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Abstract 
The Bear’s springflow model and the model with long transmission zone, assume the flow to be 
one-dimensional. However, in reality, the flow pertaining to a spring is three-dimensional. Using 
the Dupuit-Forchheimer assumptions, some three-dimensional flow process could be dealt as two-
dimensional. A springflow domain can be visualized to have a recharge area, which may not be 
well defined, and a discharge area acts as the spring. Hantush (1967, vide Bouwer, 1978) has given 
solution for the rise of piezometric surface due to uniform recharge at a constant rate from a rec-
tangular basin. The shape of the recharge area for a spring can be considered as rectangular. Simi-
larly, a rectangular shape can be assumed for the spring’s opening. Using the Hantush’s basic solu-
tion for the rise of piezometric surface due to recharge from a rectangular area, a two-dimensional 
springflow model has been developed in this paper. The method of image is applied to convert the 
finite flow domain into an infinite one.  
 
In this model, the spring aquifer system is an open system. Therefore, all the discharge does not 
appear as a springflow. The variation of logarithm of a springflow with during recession does not 
follow a straight line. Only towards a later part of the recession the variation is approximately lin-
ear. Using the random jump technique and the springflow model for an open flow domain, re-
charge area, spring opening, distance of the spring from the recharge area, transmissivity and 
storativity of the transmission zone and the recharge have been estimated from observed spring-
flow data from the Kirkgoz spring in Turkey. Since the domain is an open one, the recharge com-
puted by the model, which is based on Hantush’s solution, is found higher than those computed 
using the model for a closed system.  
 
STATEMENT OF THE PROBLEM 

A schematic configuration of a spring flow domain is shown in Fig. 1(a). The corre-
sponding idealized flow domain adopted for the development of the model is shown in 
Fig. 1(b). The recharge area of the spring is assumed to be a rectangle of size LxWR

DEVELOPMENT OF THE MODEL 

 and 
the spring opening conforms to a rectangle of size a x b. The aquifer which transmits wa-
ter to the spring is homogeneous, isotropic, and has semi-infinite areal extent. It is aimed 
to find the temporal variation of the springflow due to time variant recharge through the 
entire recharge zone. 
 

The basic saturated flow equation describing the flow in the spring aquifer system is the 
Boussinesq’s equation: 
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  ∞   ∞ 
φ δs  - T  δ2s  - T δ2s   =   ∫      ∫  (ξ, ν, t) δD (ξ – x, ν – y) dξ dν                 (1) 
  δt     δx2     δ2y -∞  -∞ 
 
Where s is the rise in piezometric surface, t is time, x and y are the horizontal Cartesian 
coordinate, φ is the storage coefficient, T is the transmissivity, r (ξ,ν,t) is the recharge or 
discharge rate per unit area (positive for recharge and negative for discharge) and δD(ξ-x, 
ν-y) is a Dirac  delta function singular at the point of coordinates x, and y. The level of 
the initially rest piezometric surface coinciding with top of the aquifer is taken as the da-
tum. 

 
Figure 1(a) & (b). Schematic and idealised flow domain of a spring. 
 
The required solution to the differential equation (1) for the spring needs to satisfy an 
initial condition S (x, y, 0) = 0. The boundary conditions to be satisfied are: 
 
δs        =  0         (2) 
 δx  x=0   
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s (x, + 

 
A spring gets activated when the piezometric surface tends to rise above its threshold. 
Once a spring gets activated, the rise in piezometric surfacce at the location of the spring 
remains invariant till the springflow becomes zero. Therefore, the other boundary condi-
tion to be satisfied is: 
 
S (x

 ∞ , t)     =  0         (3) 
 
s ( ∞ , y, t)        =  0         (4) 

1, y1, t) = z1,  t > t1       
  (5) 
 
Where x1, y1 are the coordinate of the spring, t1 is time of activation of the spring, z1 is 
height of the threshold of the spring above the initially rest piezometric surface.  
 
The method of image is applied to convert the finite flow domain into an infinite one. 
The boundary condition stated in equation (2) is thereby satisfied. The system of image 
and real springs is shown in Fig. 2. Hantush’s basic solution being used in the present 
analysis, the boundary conditions stated in equation (3) and equation (4) and the initial 
conditions are automatically satisfied.  
 

 
Figure 2. Flow domain of the proposed model based on theory of image. 
 
Let the time span be discretised into uniform time steps of size ∆t. Let during a time step, 
γ, the pulse recharge per unit area be Ru (γ), and the pulse spring discharge per unit area 
of the spring opening be q(γ). However, q(γ) and Ru (γ) may vary from one time step to 
next.  
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The rise in piezometric surface, s(x1,y1,n∆t), at the spring at time t=n∆t, due to the time 
variant pulse recharge, Ru(γ), γ=1,2...,n, through the recharge zone in the equivalent flow 
domain until the spring gets activated is given by  
  n 
S (x1, y1, n∆t) = Σ    Ru (γ) δ (2L, WR, x1, y1,: ∆t; n-γ+1)       (6) 
  γ=1 
in which δ(A, B; X, Y; ∆t; m) is a discrete kernel coefficient for rise in piezometric sur-
face; A and B are length and width of the excitation zone; X and Y are the coordinate of 
the point of observation, the coordinate being measured from a local origin chosen at the 
center of the zone of perturbation; ∆t is the time step size; 2L and WR are length and 
width of the recharge area in the equivalent flow domain. The discrete kernel coefficient 
for rise in piezometric surface are the rise in piezometric surface at an observation point 
due to a unit pulse perturbation per unit area given to the system during the first unit time 
period. In the present problem, the zone of perturbation is either the area through which 
recharge takes place or the spring’s opening. Let the spring get activated during Nth time 
step and the rising piezometric surface touches the spring’s threshold at t = (N-1) ∆t. 
Hence 
 
N-1 
Σ    Ru (γ)  δ(2L, WR; x1, y1; ∆t; N-γ) =  Z1       (7) 
γ=1 
 
The time of activation of the spring can be predicted from equation 7 using an iteration 
procedure. As the spring gets activated at n=N, therefore, q(γ) = 0 for γ = 1,2, … N-1. 
 
The expression for rise in piezometric surface at t = n∆t at the spring after its activation is 
given by  
    n 
s(x1,y1,n∆t)  =  Σ  [RU (γ) δ(2L, WR; x1,y1; ∆t; n-γ+1)] 
   γ-1  
      n 
 -  Σ  [q(γ) {d(a,b; 0,0; ∆t; n-γ+1) + δ (a,b; 2x1, 0; ∆t; n-γ+1)}]      (8) 
     γ-1 
The dimension a and b of the spring are in x and y direction, respectively and after acti-
vation of the spring, s(x1, y1, n∆t) = z1 

 
Splitting the second temporal summation into two parts, one part containing the summa-
tion up to (n-1)th term, and the other part the nth term and solving for q(n) 
     n 
q(n)  =  [   Σ  {RU (γ)  δ (2L, WR; x1, y1; ∆t; n-γ+1)} 
     γ=1 
 n-1 
          -  Σ   {q(γ)  {δ (a,b; 0,0; ∆t; n-γ+1) + δ (a,b; 2x1, 0; ∆t; n-γ+1))} – Z1]/ 
 γ=1 
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[δ(a,b; 0,0; ∆t;1) + δ (a,b; 2x1, 0; ∆t; 1)]       (9) 
Since the spring gets activated during Nth

φ4
m

 time step, q(γ)=0 for γ=1,2,….N-1. q(n), n > N 
can be solved in succession starting from time step N.  
 
The discrete kernel coefficients for rise of piezometric surface can be obtained from Han-
tush’s solution for the rise of piezometric surface due to uniform recharge at a constant 
rate from a rectangular basin (Fig. 3). Making use of Hantush’s solution, δ(A,B;x,y; ∆t; 
m) is found to be  
 

δ(A,B; X, Y; ∆t; m)=  [F{(A/2 + X) η1,(B/2 + Y) η1} + F{(A/2 + X)η1 , (B/2 – Y) η1} 

     
   + F{(A/2 – X) η1, (B/2 + Y) η1} + F{(A/2 – X)η1, (B/2 – Y) η1}] 
 
   - (m-1) [F{(A/2 + X) η2, (B/2 + Y) η2} + F{(A/2 + X) η2, (B/2 – Y) η2} 
       4φ 
 
          + F {(A/2 – X) η2 , (B/2 + Y) η2} + F{ (A/2 – X) η2, (B/2 – Y) η2}]               (10) 
 
where 
 m = time step 
 η1 = (4Tm∆t /φ) –0.5 
 η2 = {4T(m-1) ∆t/φ}-0.5 

     1 
 F(φ,ψ) =  ∫ erf(φ τ –0.5) . erf (ψ τ –0.5) dτ 
   0 
Where φ = (A/2 + X) η i ,  and ψ = (B/2 + Y) η i, i = 1,2 
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Figure 3. Recharge area and groundwater mound (After Hantush vide 
Bouwler, 1978). 

 
Figure 4. Variation of spring flow with time for a set of assumed model 

parameters and an assumed recharge per unit area. 
 
RESULTS AND DISCUSSIONS 

Assuming aquifer parameters and its geometry, springflow has been generated for a set 
of time variant recharge. The elevation z1 has been assumed to be zero. The variation of 
log10 Q(t) versus time is represented in Fig. 4. As seen from the Figure, the graph during 
recession does not follow a straight line; the slope of the graph changes with time. For 
the assumed set of recharge, the recession starts from seventh month. The slope at time 
step 7 is – 0.0408. The slope decreases with time and reaches a minimum at time step 8 
and then increases. The slope changes because the spring flow domain is not a closed 
system. In the example presented, a total of one-meter recharge per unit area takes place 
in a span of six month. The actual recharge area is 1 km x 1 km, which means that 106 
cubic meter of water has been recharged. It is found that at the end of 120th time step, 
only 6.36% of recharge appears as springflow. The remaining recharge has flown out as 
regional groundwater flow.  
 
Using the random jump technique and springflow of the Kirkgoz spring, Turkey, aquifer 
parameters for the spring are estimated and are given below. The following initial guess 
of the upper and lower bounds of the model parameters has been made; 2Lu = 3000 me-
ter, 2Ll = 1000 meter; WRU = 3000 meter, WRl = 1000 meter; aU = 15 meter, al = 2 me-
ter; bU = 15 meter, bl = 2 meter; X1u = 5000 meter, X1l = 4000 meter; TU = 40000 sq 
m/month, Tl = 20000 sq m/month; and φU = 0.001, φ1 = 0.0001. The decay constant has 
been assumed to be equal to 1/6 month-1 and Y = 0. The springflow for the month De-
cember, 1973, i.e. 27.53 X 106 cubic meter per month has been used to compute the 
springflow due to perturbation prior to the time origin. The estimated model parameter 
for the spring for which the objective function is the minimums are: 
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Length of the recharge zone (L) = 1155.50 meter 
Width of the recharge zone (WR) = 4046.00 meter 
Length of the spring’s opening  (a) = 30.68 meter 
Width of the spring’s opening (b) = 30.68 meter 
Distance of the spring from the no-flow boundary (X1) = 4186 meter 
Transmissivity of the aquifer in the flow domain (T) = 20590 m2

Month 

/month 
Storage coefficient of the aquifer in the flow domain (φ) = 0.0013 

 
There is a successive rapid decrease of the objective function in the search technique af-
ter end of each cycle.  
 
Table 1. Observed and simulated springflow for the period of no re-

charge and no abstraction  
Observed springflow after deducting 
effect of prior perturbation 
(cu meter/month) 

Simulated springflow 
(cu meter/month) 

10 .1992E+08 .1559E+08 
22 .2093E+08 .1900E+08 
34 .2134E+08 .2085E+08 
46 .1666E+08 .1820E+08 
58 .2634E+08 .2334E+08 
70 .2599E+08 .2886E+08 
82 .2389E+08 .2579E+08 
89 .4833E+08 .4119E+08 

 
Using these parameters, the recharge has been computed by the model. As expected, the 
recharge, which is estimated in this model, would be more than the recharge estimated by 
a model, which considers a closed flow domain i.e., Bear’s model. This is due to the rea-
son that all recharge does not appear as springflow; part of the recharge flows out as re-
gional groundwater flow. The observed and the simulated springflow for the periods of 
no recharge and no abstraction are similar in magnitude and are presented in Table 1.  
 
CONCLUSIONS 

The graph log10 Q(t) versus t during recession does not follow a straight line. 
 
Parameters of the model can be estimated by the random jump technique. 

 
The model based on Hantush’s basic solution assumes the flow domain to be in-
finite. The Bear’s model, with or without storage effect of the transmission zone, 
assumes that the flow domain of the spring is a closed one. Because of this dif-
ference in the characteristics of the flow domain, the recharge computed by the 
model which is based on Hantush’s solution is more than those which is com-
puted by either of the Bear’s model. In the Bear’s model, all recharge appears as 
springflow, whereas in the model based on Hantush’s solution, only part of the 
recharge appears at the spring.  
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