
National Institute of Hydrology, Roorkee, U.P., India  
 

229 

ICIWRM – 2000, Proceedings of International Conference on Integrated Water Resources 
Management for Sustainable Development, 19 – 21 December, 2000, New Delhi, India 

 
 
Analysis of numerical dispersion in finite difference approxi-
mation of solute transport equation 
 
ANUPMA SHARMA, N. C. GHOSH, MANOHAR ARORA and DIGAMBER SINGH 
National Institute of Hydrology, Jal Vigyan Bhawan, Roorkee– 247 667, India 
 
Abstract 
Numerical solution of the ADE  by  traditional finite difference/finite element techniques poses 
serious difficulties, which stem from the truncation of Taylor’s series while approximating both 
the spatial and temporal first-order derivatives occurring in the ADE.  In a pure advection problem, 
this truncation error manifests as an additional term, described as numerical dispersion. Presence 
of this term renders the finite difference solution of the pure advection problem mathematically 
equivalent to that of an advection-dispersion problem. The paper analyzes and looks into the 
mathematical quantification of numerical dispersion originating from the truncation of Taylor’s 
series.  Techniques that have been adopted by researchers to remedy this problem to various de-
grees are also briefly discussed highlighting their advantages and limitations.  
 
INTRODUCTION 

During the last two decades, there have been an increasing number of attempts to develop 
suitable and efficient numerical schemes for approximating the transient advective-
dispersive equation (ADE) governing solute transport in porous media. The sustained 
interest in this equation arises from the need to minimize/eliminate numerical difficulties 
encountered while solving ADE. 
 
For a conservative solute, the basic transport mechanism is due to the coupled action of 
advection and dispersion. Solutes are displaced from one location to another in the form 
of plug due to advection and spread in all possible directions thereby occupying ever in-
creasing volume of groundwater due to dispersion. A solute being advected travels at the 
same rate as average linear velocity of groundwater. As the contaminated fluid flows 
through a porous medium, it mixes with fresh groundwater due to dispersion. This results 
in a lowering of solute concentration. To describe 1-D non-reactive solute transport, the 
ADE is written as (Bear, 1979) 
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where c = solute concentration; t =  time; x = distance; D = longitudinal dispersion coef-
ficient; and  v = average seepage velocity. 
 
Analytical solutions of ADE which are accurate are however applicable to certain idealis-
tic situations only. In real life problems, due to irregular boundaries and inhomogeneous 
aquifer parameters, numerical techniques viz., finite differences (FD)/finite elements 
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(FE), are employed to arrive at an approximate solution of ADE. These techniques solve 
the ADE by discretizing the equation over a fixed grid.  
 
The efficacy of most of the numerical schemes is governed by two dimensionless pa-
rameters - Peclet number (Pe) and Courant number (α). The grid Peclet number reflects 
the ratio between the rate of transport by advection to the rate of transport by dispersion 
and is expressed as follows: 
 
 Pe = v∆x/D          (2) 
 
where ∆x is the spacing between grid nodes. 
 
For small values of  Pe, Eq. (1) becomes parabolic and dispersion dominates. For larger 
values of Pe

NUMERICAL DISPERSION  

, the equation acquires a hyperbolic character and advection dominates. 
Thus, the nature of the equation may vary from parabolic to hyperbolic over space and 
time depending on the variation of velocity or dispersion. 
 
The Courant number reflects the distance travelled by advection during one time step 
relative to grid spacing (Frind, 1982) and is expressed as  
 
α = v∆t/∆x          (3) 
 
where ∆t is the time step size. 
 
The traditional FD/FE methods perform quite well when dispersion dominates the trans-
port and the distribution of concentration is relatively smooth. However, in transport 
problems where advection dominates, the FD/FE solution exhibits a combination of nu-
merical dispersion and oscillation. Numerical dispersion is an artificial, grid-dependent 
smearing of sharp solute concentration fronts while numerical oscillation is manifested 
by overshoot and undershoot about the true solution. Peaceman (1977) analyzed the arti-
ficial dispersion term appearing in the numerical solution. This paper discusses the origin 
and mathematical quantification of numerical dispersion for different schemes of FD 
method. 
  

Origin 
Numerical dispersion is basically a truncation error, which is incurred by replacing a dif-
ferential equation by a finite difference approximation. Due to this error, the exact solu-
tion of a difference equation differs from the solution of the corresponding differential 
equation. The term truncation error derives from the fact that the replacement of a de-
rivative by a difference quotient is equivalent to using a truncated Taylor’s series. The 
local truncation error (δ) of a finite difference approximation can be defined as 
 

     pd cc −=δ           (4) 
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where cd and cp

 

 are the exact solutions of the difference equation and the partial differen-
tial equation, respectively. 

Analysis 
Consider the case of  pure advection problem where D = 0. Here, the 1-D transport equa-
tion is written as 
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The objective is to analyse the associated truncation error in the FD solution of the above 
equation. The general finite difference approximation of Eq. (5) is 
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where ω = weighting parameter with values 1, ½ and 0 for upstream, mid-point and 
downstream weighting, respectively; τ = time-weighting parameter with values 1, ½ and 
0 for implicit, centered-in-time and explicit finite difference equations, respectively; cik  
= discrete concentration at node xi at time tk
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Thus, substituting Eqs. (5) and (6) into Eq. (4), the truncation error is obtained as 
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where m = (1-τ)k + τ (k+1) 
 
Using central difference approximations for the first four terms on RHS, Eq. (7) is re-
written as  
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where O(∆x2) represents the error term. 
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From Taylor series expansion of c(x,t) and its first and second order derivatives, about 
time t, the following expressions are obtained:  
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Substituting Eqs. (9), (10) and (11) into Eq. (8)  
 

( ) ( )22
2

2

2

2

2
1

2
1v tOxO

t
ct

x
cx

imim

∆+∆+










∂

∂
∆





 −+











∂

∂






 −∆−= τωδ               (12) 

 
On differentiating Eq. (5) w.r.t. t and x, respectively 
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Substituting Eq. (13) into Eq. (12), the truncation error emerges as 
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where α = v∆t/∆x. 
 
Rearranging Eq. (4)  
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Substituting Eq. (14) in Eq. (15) 
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where                               
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Thus, we find that on solving the finite difference approximation of the pure advection 
problem represented by Eq.(5), we arrive at a solution for the following 1-D ADE: 
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Eq.(18) is similar to Eq. (1) except the higher order terms. The artificial dispersion Dn 
term arising from the truncation error, associated with the use of difference equations, is 
therefore termed as numerical dispersion. It is clear from Eq. (17) that Dn can be reduced 
by using small values of ∆x and  ∆t.  
 
Table 1 lists the values of Dn  for different schemes of FD. In every case, positive Dn is 
associated with stability, while negative Dn is associated with instability. For two cases 
namely, forward-in-time, backward-in-distance (with α = 1) and centered-in-time, cen-
tered-in-distance, Dn

                 
 

 is 0. Thus, as evident from Table 1, a close connection exists be-
tween stability and numerical dispersion. 

 
Table 1. Special cases of first-order difference equation (Peaceman,1977). 

Backward-in-
distance ω = 1 

Centered-in-
distance ω = ½ 

Forward-in-
distance ω = 0 

Backward-in-time 
τ = 1 

Always stable 
Dn

Always stable 
D = v∆x(α+1)/2 n

Stable if α ≥ 1 
D = v∆x(α)/2 n = v∆x(α-1)/2 

Centered-in-time 
τ = ½ 

Always stable 
Dn

Neutrally stable 
D = v∆x/2 n

Always unstable 
D = 0 n = -v∆x/2 

Forward-in-time 
τ = 0 

Stable if α ≤ 1 
Dn

Always unstable 
D = v∆x(1-α)/2 n

Always unstable 
D = -v∆x(α)/2 n = -
v∆x(α+1)/2 

 
NUMERICAL EXAMPLES 

Consider a 1-D solute transport problem in a saturated porous medium (described by Eq. 
(1)) with constant seepage velocity and the following initial and boundary conditions: 
 
c(x,0) = 0,  x > 0;  c(x0,t) = co,   t > 0;   and  ∂c(xL,t) /∂x = 0,  t > 0 
 
where x0  and  xL = positions of the inlet and outlet, respectively, and co = concentration 
at inlet. 
 
Analytical Solution: For the initial condition  c(x,0) = 0, x>0 and boundary conditions 
c(0,t) = 1, c(∞,t) = 0, t > 0, the solution of Eq. (1) is (Ogata and Banks, 1961) 
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where c(x,t) = concentration at distance x and time t, and erfc{*} = complementary error 
function = 1-erf{*}. 
 
Numerical Solution: Applying the weighting factors ω and τ to the advective term, the 
centered-in-space and centered-in-time finite difference approximation of the 1-D ADE 
(Eq. (1)) for an interior node in the FD grid is written as  
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At each time step, the solution of the system of equations represented by Eq. (20) and the 
corresponding initial and boundary conditions are solved using the Thomas algorithm 
(Remson et al., 1978). 
 
With x0 = 0 and xL = 40 cm, the following parameter values were used over a uniform 
grid: co  = 1 g/l, ∆x = 1 cm, ∆t = 0.5 hr, v = 1cm/hr with α = 0.5. Initially two values of 
dispersion coefficients viz., D = 1 cm2/hr and 0.1 cm2/hr, which correspond to grid Peclet 
number values of  Pe = 1 and 10, respectively, were used.  
 
The exact and simulated results at time 15.0 hr, for both values of Pe, are shown in Fig.1. 
In Fig. 1(A), which corresponds to a lower value of Pe, the match between analytical and 
numerical solution is very good. However, in Fig. 1(B), which corresponds to larger 
value of Pe implying advection-dominated transport, a considerable difference is visible 
between the two solutions. This difference is due to the problem of numerical dispersion. 
Therefore, in order to illustrate the numerical dispersion associated with different FD 
schemes, subsequent runs were taken with Pe = 10 for varying values of ω, τ and α. 
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Figure 1. Analytical and numerical solutions for P0=1 and 10. 
In all, six cases were considered. Table 2 gives the values of ω, τ and α for each case, 
along with corresponding numerical values of Dn computed using Eq. (17) and the total 
dispersion coefficient Dt = D + Dn.  

 
Table 2. Computed values of  Dn and Dt

 
. 

FD Scheme Physical 
Dispersion 
(D) 

Numerical 
Dispersion 
(Dn

Total Dispersion 
(D

) 
t = D + Dn) 

1 ω =1.0, τ = 0.0, α = 0.5 0.1 0.25 0.35 
2 ω =1.0, τ = 0.5, α = 0.5 0.1 0.5 0.6 
3 ω =1.0, τ = 1.0, α = 0.5 0.1 0.75 0.85 
4 ω =1.0, τ = 1.0, α = 1.0 0.1 1.0 1.1 
5 ω =0.5, τ = 1.0, α = 0.5 0.1 0.25 0.35 
6 ω =0.5, τ = 0.5, α = 0.5 0.1 0.5 0.0 

 
Fig. 2 illustrates the analytical solution (shown as solid curve) and the corresponding 
numerical solution for each case. The analytical solution was also obtained using the total 
dispersion coefficient Dt (shown as dashed curve). It is clear from Fig. 2 that as the value 
of Dn increases, the deviation between the analytical and numerical solution increases. It 
is largest for the backward-in-distance, backward-in-time (i.e., ω = 1, τ = 1) scheme with 
α = 1 (refer Fig. 2 (D)). The match between numerical solution and the analytical solu-
tion using Dt varies from satisfactory to good. For the centered-in-distance, centered-in-
time scheme Dn 

TECHNIQUES TO REDUCE NUMERICAL DISPERSION 

= 0. Compared to others, the numerical solution (refer Fig. 2(F)) using 
this scheme is closest to the analytical solution. However, the solution shows some oscil-
lation in the form of overshoot.  Thus, it is evident from above that when numerical dis-
persion tends to zero, the problem of numerical oscillation becomes dominant. In this 
context, it would be useful to briefly discuss the various alternative techniques proposed 
by researchers over the years to minimize/eliminate these problems. 
 

Most of the numerical methods usually employed to solve ADE can be broadly classified 
into three major categories: Eulerian, Lagrangian and mixed Eulerian-Lagrangian ap-
proaches (Neuman, 1984). In the Eulerian approach the equation is discretized by a 
FD/FE grid system fixed in space. In the Lagrangain approach, either a deforming grid or 
a fixed grid in deforming coordinates can be used. In the mixed Lagrangain-Eulerian ap-
proach, a fixed grid  is used but with two steps of computations: the first step is to com-
pute the Lagrangian concentration with particle tracking methods, and the second step is 
to compute the final concentration with either FD, FE, or some other variant numerical 
method. 
 
In the Eulerian approach, as mentioned previously, numerical dispersion can be reduced 
by using a fine grid and correspondingly a smaller time step size to keep grid Courant 
number less than 1. However, for most realistic 2- and 3-D problems, using both fine grid 
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and small time step is not practical. Numerical dispersion can be reduced by using 
higher-order approximations in space, time, or both  (Holly and Preissman, 1977; Van 
Genuchten and Gray, 1978). But the use of higher-order approximations may introduce 
oscillations (Neuman, 1983). Hence higher order approximations have not proven capa-
ble of entirely eliminating both numerical dispersion and oscillation. Upstream methods 
(Chaudhari 1971; Leventhal, 1980; Lapidus and Pinder, 1982) can eliminate oscillations 
for grid Peclet numbers ranging from 0 to ∝ with grid Courant number smaller than 1, 
but upstream methods introduce a large numerical dispersion.  
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Figure 2. Non-dimensional plot of analytical and numerical solutions of 1-
D ADE. 

The Lagrangian  method has also been used to circumvent the problem of oscillations 
(O’Neill, 1981; Botha et al., 1982, Thomson et al., 1984) however, it has several draw-
backs related to mesh deformation (Yeh and Chou, 1981).  
 
The mixed Lagrangian-Eulerian approach adopts a Lagrangian viewpoint when dealing 
with advection terms and an Eulerian viewpoint when dealing with rest of the terms in 
the transport equations. In the Lagrangian step, either continuous forward particle track-
ing CFPT (Konikow and Bredehoeft, 1978), single-step reverse particle tracking SRPT 
(Neuman and Sorek, 1982) or a combination of both (Neuman, 1984) is used. SRPT can 
introduce a significant amount of numerical dispersion near sharp concentration fronts 
(Neuman, 1984). This can be reduced by using a smaller grid size, which, nevertheless is 
impractical for a large region. Zhang  et al., (1993) presented a modified single step re-
verse particle tracking (MSRPT) method to deal with advection-dominated problems. 
This technique, separately, controls the movement of particles in the upstream and down-
stream regions of the concentration front. MSRPT maintains the advantages of traditional 
SRPT, but eliminates the associated numerical dispersion The method is currently limited 
to grid Courant numbers less than or equal to 1. Yeh (1990) noted that since numerical 
dispersion is important only in regions where a steep gradient of concentration occurs, 
there is no need to reduce numerical dispersion in  the region where the gradient of con-
centration is very small. Therefore a Lagragian-Eulerian method with a zoomable hidden 
fine-mesh approach (LEZOOM) was proposed to solve the ADE. This technique entirely 
eliminates numerical oscillation and efficiently reduces numerical dispersion. However, 
the process of zooming and refining the element at each time step is complicated in terms 
of its practical implementation. 
 
Zheng (1993) modified the method of characteristics (MOC) which utilizes CFPT, to 
make it more efficient and accurate by including a dynamic particle allocation procedure 
and higher order particle tracking technique. Liu and Dane (1996) proposed an interpola-
tion-corrected modified method of characteristics (ICMMOC) for solving the ADE, 
which is an improved version of the modified method of characteristics utilizing SRPT. It 
uses a high order interpolation scheme to reduce numerical dispersion and an interpola-
tion correction procedure to eliminate numerical clipping. The simulated results showed 
that ICMMOC can eliminate numerical oscillation and reduce numerical dispersion to a 
small level for a large range of grid Peclet number. 

 
CONCLUSIONS 

Numerical solution of ADE by finite difference approximation poses a computational 
difficulty which originates due to an additional term numerical dispersion introduced 
from the truncation of Taylor’s series of mixed derivatives (time and space).  
 
The analysis of pure advection problem (D = 0), could delineate the numerical dispersion 
associated with different schemes of the finite difference method. Numerical dispersion 
is found to be dependable on space and time discretization size. Numerical simulations 
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illustrate that for zero value of numerical dispersion obtained in centered-in-distance, 
centered-in-time difference equation, the numerical solution tends to oscillate. The mixed 
Lagrangian-Eulerian techniques are an attractive alternative to the traditional FD/FE 
methods to minimize the problem of numerical dispersion.  
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