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Abstract 
An analytical solution for unsteady seepage from a canal is derived using Duhamel's principle, the 
basic solution for water level rise due to steady recharge from a strip source given by Poluborinova 
- Kochina and  the non-linear relationship between influent seepage and hydraulic head difference 
proposed by Rushton and  Redshaw. The parameters  appearing in Rushton and Redshaw's  pro-
posed non-linear equation for influent seepage  have been derived. Variation of seepage with time 
has been presented in non-dimensional form.  Linear relationship for shallow water table condition 
over estimates seepage from a canal. When water table is at large depth, the linear relationship is 
not applicable. Seepage losses  per unit area is higher for canal with smaller width. 
  
INTRODUCTION 
 
It has been often assumed for a stream, which is hydraulically connected with an aquifer, 
that the exchange flow rate between the stream and the aquifer is linearly dependent on the 
potential difference causing flow (Ernst, 1962; Aravin and Numerov, 1965;  Herbert, 1970; 
Morel-Seytoux and Daly, 1975) ; Besbes et al, 1978; and Flug et al, 1980).  Bouwer (1969) 
has reported that the recharge from a canal to an aquifer is directly proportional to the differ-
ence in the water levels in the canal and in the aquifer in the vicinity of the canal.  The coef-
ficient of proportionality, which has been designated as reach transmissivity, depends on the 
hydraulic conductivity and canal cross section (Morel-Seytoux, 1964, Bouwer, 1969). Only 
in case of confined flow, the relation between seepage and potential difference causing flow 
can be linear. There have been evidences that the process of stream aquifer interaction can 
be non-linear  (Rushton and Redshaw, 1979; Dillon, 1983, 1984).  Considering the fact that 
influent seepage from a canal is zero for zero potential difference and a finite quantity for 
infinite potential difference, the relationship between influent seepage and potential differ-
ence has to be non-linear in case of unconfined flow. Only for cases when the water table is 
very close to the canal bed, the linear relationship is applicable. In this paper, using the non-
linear relationship between the influent seepage and the potential difference proposed by 
Rushton and Redshaw , unsteady seepage from a canal has been analysed.  
 
STATEMENT OF THE PROBLEM 
 
A canal having hydraulic connection with the underlying aquifer is shown in Fig. 1. The 
recharge from unit length of a canal to an aquifer is assumed to have the following non-
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linear relationship with the potential difference between the canal and the aquifer (Rush-
ton and Redshaw, 1979): 
 

))}] th(0, - r(hC3{--[ C 2 = ) (t Q      exp1       (1) 
 
C2 and C3 are constants; hr is the hydraulic head at the canal perimeter; and h(0, t) is the 
hydraulic head   in  the aquifer under the canal axis at time t.  hr and h(0, t) are measured 
upwards from the impervious bed of the aquifer which has been selected as the low da-
tum.  The hydraulic head, h(0, t),  is governed by the recharge from the canal which oc-
curs  up to  time t. The time  should be  measured  from the instant  the  seepage water 
from a canal  joins the ground water. For convenience, it is reckoned since water is con-
veyed in the canal. It is aimed to find the two parameters C2 and C3 and the influent 
seepage, Q(t), at various time after the onset of running of a canal. 

 
Figure 1. A canal hydraulically connected with  an aquifer. 

 

Evaluation of Constants C2 and C3 
The seepage from unit length of a canal, when the water table is at very large depth, is 
given by ( Kozeny, 1931; Vedernikov, 1934 , vide Harr, 1962): 
 
Q = K (B+AH)          (2) 
 
where B=width of the canal at the water surface, and H= the maximum depth of water in 
the canal. Using inversion of hodograph and conformal mapping , Vedernikov  has de-
rived the parameter A  for canals having trapezoidal cross section.  For a ditch with a 
curved perimeter, the parameter A is equal to 2 (Kozeny, 1931,  vide Harr , 1962).   
Applying the condition that the exponential term in equation (1) tends to zero for very 
large  value of  [hr -h(0, t)], i.e., when the water table lies at large depth below the canal 
bed,  equations (1) and(2) yield  
 
C2=K(B+AH)                                                                                                       (3) 
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For small difference between hr and h(0, t),  the higher order terms of the polynomial 
expansion of the  exponential  term  appearing in   equation (1)  can  be neglected and the 
seepage for small potential difference can be approximated to be: 
 
Q(t) = K(B + AH) C3 [hr - h (0,t)]                                       (4) 
 
For  small  potential  difference  between the canal and aquifer, the exchange flow  rate 
can be assumed  to have  a linear relationship with the potential difference. The linear 
relationship proposed by several investigators is of the form: 
 

t)](0, h - h [  = (t) Q rrΓ          (5) 
 
in which Γr is the constant of proportionality known as reach transmissivity.  Following 
Herbert (1970), an expression for reach transmissivity for unit length of a canal is given 
by: 
 

] 
R

) H + (E 0.5[  / K =  er logπΓ         (6) 

 
where, E = saturated thickness of the aquifer below the bed of the canal;  H= maximum 
depth of water in the canal; R = radius of the equivalent semi-circular section of the canal 
equal to Wp/π; Wp= wetted  perimeter of  the canal.  Herbert's formula is applicable for 
0.5(E+H) > R.  Equating equations (4) and (5), the other constant, C3 is found to be :   
                                        
C3=Γr /{K(B+AH)}                                                                                                   (7) 
 
Estimation of Unsteady Seepage from a Canal 
Let the time span be discretised into time-steps of equal size ∆t. Let during a time-step   γ 
the recharge rate from unit length of  the canal, Q(γ), be constant.  Q(γ)  varies from one 
time-step to next.  The hydraulic head at the end of nth unit time-step, h(0, n ∆t), is given 
by(Morel-Seytoux and Daly 1975): 

1) + - n t,(0, )Q(  + h =) tn (0, h
n

1=
γδγ

γ
∆∑∆ )0,0(                                                 (8) 

 
in which δ(.,.,.) are discrete kernel coefficients for piezometric rise under the canal. The 
first term within bracket of the discrete kernel coefficient is the distance from the canal 
axis,  the  second  term  is  the uniform time-step size and the third term is convolution 
time index. h(0,0) is the initial water table height before the onset of recharge.  The dis-
crete kernel coefficients δ (.,.,.) are computed as follows: 
The width of the strip source from which the recharge is taking place is B.  If the re-
charge takes place at unit rate from unit length of the strip, the average rate of recharge 
per unit area would be 1/B.  Let the rise in piezometric surface due to continuous uniform 
recharge , at a rate 1/B per unit area from the recharging strip of infinite length, be desig-
nated as U(x, t).  Following Polubarinova-Kochina (1962), the response function U(x,t) is 
given by: 
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U(x,t) = F(x,B,t) - 0.5√x2/T          for x ≤ - B/2 and, x ≥ B/2 
= F(x,B,t) - 0.5 (x2+0.25B2

] } 
t4

0.5B - x { erf - } 
t4

0.5B + x { erf [ 
2BT

t = t)B,F(x,     
αα

α

)/(BT) for -B/2 ≤ x  ≤ B/2,                             (9) 
 
where, 
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in which x is the distance from the centre of the recharging strip, T is the transmissivity 
of the aquifer, α is the hydraulic diffusivity equal to T/ ϕ and ϕ is the specific yield. 
 
If unit recharge per unit length of the recharging strip takes place during the first unit 
time period ∆t, and no recharge takes place there after, the piezometric rise in the aquifer 
δ(.,.,.), at the end of nth time step is given by: 
 

 /
,/])1([

1 = n for                 tt) (x,U 
1 > n for   tt) - n (x, U - t)n (x, U = n) t,(x, 

∆∆=
∆∆∆∆δ                 (10) 

On substituting h(0,n∆t) from equation (8) in equation (1), and replacing hr  by [Di - 
σr(n)], in which Di is depth to impervious stratum measured from a high datum and σr(n) 
is depth to  water level in the canal during nth time step measured from the same high 
datum and simplifying, 
 

1)}] + - n  ,t (0,  ) ( Q  - h- (n)  - D{ C[-  = C /  ) (n Q -  
n

1=
ri3 γδγσ

γ
∆∑)0,0(exp1 2          (11) 

Taking logarithm of terms on either side of eq.(11), 
 

1)} + - n  ,t (0,  ) ( Q - h- (n)  - D{ C- =]/C ) (n Q- [  
n

ri3e γδγσ
γ

∆∑
=1

2 )0,0(1log          (12) 

Splitting the temporal summation into parts and rearranging, 
 

  1)0,0(

11log 2

)} + - n t, (0,  ) ( Q  - h- ) (n  - D{ C- =    

) t, (0,  ) (n Q C -] C /  ) (n Q- [    
1 - n

1=
ri3

3e

γδγσ

δ

γ
∆∑=

∆
               (13) 

Q(n) can be solved in succession starting from time step 1 by an iteration procedure. In 
particular for the first time step, the temporal summation term in equation (13) is not to 
be considered. 
 
The following simplification can be adopted without much loss of accuracy.  K(B+AH) 
being the maximum recharge rate per unit length of the canal that can occur when water 
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table is at large depth, the ratio Q(n)/[K(B+AH)] is less than 1. Expanding the logarith-
mic term  in equation(13) and neglecting the third and higher order terms and simplifying 
 

 )0,0(

1/11 22

0 =1)}] +-n ,t  (0, ){Q(  - h - (n) - D[ C- 

) (n Q)] t, (0, C + C[   ) (n Q ]C /  [ 0.5
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22
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δ
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                (14) 

Solving the above quadratic equation 

2a
)4ac - b( + b-

 = (n) Q
2

                                                                                   (15) 

 
where 
 
a = 0.5[1 / C2]2

1)]+-nt,(0, )Q(  - h - (n)-D[C- = c
-1n

1=
ri3 γδγσ

γ
∆∑)0,0(

   
b = [1/C2+ C3 δ(0, ∆t, 1)  

 

 
RESULTS AND DISCUSSION 
 
The data required for the computation are : canal cross section, maximum depth of water 
in the canal, depth to water table, thickness of aquifer, hydraulic conductivity, and stor-
age coefficient.  Assuming a time step size ∆t, the discrete kernel coefficients, δ(0,∆t,γ ), 
γ = 1, 2……. n , were generated for known width of the canal at the water surface, hy-
draulic diffusivity of the aquifer. The reach transmissivity was obtained using Hurbert 
formula for known wetted  perimeter of the canal and  saturated thickness  of the aquifer 
below the canal bed. For  known trapezoidal canal cross section, the parameter 'A' was 
obtained  from Vedernikov's graph (vide Harr,1962). The seepage was computed in suc-
cession starting from first time step for a  known initial potential  difference. Since the 
canal seepage varies with time size, the accuracy depends on the time step size. A mini-
mum number of 10 time steps is required to compute the seepage rate at time t. 
 
For a canal with width at water surface B=30m, maximum depth of water in the canal 
H=3m, canal side slope m=1.5, hydraulic conductivity K=0.01m/day, ∆t=0.001 day, ini-
tial saturated thickness h(0,0)=100m, and initial potential difference [hr -h(0,0)]=6m, the 
seepage from the canal  at various time are presented in table1. Seepage rates are com-
puted using the exact equation following an iteration procedure and by the approximate 
method. The error in computation by the approximate method is of the order of 2%. 
Therefore, approximate method which avoids iteration can be conveniently used. 
 
For shallow water table position, if the relation between influent seepage and potential 
difference is approximated by a linear relation, the seepage loss is given by : 
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The seepage computed by a linear relationship is over estimated by about 15% . In Table-
1, the seepage quantities computed by non-linear and linear relationship are compared. 
 
Table 1. Seepage following linear and non-linear relation. 

 
 
Kt/(ϕH) 

Q(t)/(KH) 
Non-
linear 
(Exact) 

Non-
linear 
(Approxi-
mate) 

Linear 

     .033333    3.358783    3.429570    3.872202 
     .066667    3.342274    3.412055    3.847320 
     .100000    3.326648    3.395093    3.823281 
     .133333    3.311696    3.378883    3.800365 
     .166667    3.297804    3.363458    3.778610 
     .200000    3.284341    3.348776    3.757951 
     .233333    3.270992    3.334777    3.738298 
     .266667    3.258593    3.321399    3.719558 
     .300000    3.247157    3.308583    3.701644 
     .333333    3.235700    3.296276    3.684477 
     .366667    3.224670    3.284432    3.667989 
     .400000    3.214102    3.273010    3.652120 
     .466667    3.193938    3.251298    3.622039 
     .500000    3.184332    3.240948    3.607739 
     .566667    3.165875    3.221141    3.580443 
     .600000    3.157053    3.211642    3.567386  
      .666667    3.139717    3.193369    3.542328 

 

 

Figure 2. Variation of non-dimensional seepage with non-dimensional 
time parameter for shallow and deep water table position. 
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Figure 3. Variation of non-dimensional seepage for unit wetted perimeter 

with time for different width of the canal at the water surface. 
 
Variations of dimensionless seepage, Q(t)/(KH) ,  from a  canal  having  m=1.5 , and  
B/H=10,   with  non-dimensional  time parameter,  Kt/( φ H ) , are shown in figure 2 for  
initial potential difference (hr - h(0,0) )/H= 20 and 2. (hr - h(0,0) )/H =20  corresponds to 
the  case where the water table lies at a large depth below the canal  for which non-linear  
relation  between seepage and potential  difference is applicable. (hr-h(0,0))/H=2  corre-
sponds to the case where water table  lies at shallow depth  for which  linear law  can be 
applied . When the water table is at shallow depth , the decrease in seepage rate is more 
rapid than that  when the water table lies at large depth. 
 
Variation of non-dimensional seepage for unit wetted perimeter with time for different 
width of the canal at the water surface is presented in figure-3. Under prolonged seepage, 
the seepage rate from unit surface area of a small canal [i.e., B/H=5] is 2.5 times that of 
from a canal of higher width [i.e, B/H= 20]. Therefore, while using canal seepage per 
unit wetted area, the canal width should be taken into account. 
 
CONCLUSIONS 
 
Unsteady seepage from a canal has been analysed  using the relation given by Rushton 
and Redshaw. The parameters appearing in Rushton and Redshaw’s equation have been 
derived. 
 
Linear relationship for shallow water table condition over estimates seepage from a ca-
nal. When water table is at large depth, the linear relationship is not applicable. 
 
Seepage losses per unit area  is higher for canal with smaller width. 
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