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Abstract 
Subsurface drainage plays an important role in lowering the water table in case of excess irrigation 
and recharge due to rainfall. The shallow groundwater table affected by the recharge in the pres-
ence of drainage is required for the design of subsurface drains and management of crop practices. 
Another important factor affecting the shallow groundwater table is the evapotranspiration or 
evaporation from groundwater table. Many analytical studies have been reported in the literature 
for the evolution of water table with subsurface drainage. In most of the studies, constant recharge 
has been considered. Only in few studies variable recharge has been considered but without con-
sidering evapotranspiration (ET). 
 
In the present study, the analytical solution has been proposed for the combination of variable re-
charge functions and constant rate evapotranspiration. Linear and exponential variation of recharge 
with time have been considered. For obtaining the solution the Boussinesq equation has been lin-
earized by suitable substitution and the approaches applicable for the linear system have been 
adopted. The solutions,  thus obtained have been shown to converge to the existing solution under 
specific conditions. The results have been presented to show the effects of variation in recharge 
and ET on the evolution of the water table.  

 
INTORDUCTION 

Irrigation is practised in many parts of arid and semi-arid regions of the world to enhance 
the agriculture production. Under such conditions seepage from canal beds, irrigated 
lands and other sources leads to the build-up of water table near to the ground surface 
and causes water logging and salinity problems in the top productive root zone. The re-
charge to groundwater may also occur due to natural rainfall, return flow, or impounded 
water. Besides recharge, a significant factor affecting the shallow groundwater table is 
evapotranspiration (ET). The problems of poor drainage can be alleviated by implemen-
tation of proper drainage systems for which a better understanding of the spatio-temporal 
variable of the water table in response to recharge and ET is very essential. 
 
The problem of water table fluctuation in response to recharge and ET is of interest to 
hydrologists. Many researchers (Maasland, 1959; Schmid and Luthin, 1964) have studied 
the water table rise for steady state conditions. Most of the available analytical solutions 
have been developed assuming constant rate of recharge (Glover, 1961; Dagan, 1967; 
Hantush, 1967; Rao and Sarma, 1981; Ram and Chauhan, 1987). However, theoretical 
studies and field experiments have confirmed that the recharge which results from infil-
tration is time dependent (Morel-Seytoux, 1984;). The linear or exponential recharge rate 
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were considered by Ram and Chauhan, 1987; Singh et al., 1991; and Ramana et al., 1995, 
but without considering ET. Skaggs (1975) has reported a numerical model of the Bous-
sinesq equation for the water table affected by ET. 
 
In this paper, analytical solutions are derived for the cases of linear or exponential re-
charge with constant ET using a transformation technique. The solution is compared with 
published solutions under specific condition of recharge and ET. 
  
MATHEMATICAL FORMULATION 

Figure 1 shows a schematic view of the problem. Initially the water table is at ho height 
above the drain level. It rises due to recharge and declines as a result of ET. The drains 
are placed at a distance L apart. The aquifer is assumed to be homogeneous and isotropic 
with horizontal base. 
 

 
Figure 1.  Schematic view of the problem. 
 
The linearized Boussinesq equation (1904) for the transient groundwater flow in one di-
mension describing the flow system may be written as 
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where K = hydraulic conductivity, (LT-1); h  = height of the water table above the drains 
at mid-spacing, (L); f = drainable porosity, (L3 L-3); x = horizontal space co-ordinate, (L); 
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and t = time, (T). When the water table is affected by recharge and evapotranspiration, 
equation 1 can be written as 
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where  R(t) = rate of recharge expressed as a function of time, (LT-1); and Eo = constant 
ET,  (LT-1
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). Since equation 2 is in non-linear form, its analytical solution is difficult to 
obtain. However, the analytical solution can be obtained for linearized form of equation 
2. Since ‘h’ is small in comparison to the depth above the impervious layer D, the term 
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constant D. With this assumption, the equation 2 reduces to the following linearized form 
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where,  D = de + ho/2 = average effective thickness of the saturated zone, (L); de = 
equivalent depth, (L); and ho = initial water table height above the drains, (L). The fol-
lowing initial and boundary conditions apply: 
 
 h(x, 0) = ho t ≤ 0   , 0 ≤ ≤x L       (4) 
 h(0, t) = 0 t > 0         (5) 
 h(L, t) = 0 t > 0         (6) 
 
ANALYTICAL SOLUTIONS 

Drainage with Linear Recharge and Constant ET 
The analytical solution for the linear recharge and constant ET has been obtained for the 
recharge function, R(t) = ro  + r t, where, ro = constant recharge, (LT-1); r = coefficient of 
linear recharge, (LT-2
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); and t = time, (T). Incorporating the value of linear recharge func-
tion in equation 3, the boundary value problem for the linearly varying recharge case is 
written as  

        (7) 

 
For solving equation 7, the following transformation is devised 
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This transformation transforms equation 7 into the following standard (heat flow equa-
tion) form. 
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Using the same transformation, the initial and boundary conditions can be transformed as 
 
z(x, 0) = ho 0 ≤ ≤x L  ,  , t ≤ 0                     (10) 
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z(L, t) = z(0, t)      , t > 0                (12) 
 
The solution of equation 9 with initial and boundary conditions given by equations 10 to 
12 is obtained using the solution given by Carslaw and Jaeger (1959). The solution of 
equation 7 is then obtained by taking the inverse transformation given by equation 8. The 
final solution is given below: 
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where 
π 2

2

KD
fL

=  the reaction factor (α ), (T-1
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Special Cases 
Linear Recharge Only: Equation 13 for the value of Eo = 0 , ro  = 0 and ho
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This equation may be compared with the solution given by Ram and Chauhan (1987) for 
the linear recharge case. 
 
Constant Recharge Only: Equation 13 for the value of Eo = 0 , r  = 0 and ho
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This equation is similar to the solution provided by Maasland (1959) for constant re-
charge case. 
 
Constant ET Only: Equation 13 for the value of r = 0 and ro 

h x t
n

h e
E e

f n
n x

Lo
n t o

n t

n
( , )

( )
sin

, , ,..
= −

−

















−
−

=

∞

∑4 1 12

2

2
1 3 5π α

πα
α

 = 0 takes the following 
form: 

               (16) 

This equation may be compared with the solution given by Singh et al. (1996) in pres-
ence of constant ET. 
 
No Recharge and No ET: Equation 13 for the value of r = 0 , ro  = 0 and Eo = 0 takes 
the following form: 
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This equation is mathematically similar to the solution given by Glover (1954). 
 
Drainage with Exponentially varying Recharge and Constant ET 
The analytical solution for exponentially varying recharge with constant ET has been 
obtained for the recharge function, R(t) = ce t−β , where  c = initial rate of recharge, 
(LT-1

β);  = decay constant, (T-1
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). Incorporating the value of exponential recharge func-
tion in equation 3, the boundary value problem for the linearly varying recharge case is 
written as  
 

                  (18) 

 
For solving equation 18, the following transformation is devised. 
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This transformation transforms the equation 18 into the standard form given by equation 
9. Using the same transformation, the initial and boundary conditions can be transformed 
as 
 
z(x, 0) = ho 0 ≤ ≤x L  ,   , t ≤ 0                   (20) 
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z(L, t) = z(0, t)   , t > 0                    (22) 
 
The solution of equation 18 with initial and boundary conditions given by equations 4 to 
6 is obtained as 
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Special Cases 
Exponential Recharge Only: Equation 23 for the value of Eo = 0 with ho
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This equation may be compared with the solution given by Ram and Chauhan (1987) for 
the exponentially varying recharge case. 
 
Constant ET Only: Equation 23 for the value of c  = 0 reduces to the equation 16.  
 
No Recharge and No ET: Equation 23 for the value of c  = 0 and Eo

RESULTS AND DISCUSSION 

 = 0 reduces to the 
equation 17 which is similar to the solution given by Glover (1954). 
 

To test the performance of the analytical solutions for a physical situation, a subsurface 
drainage system is considered with tile drains placed at 1.75 m below the soil surface and 
at a spacing of 50 m apart. The soil parameters for this purpose have been taken from 
Singh et al. (1996). The hydraulic conductivity of soil is taken as 0.08 m/day and drain-
able porosity as 0.10. The average effective thickness of the saturated zone is 3.50 m. 
Singh et al. (1996) proposed an analytical solution which takes into account the effect of 
variable ET as a function of water table depth. For the comparison, equation 13 is used to 
calculate the water table decline. The results of the proposed solution and Singh et al. 
(1996) solution are presented in Table 1. It may be seen from the table that in both the 
solutions trend of water table decay is similar and the results are comparable. 
 
Table 1. Ground water table behaviour in presence of constant ET. 
(Eo

Time 
(days) 

 = 0.008 m/day) 
Dimensionless Water Table Height (h/ho) 
 
 Singh et al. (1996)           Proposed Solution 

2 
4 
6 
8 
10 
12 

0.8731 
0.6390 
0.4176 
0.2354 
0.0888 
-0.0289

0.8729 
0.6381 
0.4158 
0.2329 
0.0856 
-0.0326* * 

• The value is negative because the ET continues even after the water table has been lowered to 
drain depth. 

 
Effect of Linear Recharge on the Water Table Height 
Table 2 shows that the water table height increases with increase in recharge as a func-
tion of time. For small value of recharge water table is declining. However, with increase 
in the value of recharge, the water table initially declines and then rises. This rise in wa-
ter table occurs as a consequence of higher rate of recharge with increasing time. 
 
Effect of Exponential Recharge on the Water Table Height  
The effect of exponential recharge is presented in Table 3 with and without consideration 
of constant ET. The exponential recharge pattern R t ce t( ) = −β

 is taken to estimate the 
midpoint water table height. It can be seen from the table that in beginning the water ta-
ble rises at a faster rate. But on the third day it starts decaying with time. This decay of 
water table is only because of decrease in the rate of recharge with time. 
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Table 2. Effect of linear recharge on the water table height. 
Time  Dimensionless Water Table Height (h/ho) 
(days) r = 0.001 R = 0.003 r = 0.006 
0 
2 
4 
6 
8 
10 
12 

1.0000 
0.9751 
0.8548 
0.7512 
0.6887 
0.6632 
0.6681 

1.0000 
0.9979 
0.9440 
0.9437 
1.0145 
1.1467 
1.3286 

1.0000 
1.0320 
1.0776 
1.2325 
1.5034 
1.8719 
2.3192 

 
Table 3. Effect of exponential recharge on the water table. 
(c = 0.0371 and β = 0.571) 

Time  Dimensionless Water Table Height (h/ho) 
(days) Eo E= 0.0000 o = 0.008 m/day 
0 
2 
4 
6 
8 
10 
12 

0.6311 
0.8559 
0.8107 
0.6889 
0.5646 
0.4565 
0.3672 

0.6311 
0.7652 
0.6386 
0.4499 
0.2718 
0.1206 
-0.0033* 

• The value is negative because the ET continues even after the water table has been lowered to drain 
depth. 

 
Table 4. Effect of ET on the Water Table Decline. 

Time  Dimensionless Water Table Height (h/ho) 
(days) Eo E = 0.0000 o = 0.008 m/day 
0 
2 
4 
6 
8 
10 
12 

1.0000 
0.9637 
0.8103 
0.6549 
0.5257 
0.4215 
0.3379 

1.0000 
0.8729 
0.6381 
0.4158 
0.2329 
0.0856 
-0.0326* 

* The value is negative because the ET continues even after the water table has  
   been lowered to drain depth. 
 
Effect of Constant ET on the Water Table  
To show the effect of ET on the decline of water table height, calculations are done using 
equation 13. The value of constant ET is taken as 0.008 m/day which represents the potential 
ET. The dimensionless water table height (h/ho) versus time is shown in Table 4. It is ob-
served that water table is significantly affected by ET. It is observed that the water table de-
clines at a faster rate if ET is considered to be occurring at constant rate and declines still 
faster if ET is affected by the falling water table. With the consideration of ET, the fast de-
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cline of water table or the decrease in time to lower the water table could be translated into 
increased drain spacing. 
 
CONCLUSIONS 

Analytical solutions have been derived for water table evolution with subsurface drainage 
under linearly and exponentially varying rate of recharge with constant evapotranspiration 
(ET). The solutions have been shown to converge to available solutions under specific condi-
tions for recharge, ET and boundary. Effect of variable recharge rate and ET on water table 
have been presented and discussed. 
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