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Abstract 
An artificial neural network (ANN) methodology was employed to estimate the values of crop 
evapotranspiration (ET) and evaporation from daily values of air temperature. The study investi-
gated two ANN architectures, a radial basis function network and a multi layer feed forward back 
propagation network for mapping an input output relationship. The ANN models compared fa-
vorably with observed values of the processes. At the same time, it represents an improvement 
upon the prediction accuracy and flexibility over current methods. A statistical analysis of the re-
sults suggested that the ANN model could be employed in estimating ET and evaporation using 
limited weather data with reasonable accuracy. 
 
INTRODUCTION 
 
The process of evapotranspiration (ET) from vegetated surface, and evaporation from 
water bodies are two major, complex hydrological phenomena to comprehend, due to 
spatial and temporal variability of the climatic characteristics of the watershed. However, 
past research has provided sound theoretical knowledge and practical applications that 
have been verified through field measurements. Many different approaches have been 
used; however, when primary concepts and standard definitions are accepted, it is possi-
ble to find a reasonable agreement among methods.  
 
Detailed measurement of ET or collecting data for estimating ET are time consuming and 
expensive. Some of these measurement methods are soil water depletion (Robins et. al., 
1954; Jensen, 1967; Jensen and Wright, 1978), tanks and lysimeters (Harrold, 1966; 
Aboukhaled et. al., 1982). However these methods are not employed in common owing 
to their requirement of intensive experimental work. Similarly, the direct measurement of 
evaporation under field condition is not feasible at least in the sense that one is able to 
measure river stage, rainfall etc. As a consequence, a variety of techniques have been 
derived for determining or estimating vapor transport from water surface as well as from 
plants (Kohler et. al, 1955; Penman, 1948; Christiansen, 1966; Blaney and Criddle, 
1966). These estimation techniques have been modified for better approximation by vari-
ous researchers (Doorenbos and Pruitt, 1977; Hargreaves and Samani, 1985; Jensen et. 
al, 1990; Frevert et. al., 1983; Allen and Pruitt, 1991). Though these methods have been 
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tested for various regions (de Souza and Yoder, 1994; Jensen et. al., 1990), most of them 
require climatic data that are not widely available. 
 
However, there are situations where estimates of these processes are needed, when only a 
limited meteorological data are available. This requirement could be addressed through 
system theoretic modeling approaches. Linear time series models such as ARMA (Box 
and Jenkins, 1976), or regression analysis may be employed in such situations. However, 
both these approaches fail to represent the internal nonlinear complexities inherent in the 
processes. 
 
Recently, significant improvement in the fields of nonlinear pattern recognition and sys-
tem control theory have been made possible through advances in a branch of nonlinear 
system theoretic modeling called artificial neural networks (ANN). Previous works dem-
onstrate that ANNs are adequate to model complex hydrological processes (Zhu et. al., 
1994; Minns and Hall, 1996; Shamseldin, 1997). A comparison between ANN models 
and traditional models has been made by Hsu et. al. (1995), who concluded that the ANN 
approach is more effective and more efficient whenever explicit knowledge of the hydro-
logic sub-process is not required.  The ANN methodology has been reported to provide 
reasonably good solutions for circumstances where there are complex systems that may 
be poorly defined or understood using simple mathematical equations (Tokar et. al., 
1999; Takahashi, 1993; Vemuri and Rogers, 1994).  
 
This paper demonstrates the capability of system theoretic ANN approach in estimating 
the evapotranspiration and evaporation from widely available climatic data. While such a 
model is not intended as a substitute for physically based theoretical equations for esti-
mation, it can provide a viable alternative when the hydrologic application requires that 
an accurate estimate of these processes be provided from limited meteorological observa-
tions. 
 
Artificial Neural Networks 
The architectures of ANNs are motivated by models of biological neural networks, which 
can recognize patterns and learn from their interactions with the environment. Since the 
1950's many ANN structures have been proposed and explored. However, the main func-
tion of all ANN paradigms is to map a set of inputs to a set of outputs. This mapping is 
achieved through an automated learning process. The most widely researched and used 
structures are multi layer feed forward networks (Rumelhart et. al., 1986), self-organizing 
feature maps (Kohonen, 1982), Hopfield networks (Hopfield, 1982), counter propagation 
networks (Hect-Nielsen, 1987) and radial basis function networks (Moody and Darken, 
1989). Of these, multi layer feed forward networks and radial basis function networks 
have been employed in the present study. 
 
Development of any ANN model consists of the following steps: selection of input-
output data set suitable for calibration (training) and validation, selection of a model 
structure and estimation of its parameters, and the validation of the identified model. 
Though there are a multitude of neural networks, the main function of all paradigms is 
similar. They try to map a set of inputs to a set of outputs, through the use of connection 
strengths (network weights). The weight distribution in every ANN is unique and will 
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determine the specific response to any given input vector. In order to perform a required 
process task, these weights must be determined in advance through a learning process. 
The learning process of ANNs (also referred to as training of ANNs) encompasses the 
adjustment of weights and this process makes use of a learning algorithm and a training 
set of examples. The learning process in ANN can be seen as teaching the network to 
yield a particular response to a specific input. This often consists of an iterative process, 
whereby the network tries to match the output vectors to desired ones and uses any devia-
tions to adjust some or all of its weights. The rules that determine the magnitude of these 
adjustments are contained in the learning algorithm. After numerous training cycles, once 
the ANN has learned the examples with considerable accuracy, test data is presented to 
the network, which it has never encountered before. The resulting outputs are validated 
and the network performance is tested using multiple statistical criteria. The General 
structure of a three layer neural network is presented in Fig 1. 

 
Figure 1. General structure of a three layer neural network. 
 
METHODOLOGY 
 
Evapotranspiration Estimation using ANN 
One of the commonly employed neural networks, the radial basis function network (see 
Dayhoff, 1990; Judith, 1990 for details of this network), has been employed in this study 
to estimate the daily evapotranspiration for rice crop. As stated earlier, the main task in 
developing any ANN model is identifying the input vector (dependant variables) to the 
network so as to produce the output. Since the main objective of the present study was to 
estimate ET using widely available climatic variables, average temperature alone was 
considered as the input to the model. This input structure could be considered as an alter-
native to the temperature based methods (Thronthwaite, 1948; Blaney and Criddle, 1962; 
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Pochop et. al., 1984) for estimating ET that relate the ET to air temperature. In addition 
to it, the temperature data is mostly available with all stations, and an attempt is being 
made to have a better estimate of ET from air temperature data alone, in comparison to 
other temperature-based methods. However, an indirect index of growing stage of the 
crop has been presented in the input by adding normalized day of growth of the crop. 
 
The climatic data as well as the actual measurements of ET used in this part of the study 
were obtained from the agricultural research farm of Kerala Agricultural University, Ta-
vanur (India). Actual evapotranspiration data for rice crop was found from a lysimeter 
study performed in that area. The station is located at 100 53' 30'' North latitude and 760 
East longitude. The data was available for a period from October 1989 to January 1990 
and has been used in this study. 
 
The data available for the present investigation was only for a single season. This has 
restricted the training data set to a part of the available data. The data for about two 
months were used for training the network, and the rest of the data was used for valida-
tion. The radial basis function (RBF) network uses a hybrid learning procedure (Moody 
and Darken 1989). The most common idea in a hybrid learning procedure is to have one 
layer that learns in an unsupervised way, followed by one (or more) layers trained by 
back propagation. After experimenting with various values for the network spread con-
stant (a RBF network parameter, see Moody and Darken, 1989), an optimal network 
structure was finalized. The value of spread constant affects the converging speed of the 
model. The Mean square error criterion was used to identify the best-fit model while 
training. The mean square error (MSE) is defined as, 
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in which yd = desired response; yo

Modeling evaporation using ANN 

 = output response from ANN; p = number of patterns 
presented. The input data were normalized prior to training, using the procedure sug-
gested by Romesburg, 1984. 
 

A 'three layer feed forward back propagation network' was employed to estimate the pan 
evaporation values from climatological data as input (see Dayhoff, 1990; Judith, 1990 for 
details of the network). As stated earlier, the identification of a model involves selection 
of input-output data, model structure and training of network and its evaluation. 
 
The data for this part of the investigation came from the daily climatological record of 
the meteorological observatory in the study area (Agricultural Research Farm, Samalkot).  
The data sample consisted of 4 years daily record of minimum temperature, maximum 
temperature. The period of data used in the study is 1990-1993.  The data for the year 
1991 was used to train the network.  The testing of the model was done using the data for 
the years 1990,1992 and 1993.  The input was standardized using the procedure sug-
gested by Romesburg (1984). 
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In this investigation too, the attempt was to relate the air temperature to evaporation us-
ing ANN approach. As a result, the input vector to the model considered only 2 input 
nodes representing Maximum and Minimum temperatures. The architecture of the net-
work is finalized after a trial and error procedure. If the architecture is too small, the net-
work may not have sufficient degrees of freedom to learn the process correctly. On the 
other hand, if the network is too large, it may not converge during training or it may over 
fit the data (Karunanithi et. al., 1994). The trial and error procedure started with only one 
neuron in the hidden layer. Then the trial is carried out with more neurons (2, 3, 4, etc.). 
The values of mean square error are used here as the indices to check the ability of a par-
ticular architecture in matching the target output.  
 
In the optimal model structure identification stage, training is done for 15000 sweeps. Fig 
2 shows the values of MSE for the ANN model with different number of hidden neurons. 
The Fig 2 indicates that a network with 5 neurons provided a better mapping than a net-
work with 3 neurons, for MSE values. The performance is found deteriorating after the 
number of neurons increased to six or more (Fig 2). The number of hidden layers se-
lected after the trials were only one, and the number of hidden nodes in this layer were 5. 
The structures is represented by ANN(2,5,1) in this paper.  
 

 
Figure 2. The MSE graph during optimization of network architecture. 
 
For identification of the optimal network structure, the data for the year 1991 was pre-
sented to the network for training.  After experimenting with different transfer functions, 
learning and momentum rates, the following parameters were selected: a learning rate of 
0.019 and a momentum rate of 0.013. The transfer function selected was the sigmoidal 
function. The threshold error was set at 0.0075 (normalized units). The network training 
stopped after approximately 50000 epochs (an epoch is one complete pass through a set 
of inputs and target patterns while training the network. 
 
The trained network was used to run a set of test data (data for the year 1990, 1992 and 
1993, untrained, normalized input vectors). The outputs were compared with the meas-
ured values of evaporation. Statistical analysis were carried out for comparing the net-
work output and measured value. 
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RESULTS AND DISCUSSION 
 
Evaluation of ANN ET estimation model 
To have a visual comparison of lysimeter-measured rice evapotranspiration and ANN 
model estimates, the results are plotted in Fig. 3. The figure depicts ET values computed 
as well as lysimeter recorded for the whole season (October-January, 1989-1990). The 
evaluation of the results suggests that the ANN was able to relate air temperature to ET 
satisfactorily. 
 

 
Figure 3. ANN computed ET and lysimeter observed ET. 
 
Though a visual inspection of the observed and computed evapotranspiration values ex-
plains the capability of ANN to represent the ET process in a reasonably accurate man-
ner, the effectiveness of the model is to be understood through statistical analysis of the 
results. Linear regression analysis was used to test the agreement and variations of neural 
network estimated evapotranspiration with lysimeter measurements. Two regression 
equations were evaluated. The first model was of the form: 
 

)b(ETaET anna +=          (2) 
 
where ETa is lysimeter measured evapotranspiration; and ETann

)b(ETET anna =

 is the particular 
evapotranspiration estimated from ANN models.  
 
The second regression model was of the form: 
 

          (3) 
 
where, the zero intercept was forced through the origin. The value of coefficient ‘b’ in 
equation 2 could be used to indicate relative conversion ratios. The hypothesis that the 
coefficient ‘a’ in equation 1 is significantly different from zero was tested according to 
the procedures defined by Steele and Torrie (1960). The values of ‘a’ was not found sig-
nificantly different from zero. Therefore equation 2 was used to compare the fit of the 
ANN model. 
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The results of the regression analysis using equation 2 are presented in Table 1. Each set 
of columns in Table 1 are regression coefficient ‘b’, correlation coefficient ‘r’, standard 
error of estimates (SEE), and raw standard error of estimates (RSEE). The standard error 
of estimates is an estimate of the mean deviation of the regression from observed data. It 
is defined as: 
 

2)(n
)Y(YSEE

2
^

−
∑ −

=          (4) 

where Y is observed (lysimeter-measured) evapotranspiration; and 
^
Y is the regression 

estimated lysimeter evapotranspiration using equation 2. The square of the standard error 
of estimate is an unbiased estimate of the true variance about regression with (n-2) de-
grees of freedom (Steele and Torrie, 1960). The fourth row in Table 1 is the raw standard 
error of estimate (RSEE) of the direct comparisons of lysimeter-measured evapotranspi-
ration to ANN estimated evapotranspiration. The RSEE term (Allen, 1987) is an indica-
tive of how well each method estimated with no local or statistical correction (a=0 and 
b=1). The RSEE is calculated using the equation 4, in which ^

Y is replaced by the com-
puted value of ET. 
 
Table 1. Performance indices of the ANN ET model. 

Regression coeffcient, b  0.99 
Correlation coeffcient, r   0.99 
Standard Error of Estimate (mm)  0.03 
Raw Standard Error of Estimate (mm)   0.03 
Nash-Sutcliffe Efficiency (%)  99.0 

 
The evaluation criterion proposed by Nash and Sutcliffe (1970) was also employed to 
evaluate the performance of the model. The values of efficiency of computation for each 
model are also presented in Table 1. From the Table 1, it is clear that the ANN model 
performance was extremely good and all the evaluation factors agree to this conclusion. 
The high value of the regression coefficient clearly suggests that the ANN model was 
able to match the ET data effectively. According to Shemseldin (1997), efficiency of 
80% and above can be considered as a good fit to the data in ANN models, and in the 
present study the observed efficiency is 99%. The low value of the RSEE term depicts 
the closeness of prediction of ET with the actual measured data. The analysis of the re-
sults clearly demonstrates the capability of ANN in ET estimation from limited meteoro-
logical data. 
 
Evaluation of ANN model for estimation of evaporation 
The results of all ANN models are presented in Fig 4 for calibration year 1991, along 
with the observed evaporation. A visual inspection of the figure clearly demonstrates the 
capability of the ANN approach in modeling evaporation. However, there is clearly room 
for improvement. These results are further analyzed using numerical indices that are re-
ported to evaluate the performance of a model. The analysis used the correlation between 
the observed and computed evaporation and the efficiency of the model (Nash and Sut-
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cliffe, 1970) as indices for comparison of the performance of the model. Other statistical 
indices such as root mean square error (RMSE), percentage error of estimate of annual 
evaporation, and the standard deviation of ratio of observed to computed evaporation are 
also employed for performance analysis. The values of all these indices are presented in 
Table 2 for training as well as testing.  
 

 
Figure 4. ANN computed evaporation alongwith observed during train-

ing year 1991. 
 
 
Table 2. The values of performance indices for evaporation estimation 

from ANN model. 
 1990    1991 1992 1993 
RMSE (mm)   1.22 1.07 1.56 2.07 
Efficiency 12.23 73.35 41.24  45.41 
% Error in Total Annual Evaporation (estimated) 10.97 -0.30  11.49  -7.25 
Correlation coefficient  0.56 0.86 0.70 0.69 
Standard deviation of ratio of observed to computed 
evaporation  

0.33 0.28 0.39  0.44 

 
The RMSE statistics measure the residual variance; optimal value is 0.0. The models tend 
to have small RMSE during training as well as calibration. From Table 2, it is clear that 
the model estimated the total annual evaporation with minimum error during calibration. 
However, the performance was found to deteriorate during validation. The correlation 
between the computed and observed evaporation values were satisfactory throughout, 
except for the year 1990. The standard deviation of the ratio of observed to computed 
evaporation measures the deviation of the regression line from 1:1 line, and is found 
minimum during calibration as well as training. 
 
From the Table 2, it may be seen that all the indices show a good performance of ANN 
model during training. However, the performance was found deteriorating during valida-
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tion. A significant observation may be that the model showed drastic deterioration in per-
formance during the year 1990 (as is evident from the low efficiency and correlation), 
while the performance was satisfactory during other validation years. This may be due to 
an inconsistent data during the year 1990. At the same time, the investigation demon-
strated the potential of ANN approach in estimating evaporation from limited meteoro-
logical data.  
 
SUMMARY AND CONCLUSIONS 
 
A research study has been conducted to explore the capabilities of system theoretic ANN 
approach in modeling complex hydrological processes. The foregoing discussions clearly 
illustrate the faculty of ANN techniques to extract patterns from the input output data set, 
irrespective of the complexity associated with the relationships. The testing accuracy, 
which is favorably compared with training accuracy in each application, based on stan-
dard performance evaluation indices, supports this conclusion. The investigation indi-
cated that because of its power and flexibility, ANN approach could even employed in 
estimating evapotranspiration and evaporation using widely available meteorological 
data. However, in the case of modeling evapotranspiration, only a single season data was 
only employed, and further research may be required to reinforce this conclusion. 
 
References 
Aboitiz, M., J. W. Labadie, and D. F. Heerman, (1986). Stochastic soil moisture estimation and 

forecasting for irrigation fields. Water resources research, 22(2):180-190. 
Allen, R. G. (1987). A Penman for all seasons. Journal of irrigation and drainage engineering, American 

Society of Civil Engineers, 112(4): 348-368. 
Allen, R. G. and Pruitt, W. O. (1991). FAO-24 reference evapotranspiration factors. ASCE Journal of 

Irrigation and Drainage Engineering, 117(5): 758-773. 
Blaney, H. F., and Criddle, W. D. (1962). Determining consumptive use and irrigation water 

requirement, USDA Technical bulettin, 1275, USDA, Beltsville. 
Box, G. E. P. and G. M. Jenkins, (1976). Time series analysis, forecasting and control., Holden day, 

Oakland, California.  
Christiansen, J. E. (1966). Estimating pan evaporation and evapotranspiration from climatic data. 

Irrigation and drainage spec. Conf., ASCE., Las Vegas, Nev., 193-231. 
Dayhoff, J. E. (1990). Neural network architectures: An introduction. Van Nostrand Reinhold, New 

York. 
de Souza, F., and Yoder, R. E. (1994). ET estimation in the northeast of Brazil: Hargreaves or Penman-

Monteith equation? Technical paper, ASAE international winter meeting, ASAE, St. Joseph, 
Michigan. 

Doorenbos, J. and Pruitt, W. O. (1977). Crop water requirements. Irrigation and drainage paper 24, 
Food and agricultural organization of the United Nations, Rome, Italy. 

Frevert, D. K., Hill, R. W., and Braaten, B. C. (1983). Estimation of FAO evapotranspiration 
coefficients. Journal of irrigation and drainage engineering, ASCE, 109(2): 265-270. 

Hargreaves, G. H. and Samani, Z. (1985). Reference crop evapotranspiration from temperature. Applied 
engineering in agriculture, American society of agricultural engineers, 1(2): 96-99. 

Harrold, L. L. (1966). Measuring evapotranspiration by lysimeter. Proceedings of the conference on 
evapotranspiration, ASAE, 28-33. 

Hecht-Neilson, R. (1990). Neurocomputing. Addison-Wesley Publishing Company, Reading, Mass. 
Hopefield, J. J. (1982). Neural networks and physical systems with emergent collective computational 

abilities. Proceedings of the National Academy of Sciences, USA, 79: 2554-2558 (Reprinted 
in Anderson and Rosenfeld, 1988). 



National Institute of Hydrology, Roorkee, U.P., India  
 
61 

Hsu, K., Gupta, V. H., and Sorroshian, S. (1995). Artificial neural network modeling of the rainfall-
runoff process. Water resources research, 31(10): 2517-2530. 

Jensen, M. E. (1967). Evaluating irrigation efficiency. Journal of irrigation and drainage division, 
ASCE, 93(IR1):83-98. 

Jensen, M. E., and Wright, J. L. (1978). The role of evapotranspiration models in irrigation scheduling. 
Transactions of the ASAE, 21(1):82-87. 

Jensen, M. E., Burman, R. D., and Allen, R. G. (1990). Evapotranspiration and irrigation water 
requirements, ASCE manual and report on on engineering practice, No.70, ASCE, New York. 

Jones, W., and Hoskins, J. (1987). Back propagation, a generalized delta rule. Byte Mag., 10-15. 
Judith, E. D. (1990). Neural Network Architectures. Van Nostard Reinhold, New York. 
Karunanithi, N., Grenney, W. J., Whitley, D., and Bovee, K. (1994). Neural networks for river flow 

prediction. Journal of computing in civil engineering, ASCE, 8(2), 201-220. 
Kohler, M. A., Nordenson, T. J., and Fox, W. E. (1955). Evaporation from pans on lakes. U. S. 

Department Com., Weather Bur. res. Paper 38, Washington D. C. 
Kohonen, T. (1982) Self-organized formation of topologically correct feature maps. Biological 

cybernetics, 43: 59-69. 
Minns, A. W., and M. J. Hall, (1996). Artificial neural networks as rainfall runoff models, Journal of 

hydrological sciences, 41:399-417. 
Moody, J. and C. Darken (1989). Fast learning in networks of locally tuned processing units.  Neural 

computation, 1: 281-294. 
Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: 1. A 

discussion of principles. Journal of hydrology, 10: 282-290. 
Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the 

Royal society of London, London, A-193: 120-146. 
Pochop, L. O., Borrell, J., and Burman, R. D. (1984). Elevation- a bias in SCS Blaney Criddle ET 

estimates. Transactions of the ASAE, 27: 125-128. 
Robins, J. R., Pruitt, W. O., and Gardener, W. H. (1954). Unsaturated flow of water in field soils and its 

effect on soil moisture investigation. Soil science society of America proceedings, 18:344-
347. 

Romesburg, H. C. (1984). Cluster analysis for researchers. Lifetime learning publications, Belmont., 
California. 

Rumelhart, D. E., and McClelland, J., eds. (1986). Parallel distributed processing, Vol. 1, MIT Press, 
Cambridge. 

Shemseldin, A. Y. (1997). Application of a neural network technique to rainfall runoff modeling, 
Journal of Hydrology, 199:272-294. 

Steele, R. G. D., and Torrie, J. H.(1960). Principles and procedures of statistics with special reference to 
the biological sciences, Mc Graw-Hill, Inc. New York. 

Takahashi, Y. (1993). Generalization and approximation of capabilities of multi layer networks. Neural 
computation, 5: 132-139. 

Thornthwaite, C. W. (1948). An approach toward a rational classification of climate.  The Geophysical 
review, 38(1): 55-94. 

Tokar, A. S., and Johnson, P. A. (1999). Rainfall-runoff modeling using artificial neural network. 
Journal of hydrologic engineering, 4(3): 232-239. 

Vemuri, V. R., and Rogers, R. D. (1994). (Ed.) Artificial neural networks: Forecasting time series. IEEE 
computational society Press., Los Alamtos, California.  

Zhu, M. L., Fujita, M., and Hashimoto, N. (1994). Application of artificial neural network to runoff 
prediction. In Stochastic and statistical methods in hydrology and Environmental Engineering 
(Eds.) Hipel, K. W.: 205-216, Kluwer Academy, Norwell. 


	ICIWRM – 2000, Proceedings of International Conference on Integrated Water Resources Management for Sustainable Development, 19 – 21 December, 2000, New Delhi, India
	Neural computation technique for estimating of hydrologic
	K. P. Sudheer
	Scientist 'B', National Institute of Hydrology, Deltaic Regional Centre, Kakinada, India
	A. K. Gosain
	Professor, Civil Engineering, Indian Institute of Technology, Delhi, India
	K. S. Ramasastri
	Scientist 'F', National Institute of Hydrology, Roorkee, India
	Abstract

	INTRODUCTION
	Artificial Neural Networks

	Figure 1. General structure of a three layer neural network.
	METHODOLOGY
	Evapotranspiration Estimation using ANN
	Modeling evaporation using ANN

	Figure 2. The MSE graph during optimization of network architecture.
	RESULTS AND DISCUSSION
	Evaluation of ANN ET estimation model

	Figure 3. ANN computed ET and lysimeter observed ET.
	Table 1. Performance indices of the ANN ET model.
	Evaluation of ANN model for estimation of evaporation

	SUMMARY AND CONCLUSIONS
	References

	Aboitiz, M., J. W. Labadie, and D. F. Heerman, (1986). Stochastic soil moisture estimation and forecasting for irrigation fields. Water resources research, 22(2):180-190.
	Allen, R. G. (1987). A Penman for all seasons. Journal of irrigation and drainage engineering, American Society of Civil Engineers, 112(4): 348-368.
	Allen, R. G. and Pruitt, W. O. (1991). FAO-24 reference evapotranspiration factors. ASCE Journal of Irrigation and Drainage Engineering, 117(5): 758-773.
	Blaney, H. F., and Criddle, W. D. (1962). Determining consumptive use and irrigation water requirement, USDA Technical bulettin, 1275, USDA, Beltsville.
	Box, G. E. P. and G. M. Jenkins, (1976). Time series analysis, forecasting and control., Holden day, Oakland, California.
	Christiansen, J. E. (1966). Estimating pan evaporation and evapotranspiration from climatic data. Irrigation and drainage spec. Conf., ASCE., Las Vegas, Nev., 193-231.
	Dayhoff, J. E. (1990). Neural network architectures: An introduction. Van Nostrand Reinhold, New York.
	de Souza, F., and Yoder, R. E. (1994). ET estimation in the northeast of Brazil: Hargreaves or Penman-Monteith equation? Technical paper, ASAE international winter meeting, ASAE, St. Joseph, Michigan.
	Doorenbos, J. and Pruitt, W. O. (1977). Crop water requirements. Irrigation and drainage paper 24, Food and agricultural organization of the United Nations, Rome, Italy.
	Frevert, D. K., Hill, R. W., and Braaten, B. C. (1983). Estimation of FAO evapotranspiration coefficients. Journal of irrigation and drainage engineering, ASCE, 109(2): 265-270.
	Hargreaves, G. H. and Samani, Z. (1985). Reference crop evapotranspiration from temperature. Applied engineering in agriculture, American society of agricultural engineers, 1(2): 96-99.
	Harrold, L. L. (1966). Measuring evapotranspiration by lysimeter. Proceedings of the conference on evapotranspiration, ASAE, 28-33.
	Hecht-Neilson, R. (1990). Neurocomputing. Addison-Wesley Publishing Company, Reading, Mass.
	Hopefield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA, 79: 2554-2558 (Reprinted in Anderson and Rosenfeld, 1988).
	Hsu, K., Gupta, V. H., and Sorroshian, S. (1995). Artificial neural network modeling of the rainfall-runoff process. Water resources research, 31(10): 2517-2530.
	Jensen, M. E. (1967). Evaluating irrigation efficiency. Journal of irrigation and drainage division, ASCE, 93(IR1):83-98.
	Jensen, M. E., and Wright, J. L. (1978). The role of evapotranspiration models in irrigation scheduling. Transactions of the ASAE, 21(1):82-87.
	Jensen, M. E., Burman, R. D., and Allen, R. G. (1990). Evapotranspiration and irrigation water requirements, ASCE manual and report on on engineering practice, No.70, ASCE, New York.
	Jones, W., and Hoskins, J. (1987). Back propagation, a generalized delta rule. Byte Mag., 10-15.
	Judith, E. D. (1990). Neural Network Architectures. Van Nostard Reinhold, New York.
	Karunanithi, N., Grenney, W. J., Whitley, D., and Bovee, K. (1994). Neural networks for river flow prediction. Journal of computing in civil engineering, ASCE, 8(2), 201-220.
	Kohler, M. A., Nordenson, T. J., and Fox, W. E. (1955). Evaporation from pans on lakes. U. S. Department Com., Weather Bur. res. Paper 38, Washington D. C.
	Kohonen, T. (1982) Self-organized formation of topologically correct feature maps. Biological cybernetics, 43: 59-69.
	Minns, A. W., and M. J. Hall, (1996). Artificial neural networks as rainfall runoff models, Journal of hydrological sciences, 41:399-417.
	Moody, J. and C. Darken (1989). Fast learning in networks of locally tuned processing units.  Neural computation, 1: 281-294.
	Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: 1. A discussion of principles. Journal of hydrology, 10: 282-290.
	Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal society of London, London, A-193: 120-146.
	Pochop, L. O., Borrell, J., and Burman, R. D. (1984). Elevation- a bias in SCS Blaney Criddle ET estimates. Transactions of the ASAE, 27: 125-128.
	Robins, J. R., Pruitt, W. O., and Gardener, W. H. (1954). Unsaturated flow of water in field soils and its effect on soil moisture investigation. Soil science society of America proceedings, 18:344-347.
	Romesburg, H. C. (1984). Cluster analysis for researchers. Lifetime learning publications, Belmont., California.
	Rumelhart, D. E., and McClelland, J., eds. (1986). Parallel distributed processing, Vol. 1, MIT Press, Cambridge.
	Shemseldin, A. Y. (1997). Application of a neural network technique to rainfall runoff modeling, Journal of Hydrology, 199:272-294.
	Steele, R. G. D., and Torrie, J. H.(1960). Principles and procedures of statistics with special reference to the biological sciences, Mc Graw-Hill, Inc. New York.
	Takahashi, Y. (1993). Generalization and approximation of capabilities of multi layer networks. Neural computation, 5: 132-139.
	Thornthwaite, C. W. (1948). An approach toward a rational classification of climate.  The Geophysical review, 38(1): 55-94.
	Tokar, A. S., and Johnson, P. A. (1999). Rainfall-runoff modeling using artificial neural network. Journal of hydrologic engineering, 4(3): 232-239.
	Vemuri, V. R., and Rogers, R. D. (1994). (Ed.) Artificial neural networks: Forecasting time series. IEEE computational society Press., Los Alamtos, California.
	Zhu, M. L., Fujita, M., and Hashimoto, N. (1994). Application of artificial neural network to runoff prediction. In Stochastic and statistical methods in hydrology and Environmental Engineering (Eds.) Hipel, K. W.: 205-216, Kluwer Academy, Norwell.

