twice the number of 
branches in the network. The algorithm is organized in three phases: the forward elimina-
tion phase, the simultaneous solution phase, and the back-substitution phase. The main 
phases, namely the first and the last, may be processed independently for each branch. 
This allows the algorithm to be adapted to parallel processors as well. Even for a serial 
machine, since all the branches need not be taken together, the memory requirement at 
any point of time would be that for storing only the non-zero coefficients of one branch. 
The algorithm does not require any special node or element numbering schemes. The 
solution algorithm, though presented for dendritic networks, may be extended to looped 
channel networks as well. 
 



National Institute of Hydrology, Roorkee, U.P., India  
 

22 

References 
Adeff, S. E. and Wang, S. Y. (1985) “Hydrodynamic model of river flow on a microcomputer” in 

Hydraulics and Hydrology in the Small Computer Age, Volume. 2, W. R. Wardrop (ed.), 
ASCE, Reston, Va., 1017-1023. 

Akan, A. O., and Yen, B. C. (1981) “Diffusion wave flood routing in channel networks.” J. Hydr. 
Engrg. , ASCE, 107(6), 719-732. 

Ball, J. E. (1985) “An algorithm for routing unsteady flows in urban drainage networks” J Hydr. Res., 
23(4), 327-341. 

Chaudhry, M. H (1993) Open channel hydraulics, Prentice Hall of India Ltd., New Delhi. 
Chaudhry, M. H., and Schulte, A. (1986) “Computation of steady-state, gradually varied flows in 

parallel channels.”, Can. J. Civ. Engrg., Ottawa, Canada, 13(1) , 39-45. 
Choi, G. W., and Molinas, A. (1990) “Watershed hydrograph simulation through dendritic channel 

networks.” in Watershed Planning and Analysis in Action, R. E. Riggins, E. B. Jones, R. 
Singh, and P. A. Rechard (eds.), ASCE, 303-312. 

Choi, G. W., and Molinas, A. (1993) “Simultaneous solution algorithm for channel network modelling.” 
Water Resources Res., 29(2), 321-328. 

Cooley, R. L., and Moin, S. A. (1976) “Finite Element solution of St. Venant equation”, J. Hydr. Engrg., 
ASCE, 102(6), 759-775. 

Cunge, J. A., Holly, Jr. F. M., and Verwey, A. (1980) Practical aspects of computational river 
hydraulics. Pitman Publishing, London, U.K. 

Cunge, J. A., and Wegner, M. (1964) “Integration numerique des equations d’ecoulement de Barre de 
St. Venant par un schema implicite de differences fines.” La Houille Blanche, Grenoble, 
France, 19(1), 33-39. 

Fread, D.L. (1973) “Technique for implicit dynamic routing in rivers with tributaries.” Water Resources 
Res., 9(4), 918-926. 

Joliffe, I.B. (1984). “Computation of dynamic waves in channel networks” J. Hydr. Engrg., ASCE, 
110(10), 1358-1370. 

Kao, K. H. (1980) “Improved implicit procedure for multichannel surge computations.” Can. J. Civ. 
Engrg., Ottawa, Canada, 7, 501-512. 

Naidu, B.J., Bhallamudi, S. Murty and Narasimhan, S. (1997) “GVF computation in tree type channel 
network.”, J. Hydr. Engrg. , ASCE, 123(8), 700-708. 

Nguyen, Q. K., and Kawano, H. (1995). “Simultaneous solution for flood routing in channel networks.” 
J. Hydr. Engrg. , ASCE, 121(10), 744-750. 

Preissmann, A. (1961) “Propagation des intumences dans les canaux et rivieres”. Paper presented at the 
1961 First Congress of the French Association for Computation, AFCAL Grenoble, France, 
pp 433-442. 

Schaffranek, R. W., Baltzer, R. A., and Goldberg, D. E. (1981) “A model for simulation of flow in 
singular and interconnected channels.” Techniques of water resources investigations of the 
United States geological Survey, U.S. Geological Survey, Washington, D.C. 

Schulte, A. M. , and Chaudhry, M. H. (1987) “Gradually varied flows in open channel netwroks” , J 
Hydr. Res., 25(3), 357-371. 

Sen, D. J., and Garg, N. K. (1998) “An efficient solution algorithm for dendritic channel networks using 
FEM”, J. Hydr. Engrg. , ASCE, 124(8), 831-839. 

Szymkiewicz, R. (1991) “Finite element method for the solution of St. Venant equation in an open 
channel network” J. of Hydrology, Amsterdam, The Netherlands, 122, 275-281. 

Wylie, E. B. (1972) “Water surface profiles in divided channels.” J. Hydr. Res., 10(3), 352-341. 


	ICIWRM – 2000, Proceedings of International Conference on Integrated Water Resources Management for Sustainable Development, 19 – 21 December, 2000, New Delhi, India
	Dhrubajyoti Sen
	Abstract

	INTRODUCTION
	THE GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
	DISCRETIZATION OF THE FLOW DOMAIN
	ALGORITHM FOR SOLVING FLOW EQUATIONS WITH FINITE ELEMENTS
	Note: The upstream boundary conditions have been assumed to be in the form of Q(t) and the downstream boundary condition in the form of h(t).
	ALGORITHM FOR SOLVING FLOW EQUATIONS WITH IMPLICIT FINITE DIFFERENCE SCHEMES
	CONCLUSION
	Adeff, S. E. and Wang, S. Y. (1985) “Hydrodynamic model of river flow on a microcomputer” in Hydraulics and Hydrology in the Small Computer Age, Volume. 2, W. R. Wardrop (ed.), ASCE, Reston, Va., 1017-1023.
	Akan, A. O., and Yen, B. C. (1981) “Diffusion wave flood routing in channel networks.” J. Hydr. Engrg. , ASCE, 107(6), 719-732.
	Ball, J. E. (1985) “An algorithm for routing unsteady flows in urban drainage networks” J Hydr. Res., 23(4), 327-341.
	Chaudhry, M. H (1993) Open channel hydraulics, Prentice Hall of India Ltd., New Delhi.
	Chaudhry, M. H., and Schulte, A. (1986) “Computation of steady-state, gradually varied flows in parallel channels.”, Can. J. Civ. Engrg., Ottawa, Canada, 13(1) , 39-45.
	Choi, G. W., and Molinas, A. (1990) “Watershed hydrograph simulation through dendritic channel networks.” in Watershed Planning and Analysis in Action, R. E. Riggins, E. B. Jones, R. Singh, and P. A. Rechard (eds.), ASCE, 303-312.
	Choi, G. W., and Molinas, A. (1993) “Simultaneous solution algorithm for channel network modelling.” Water Resources Res., 29(2), 321-328.
	Cooley, R. L., and Moin, S. A. (1976) “Finite Element solution of St. Venant equation”, J. Hydr. Engrg., ASCE, 102(6), 759-775.
	Cunge, J. A., Holly, Jr. F. M., and Verwey, A. (1980) Practical aspects of computational river hydraulics. Pitman Publishing, London, U.K.
	Cunge, J. A., and Wegner, M. (1964) “Integration numerique des equations d’ecoulement de Barre de St. Venant par un schema implicite de differences fines.” La Houille Blanche, Grenoble, France, 19(1), 33-39.
	Fread, D.L. (1973) “Technique for implicit dynamic routing in rivers with tributaries.” Water Resources Res., 9(4), 918-926.
	Joliffe, I.B. (1984). “Computation of dynamic waves in channel networks” J. Hydr. Engrg., ASCE, 110(10), 1358-1370.
	Kao, K. H. (1980) “Improved implicit procedure for multichannel surge computations.” Can. J. Civ. Engrg., Ottawa, Canada, 7, 501-512.
	Naidu, B.J., Bhallamudi, S. Murty and Narasimhan, S. (1997) “GVF computation in tree type channel network.”, J. Hydr. Engrg. , ASCE, 123(8), 700-708.
	Nguyen, Q. K., and Kawano, H. (1995). “Simultaneous solution for flood routing in channel networks.” J. Hydr. Engrg. , ASCE, 121(10), 744-750.
	Preissmann, A. (1961) “Propagation des intumences dans les canaux et rivieres”. Paper presented at the 1961 First Congress of the French Association for Computation, AFCAL Grenoble, France, pp 433-442.
	Schaffranek, R. W., Baltzer, R. A., and Goldberg, D. E. (1981) “A model for simulation of flow in singular and interconnected channels.” Techniques of water resources investigations of the United States geological Survey, U.S. Geological Survey, Washi...
	Schulte, A. M. , and Chaudhry, M. H. (1987) “Gradually varied flows in open channel netwroks” , J Hydr. Res., 25(3), 357-371.
	Sen, D. J., and Garg, N. K. (1998) “An efficient solution algorithm for dendritic channel networks using FEM”, J. Hydr. Engrg. , ASCE, 124(8), 831-839.
	Szymkiewicz, R. (1991) “Finite element method for the solution of St. Venant equation in an open channel network” J. of Hydrology, Amsterdam, The Netherlands, 122, 275-281.
	Wylie, E. B. (1972) “Water surface profiles in divided channels.” J. Hydr. Res., 10(3), 352-341.

