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Abstract 
Subsurface drainage seems to be one of  the feasible solutions to solve the problem of waterlog-
ging and salinity, because by providing adequate drainage, both the  excess water and harmful salts 
can be appropriately removed from the root zone. In the present study  analytical solution of Bous-
sinesq equation linearized by Baumann's method, incorporating constant or depth dependent 
evapotranspiration has been obtained to describe spatial and temporal variation of water table be-
tween two parallel drains overlying a sloping impermeable barrier. Adopting the practically feasi-
ble unsteady state drainage design criteria which stipulates that water table should be lowered by 
30 cm in 2 days, once the water table reaches the soil surface, the drain spacings were computed. 
A computer program was written in FORTRAN 77 to compute the position of maximum water 
table heights, transient falling water tables for a given spacing, and drain spacing from the implicit 
analytical solution. Effect of slope of impermeable barrier, various rates of evapotranspiration and  
values of reduction factor on falling water tables and drain spacing has also been studied and dis-
cussed with the help of a numerical example.  
 
INTRODUCTION 
 
Land and water are the two important finite natural resources, which due to unplanned 
and indiscriminate exploitation, are diminishing both in qualitative and quantitative 
terms.   According to Paroda (2000), immense pressure on our land resource can be 
gauged from the fact that India shares only 2 per cent geographical area of the world but 
supports 18 per cent of the world's population and over 15 per cent of the world's live-
stock. The land surface of our country is estimated as 329 Mha. Nearly 57 per cent of  
this is facing land degradation due to water erosion, wind erosion, loss of productivity 
and chemical and physical degradation. It is assessed that 8.6 M ha of agricultural land is 
affected by the twin problems of water logging and soil salinity, about 65 % of which is 
the most productive irrigated land resource. The allocation of water for agriculture, 
which is presently about 85 % of the developed water resources, is likely to be reduced 
by 10-15 % to meet the growing vital demand for drinking water and industrial use. So, 
in order to meet the food requirements of an ever increasing population with the available 
land and water resources in the developing countries, concerted efforts need be made on 
scientific land use planning and water management for judicious utilization of  these re-
sources.  



National Institute of Hydrology, Roorkee, U.P., India  
 

220 

Subsurface drainage seems to be one of the feasible solutions to solve the twin problem 
of water logging and soil salinity. Most of  the available drainage theories attempt to de-
scribe water table behaviour in horizontal aquifers only. The problem of drainage of slop-
ing lands none the less is also found to occur in several areas of different countries. 
Schmid and Luthin (1964) reported such problem areas in pre-Alps in Switzerland and 
adjacent countries. In India, tea gardens of hilly lands in Assam and other parts of north-
eastern region, the problem of steep hill side drainage has been quite commonly experi-
enced. 
 
Many investigators have obtained either analytical or numerical or experimental solu-
tions of linearized or nonlinear  form of continuity equation mainly  given by Boussinesq 
(1904) to describe spatial and temporal variation of water table  between two drains lo-
cated on a sloping impermeable barrier. A brief review of these studies has been pre-
sented by Upadhyaya (1999), and Upadhyaya and Chauhan (2000). Most of  these studies 
attempt to describe water table fluctuation in a sloping unconfined aquifer on account of  
recharge from land surface or withdrawal from aquifer but so far, no appropriate drainage 
design criteria seem to have  been established for sloping lands.    
 
In the present study unsteady state  analytical solution of  linearized Boussinesq equation 
was obtained to describe spatial and temporal variation of water table between two drains 
lying in a sloping and horizontal unconfined aquifers subjected to constant or depth de-
pendent evapotranspiration  
 
THEORY 
 
Problem Definition 
The definition sketch of  falling water table condition between two conventional level 
drains lying on a sloping impermeable barrier is given in Figure 1. 
 

 
Figure 1. Definition sketch for falling water table between two drains in a 

sloping aquifer subjected to evapotranspiration. 
 
In this  situation, it is assumed that due to instantaneous recharge water table reaches near 
the land surface and it falls due to drainage or evapotranspiration from an unconfined, 
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homogeneous, isotropic, gently sloping aquifer. It is also assumed that ground water flow 
in a sloping aquifer is characterized by one dimensional linearized Boussinesq equation  
and Dupuit-Forchheimer assumptions hold good. The flat initial shape of water table and 
zero water table at both the drains (neglecting the effect of seepage surface) have been 
considered. 
 
The linearized form of Boussinesq equation incorporating the effect of depth dependent 
evapotranspiration  along with appropriate initial and boundary conditions can be ex-
pressed as below: 
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Here 'h' is height of water table above the sloping impermeable barrier [L] at a distance 
'x' and time 't'; s = α/2D, in which, 'α' is slope of the impermeable barrier and 'D' is aver-
age depth of flow; 'E0' is potential evapotranspiration rate at the land surface [LT-1]; 'b' is 
reduction factor due to which evapotranspiration decreases linearly as the depth to water 
table increases upto a specified value [T-1]; 'h0' is initial water table height [L]; K is hy-
draulic conductivity of soil [LT-1

ANALYTICAL SOLUTION 

]; a = KD/f, in which f is drainable porosity. 
 

 
Analytical solution of  linearized Boussinesq equation (1) considering depth dependent 
evapotranspiration, constant evapotranspiration and no evapotranspiration with initial and 
boundary conditions (2a and 2b)  was obtained by devising a transformation, which con-
verts eq (1) into a simple heat flow equation. The transformation is given as: 
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and the initial and boundary conditions as: 
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Solution of eq  (4) with general initial condition and time dependent boundary conditions 
is given in Ozisik (1980) as below. 
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Appropriate substitution of initial and boundary conditions  (5a-5c) in eq (6) and after 
integration and some simplifications yield: 
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Substitution of eq (7) in eq (3) yields the final solution as: 
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It should be possible to obtain the solution from eq (8), for the condition when constant 
rate of evapotranspiration is assumed to occur throughout the soil profile. But  if in eq (8) 
the value of  'b' is substituted as zero the solution will become indeterminate and the ex-
pression for the solution can not be obtained directly. Therefore, for such a condition the 
solution will have to be obtained independently by considering 'b' as zero in  eq (1). The 
transformation devised to transform such equation in the form of heat flow equation  may 
be written as: 
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f
 tE - e  v=h 0 ta s - x s 2          (9) 

With this transformation the initial and boundary conditions become: 
L < x < 0  0, =  t (x); f = e  h = (x,0) v  xs -
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The solution to this boundary value problem with time varying boundary conditions may  
be obtained from the generalized solution given by eq (6) by putting the appropriate ini-
tial and boundary conditions (10a - 10c). Applying the inverse of transformation in this 
solution as given by eq (9),  the final solution is obtained as: 
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Special Cases 
If effect of evapotranspiration is neglected and fall of water table is due to the discharge 
from the conventional level drains, the solution for such a flow condition may be ob-
tained by putting E0
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If aquifer is assumed as horizontal, the analytical solution for falling water tables in a  
horizontal aquifer  subjected to depth dependent evapotranspiration can be obtained by 
putting s = 0 in eq (8) and is written  as: 
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If it is assumed that a horizontal aquifer is subjected to a constant evapotranspiration 
only, the solution to such situation may be obtained by putting s = 0 in eq (11) and writ-
ten as: 
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If effect of evapotranspiration in a horizontal aquifer is neglected and fall of water table 
is due to flow of water towards drains, the solution for such a flow condition can be ob-
tained by putting E0
 
 
 

 

 = 0 in eq. (14) and written as: 

RESULTS AND DISCUSSION 
 
Transient falling water tables and spacings between two conventional level drains lying 
on a sloping/horizontal impermeable barrier were computed for depth dependent, con-
stant and no evapotranspiration using the proposed analytical solutions obtained above 
with the help of a numerical example given below. 
 
Numerical Example  
Assume that two parallel level drains separated apart by a distance of 50 m are lying on 
an impermeable barrier having a slope of 0 %, 10 %, and 20 %. The depth to drains or 
impermeable barrier from the land surface is 1.8 m. Initially water table is assumed to be 
near the land surface due to instantaneous recharge. The hydraulic conductivity and spe-
cific yield of  the soil  are 3.0 m/day and 0.14, respectively. The rate of evapotranspira-
tion is assumed as 0.008 m/day and the value of depth dependent reduction factor,'b' is 
0.00667 per day. The transient fall of water tables after 1st, 2nd, 3rd, and 4th

 
 
 
 
 
 
 
 
 
 
 
 
Figure  2. Transient falling water tables between two  drains in a hori-

zontal aquifer. 

 days and spac-
ings considering unsteady state drainage criteria have been determined. 
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Falling Water Tables Between Two Drains As Computed From Analytical Solution: 
Analytical solution of  linearized Boussinesq equation as obtained above were employed 
to solve the numerical example. Since depth dependent ET seems to be more realistic so 
transient water tables considering zero ET and depth dependent ET  corresponding to  0 
%, 10 %, and 20 % slopes of the impermeable barrier were determined and  have been 
presented  in Figures 1, 2 and 3, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  3. Falling water tables between  two  drains in a sloping aquifer   

( with 10% slope).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  4. Falling water tables between  two  drains in a sloping aquifer 

(with 20 % slope). 
 
It may be observed from  Figures 2, 3 and 4 that with the consideration of depth depend-
ent ET in the analytical solution of  linearized Boussinesq equation, fall of water table is 
relatively faster as compared to the condition of zero ET. If constant ET is assumed to 
occur in the soil profile, the fall of water table is found to be the most rapid. Figure 2 
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shows that the fall of water table in a horizontal aquifer  is symmetrical with maximum 
water table elevation occurring at the mid point. With increase in slope of impermeable 
barrier the position of maximum water table elevation shifts towards the downslope drain 
as shown in Figures 3 and 4 for 10 % and 20 % slope, respectively. The difference in 
maximum water table elevations due to consideration of zero ET and depth dependent ET 
increases with increase in time. 
   
Spacing Between Two  Drains Computed By Analytical Solution: Spacing between  
two  drains was computed employing the assumed drainage criteria of a drop of maxi-
mum height of water table by 30 cm in 2 days from an initially flat water table near the 
soil surface in the implicit analytical solution  for the  numerical example  mentioned  
above.   
 
Effect of ET on spacing between two drains: The spacing between two  drains was 
computed using  analytical solution, considering zero ET, constant ET @ 0.008 m/day, 
and linearly decreasing ET with increase in depth to water tables for the slopes of 0 %, 
10 %, 20%, 30 %  and 40 %. Results are presented  in Table1. 
 
It may be observed from  Table 1 that spacing between two parallel drains increases with 
increase in slope. The maximum  increase of 17.49 % in spacing at 40% slope with re-
spect to zero slope was observed when  ET was considered as zero in the solution. Spac-
ing between two drains also increases if effect of constant or depth dependent ET is in-
cluded. The  increase in spacing for the case of drains lying on a horizontal impermeable 
barrier as compared to zero ET was found to be 9.47 %  when depth dependent ET was 
considered and 12.03 % when constant ET was considered whereas for 40 % slope the  
increase in spacing was found to be 7.11 % and 8.53 % when depth dependent ET and 
constant ET, respectively were taken into account. 
 
Table 1.  Computation of spacing (m) between two drains located at the 

horizontal/sloping impermeable barrier using transient analyt-
ical solution. 

H0 = 1.8 m, Hr = 1.5 m, K = 3.0 m/d, f = 0.14, E0

 
Condition 

 = 0.008m/d,  b = 0.00667, t = 2 days  
Slope of the impermeable barrier (%) 
 
0 

 
10 

 
20 

 
30 

 
40 

 
Spacing without ET 
Spacing increase with slope (%) 

 
30.42 

 
30.76 
(1.12) 

 
31.74 
(4.34) 

 
33.89 
(11.41) 

 
35.74 
(17.49) 

Spacing with constant ET 
Spacing increase with slope (%) 
Spacing increase with constant ET com-
pared to no ET (%) 

 
34.08 
 
(12.03) 

 
34.38 
(0.88) 
(11.77) 

 
35.25 
(3.43) 
(11.06) 

 
37.41 
(9.77) 
(10.39) 

 
38.79 
(13.82) 
(8.53) 

 
Spacing with depth dependent ET 
Spacing increase with slope (%) 
Spacing increase with depth dependent 
ET compared to no ET 

 
33.30 
 
(9.47) 

 
33.60 
(0.90) 
(9.23) 

 
34.57 
(3.81) 
(8.92) 

 
36.91 
(10.84) 
(8.91) 

 
38.28 
(14.95) 
(7.11) 
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It may also be noted from  Table 1 that  increase in spacing becomes more with increase 
in slope whereas increase in spacing due to consideration of constant and depth depend-
ent ET decreases with increase in slope. 
 
Effect of variation of rates of ET on spacing between two drains : The effect of vari-
ous rates of ET and slopes on spacing between two level drains lying on the horizontal / 
sloping impermeable barrier was studied and is presented  in Table 2. 
 
It may be observed from  Table 2 that for the rate of ET varying from 0.004 m/day to 
0.008 m/day spacing between two drains  increases from 2.46 % to 9.47 % as compared 
to the case of zero ET for the slopes of impermeable barrier varying from 0 to 40 %. The  
increase in spacing for various slopes of impermeable barrier varies in the range of 1.12 
% to 17.49 %.  
 
Effect of parameter 'b' on spacing between two drains: Effect of depth dependent 
reduction factor 'b' on spacing between two  drains lying on the horizontal / sloping im-
permeable barrier was also studied. The results show that with increase in the value of b 
from 0.0055 to 0.0088 per day the spacing between two drains decreases in the range of 
1.06 % to 2.85 % as compared to the 0 value of  b. The  increase in spacing varies in the 
range of 0.88% to 15.16 % with increase in  slope of impermeable barrier from 0 to 40%. 
 
 
Table 2. Effect of various rates of  E0 on computed spacing (m) between 

two parallel drains located at the horizontal/sloping impermea-
ble barrier using transient analytical solution. 

H0 = 1.8 m, Hr

 
Values of E

 = 1.5 m, K = 3.0 m/d, f = 0.14,  b = 0.00667, t = 2 days  

0 

Slope of the impermeable barrier (%) 
 (m/d)  

0 
 
10 

 
20 

 
30 

 
40 

 
Spacing with E0

 
30.42  = 0.0 

Spacing increase with slope (%) 

 
30.76 
(1.12) 

 
31.74 
(4.34) 

 
33.89 
(11.41) 

 
35.74 
(17.49) 

 
Spacing with E0 = 0.004 
Spacing increase with slope (%) 
Spacing increase with E0 =0.004 com-
pared to E0 

 
31.45 
 
(3.39) 

=0.00 (%) 

 
31.74 
(0.92) 
(3.19) 

 
32.71 
(4.01) 
(3.06) 

 
34.91 
(11.00) 
(3.01) 

 
36.62  
(16.44) 
(2.46) 

 
Spacing with E0 = 0.006 
Spacing increase with slope (%) 
Spacing increase with E0 =0.006 com-
pared to E0 

 
32.32 
 
(6.25) 
 =0.00 (%) 

 
32.61 
(0.90) 
(6.01) 

 
33.59 
(3.93) 
(5.83) 

 
35.84 
(10.89) 
(5.75) 

 
37.40 
(15.72) 
(4.64) 

 
Spacing with E0 = 0.008 
Spacing increase with slope (%) 
Spacing increase with E0 = 0.008 com-
pared to E0 

 
33.30 
 
(9.47) 

=0.00 (%) 

 
33.60 
(0.89) 
(9.23) 

 
34.57 
(3.81) 
(8.92) 

 
36.91 
(10.84) 
(8.91) 

 
38.28 
(14.95) 
(7.11) 
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CONCLUSIONS 
 
An analytical solution to the linearized Boussinesq equation for the design of subsurface 
drainage system in sloping lands in the presence of ET was developed. Variation in fal-
ling water tables as influenced by depth dependent ET and slope of the impermeable bar-
rier  were computed using the analytical solution. The effect of  ET, reduction factor  'b', 
and slope of impermeable barrier on drain spacing  was  also studied  
 
The following discrete conclusions may be drawn from the study. 
 
While designing the drain spacing, if evapotranspiration is taken into account the water 
table  falls faster leading to an increase in drain spacing by 7 to 12 % as compared to the 
condition with no evapotranspiration. 
 
Consideration of depth dependent evapotranspiration depicts the real situation more 
closely and thus  seems to be more realistic condition as compared to a constant ET one. 
Drain spacing increases with increase in slope of  the  impermeable barrier as well as 
with increase in the rate of evapotranspiration. 
 
For the numerical example under study, the drain spacing decreases from 1.06 % to 2.85 
% if value of reduction factor 'b' is increased from 0.0055 to 0.0088 per day. 
 
The position of maximum water table height tends to shift towards lower drain with in-
crease in slope of  the impermeable barrier. 
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