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SYNOPSIS

A statistical approach was used to develop operational models for
forecasting 6 hourly discharges at six stations on the Lower Indus River in
Pakistan. The general form of the forecasting equation for a station was
obtained by expressing the discharge at a time unit t as a linear function of
the discharges at preceding time units at that station as well as at the
immediately upstream station. In spite of their simple form, the models soO
obtained can produce very accurate forecast values for forecasting lead times
from one to eight units (of 6 hours).

1.0 INTRODUCTION

There exist many conceptual models for simulating the rainfall-runoff
process. Most of these models include a river routing camponent, see for
example, [2], [5], [6]. When areal rainfall data are not accessible (due to the
large coverage of the river basin), only discharge records are available for
modelling or forecasting purposes. In this case, the only tool to be used is
the river routing scheme built in the models. Since data on lateral flow and
local rainfall are not available, the values obtained by river routing are far
from the observed ones. What has just been mentioned is precisely the case of
the lower part of the Indus River in Pakistan (Fig. 1). For all the reaches
from Terbela to Kotri, no records are available for the lateral flows and
rainfall. In such a case, conceptual models cannot be used. In response to a
request by the Federal Flood Commission, a statistical approach was' proposed.
Supporting reasons of +this approach are presented in Section 2, and the
resulting models for the different stations are provided in Section 3.

2.0 MODEL: DEVELOPMENT

2.1 The Proposed Approach

For the reaches of the Lower Indus Kiver, only discharge data during
the flood seascn, June to September, were provided by the Federal Flood
Commission. These data, expressed in 1000 cfs ( 28.32 m /s), are given on a 6
hourly basis, and the longest record obtained is for ten years (1976-1985). For
all the stations considered, namely Terbela, Kalabagh, Chasma, Taunsa, Gudu,
Sukkur and Kotri, there exist many missing values. However, no attempt was made
to £ill in these.

within the context of a statistical approach, time-series models and
regression models are most popular.
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2.1.1 Time-series models

These models are commonly based on those introduced by Box and Jenkins
[11. For a time unit of six hours, it seems that some form of the seasonal
Autoregressive Integrated Moving Average (ARIMA) or Transfer Function models
would be appropriate. The ARIMA models can be used when only the discharge data
at a station are employed, while Transfer Function models can incorporate the
discharge data at an upstream station. Unfortunately, these models cannot be
applied to the Lower Indus River, because of the following two reasons, namely,
- the interruption and missing values in the records available.

- Data Interruption : As previocusly mentioned, the data provided are available
only for the flood season. As such, the data for the different years of
records at a station cannot be cambined together to form a non-interrupted
time series. If only the data in each flood season were employed, there
would correspond several different models for different years. The problem
of selecting which model for operaticnal forecasting would then arise.

- Missing Values : Since there are many missing wvalues in the records
obtained, it is extremely difficult to use Box-Jenkins models. At scme
stations, the number of missing values is even larger than that for existing
ones. In such cases, techniques to deal with missing wvalues in the
Box-Jenkins approach would provided poor forecasting capabilities.

2.1.2 Regression analysis

This approach is not new. Practitioners frequently use regression
analysis in flood forecasting. Typically, the discharge at a station is
expressed as a linear relationship of the discharges of some upstream stations
with the time-lags between upstream stations and the stations concerned
explicitly incorporated.

Regression analysis was adopted in this study with the following
considerations.

(a) The time 1lags, which were used in the selection of lagged variables,
were based upon the estimated travel time available for the different
reaches in the Lower Indus River.

(b) A simple autocorrelation analysis would reveal that the discharge at a
station at a time unit t depends heavily on its values on preceding
times t-1, t-2, etc. (In fact this is the basic assumption of the
Bou:-Jerﬂ{ins time series approach.) These values must be taken into
account as well in the development of forecasting models.

With all the foregoing discussions in mind, the forecasting model
proposed for the Lower Indus River should be of the following form.

m n P
Y(t+L) = A+ [ a(i)¥(t-i) + L b(i)u(t-i) + I c(i)v(t-1) + ... (1)
i=0 i=0 i=0
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where A, a(i), b(i), c(i) are for regression coefficients; Y(t) is the
(transformed) wvalue of discharge at time t for the station concerned; U(t),
v(t), ... are the (transformed) values of discharge at time t for upstream
station; m, n, p, ... are structural parameters; and L is the forecasting lead
time.

Since the discharge at a station is actually the integrating factor (a
term borrowed from Professor Masami Sugawara - personal commnication) of all
camponents producing discharge, it is believed that the proposed equation would
be able to incorporate the lacking information on lateral flows.

Because of the collinearity among Y, U, V, etc. the coefficients A,
a(i), b(i), c(i), ... can be calculated from several techniques. In this work,
the method of stepwise regression was used; as a result of which, some of these
coefficients will have zero values.

The transformations which are commonly used in practice are sguare
root and logarithmic transformations. These were adopted in the present work.
However, they were found to provide worse results as compared to those
corresponding to untransformed data. Conseguently, no transformation was made.

2.2 Accuracy Indicators

In this work, since regression analysis was used, the relevant
accuracy indicators are the multiple correlation coefficient R, the coefficient
of multiple determination R2, the Adjusted R?* and Standard Error, s. These are
readily available in Textbooks, e.g. Draper and Smith [3].

It should be noted that R? is a relative measure of how much all the
terms in the regression equation that involves predictor ("independent")
variables explain the total variation of the observations.

The multiple correlation coefficient R is in fact the correlation

between the observed and estimated values. As such, it rewveals the match in the
pattern (shape) of the estimated flow with that of the observed data.

Generally, the wvalue of R2? can be increased by adding new terms into
the model. The Adjusted R? incorporates some penalty for such attempt.
Finally, the Standard Error is obtained from the sum of squared errors. As
such, s should be small for the fitted model to be good.

2.3 Calibration and Verification

Traditionally, when a model is developed, the data available should be
split into two sets. One set, called training set, normally having a longer
record, is for calibration thereby the values of the parameters, i.e. the
regression coefficients in our case, are obtained. The other set, called
checking set, is used for verification.

In this study, the first eight years of records (1976-1983) were used

as training sets whereas the last two years (1984-1985) were used as checking
sets.
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Within this context, the aforementioned accuracy indicators are mainly
applied to the calibration stage. For the verification stage, R, R2 can still
be applied, while the standard deviation should be replaced by the root mean
squared error defined as

K ~ A
RMSE = {(1/K) E [¥(t) - 2(t)]1%} (2)
t=1

where K is the number of data points used in the verification stage and ¥
denotes the estimate of Y.

3.0 APPLICATION RESULTS

3.1 General Considerations

As mentioned in Section 2, both calibration and verification stages
were adopted in this work. Considering the usefulness of the developed models
for future use, all the 10 years of available records were employed in . arriving
at the equations to be reported in the following. In the development of models,
the stepwise regression procedure with missing wvalues option was used.
Replacement of missing values by the corresponding long-terms means did not give
good results as those with missing values option.

The following reaches were considered : Terbela-Kalabagh, Kalabagh-
Chasma, Chasma-Taunsa, Taunsa-Gudu, Gudu-Sukkur, and Sukkur-Kotri. It was found
that for all these reaches, only one upstream station was used in deriving the
forecasting equation for the corresponding downstream station. Thus eq. 1 can
be written as:

m n
D(t+L) = A+ I a(i)D(t-i) + T b(i)U(t-1i) (3)
- 1=0 1=0

where D and U stand for downstream discharge and upstream discharge,
respectively.

From the available information on travel time on reach reach, it was
decided to take n=12. Appropriate value sof m can be obtained using ‘the
autocorrelation function at each station [4] and sensitivity analysis. It was
found that m=12 is generally applicable for all stations concerned.

3.2 Results

The maximum forecasting 1lead time adopted in this study was 8 units
(or 48 hours or two days). Therefore, there are altogether 48 (=6x8) equations
obtained. They are collected in Tables 1 through 6 in a summarized form.

As expected, among the predictors considered, i.e. the discharge
values (at the station concermed and at the immediately upstream station) for 13
 time units (i=0 to 12 in eq. 1), many of them did not appear in the resulting
forecasting equations. This is due to the use of stepwise regression analysis,
which selects the most contributive predictors.
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Table 1 Forecasting equations for Kalabagh with Terbela as upstream station
(6 years of record)

Lead time (units of 6 hours)
Coefficients 1 2 3 4 5 6 7 8
A 7.868 13.643 17.971 23.010 27.036 34.228 35.680 39.738
a(0) 0.888 0.750 0.666 0.583 0.551 0.551 0.482 0.449
a(2) 0 0 0 0.167 0.155 0 0.122 0.144
a(3) 0 0.115 0.148 0 0 0.128 0 0.141
a(4) 0 0 0 0 0 0 0.158 0.141
a(s) 0 0 0 0 0 0.160 0 0
a(6) 0.075 0 0 0 0.163 0 0 0
a(7) 0 0 0 0.139 0 0 0 0
a(8) 0 0 0.100 0 0 0 0 0
a(9) 0 0.071 0 0 0 0 0 0
a(l1) 0 0 0 0 0 0 0.066 0.078
R 0.941 0.894 0.859 0.832 0.813 0.792 0.774 0.755
R? 0.885 0.799 0.738 0.693 0.660 0.627 0.599 0.570
Adjusted R2| 0.885 0.798 0.737 0.692 0.659 0.626 0.597 0.568

Table 2 Forecasting equations for Chasma with Kalabagh as upstream station
(7 years of record)

.Lead time (units of 6 hours)

Coefficients 1 2 3 4 5 6 7 8
A 13.475 16.216 23.464 30.247 33.951 40.282 44.027 47.651
a(0) 0.379 0.402 0.274 0.410 0.393 0.317 0.325 0.305

a(l) 0.152 0 0.151 0 0 0 0 0

a(2) 0 0.147 0 0 0 0 0 0
b(0) 0.270 0.488 0.494 0.478 0.473 0.5z24 0.491 0.492

b(1) 0.162 0 0 0 0 0 0 0

b(3) 0 -0.089 0 0 0 0 0 0
R 0.955 0.942 0.917 0.890 0.860 0.834 0.802 0.778
R2 0.913 0.888 0.814 0.793 0.740 0.696 0.643 0.605
Adjusted R2| 0.912 0.887 0.804 0.792 0.739 0.694 0.641 0.604
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Table 3 Forecasting equations for Taunsa with Chasma as upstream station
(8 years of record)

Lead time (units of 6 hours)
Coefficients il 2 3 4 5 6 7 8
A 0.697 4.008 2.535 0.691 5.799 10.325 9.611 10.109
a(0) 0 0 0.163 0 0 0 0 0.220
a(l) 0.362 0 0 0.095 0 0 0 0
a(5) 0 0 0 0 0 0 -0.069 -0.318
a(7) 0 0 0 0 0 0.058 0 0
a(8) 0 0 0 0 0.057 0 0 0
a(9) 0 0 0 0.048 0 0 0 0
a(10) 0 0.058 0.049 0 0 0 0 0
a(11) 0 0 0 0 0 0 0.103 0.266
b(0) 0 0 0 0 0.051 0.173 0.320 0.239
b(1) 0 0 0 0 0.138 0.270 0.143 0
b(2) 0 0 0 0.165 0.277 0.209 0.169 0.210
b(3) 0 0.069 0.171 0.250 0.204 0.112 0.098 0
b(4) 0 0.182 0.265 0.195 0.114 0.072 0.072 0.301
b(5) 0.228 0.259 0.183 0.133 0.076 0 0.107 0
b(6) 0.223 0.191 0.107 0.056 0 0 0 0
b(7) 0.155 0.105 0 0 0 0 0 0
b(8) 0 0.065 0 0 0 0 0 0
R .085 0.994 0.995 0.994 0.995 0.995 0.992 0.978
R 0.969 0.987 0.989 0.989 0.989 0.989 0.983 0.957
Adjusted R | 0.966 0.985 0.987 0.986 0.987 0.987 0.979 0.947

As seen from these tables, the forecasting accuracy is very high,
particularly when the lead time is equal to 6 hours and 12 hours. Except for
same minor irregulations for larger lead times, there corresponds a decreasing
accuracy in the forecasting models. This is commonly expected, since large lead
times mean more randomness or uncertainty involved.

It can also be ocbserved that as one moves downstream, the accuracy of
the forecasting models improves. This may be due to two reasons. First, the
discharges at +the stations close to the Terbela Reservoir are regulated by the
operation of that reservoir. Regulated flows are cammonly ‘unsuitable for a
statistical approach. Since no information on the flows released from the
reservoir is available, it seems that no methods would be able to provide better
forecast wvalues. Second, upstream stations have smaller catchment areas.

Correspondingly, the fluctuations of the discharges are higher.

Nevertheless, with the accuracy obtained, the models dewveloped in this
study should provide satisfactory forecasting values.
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Table 4 Forecasting equations for Gudu with Taunsa as upstream station
(8 years of record)
Lead time (units of 6 hours)

Coefficients 1 2 3 4 5 6 i/ 8
A -8.140 -9.359 -16.033 -25.576 -27.281 -30.576 -30.576 -37.643
a(0) 0.813 0.800 0.678 0.773 0.771 0.767 0.765 0.797

a(l) 0.203 0 0.322 0 0 0 0 0
a(2) 0 0.254 0 0.33¢ 0.303 0.345 0.325 0.308
a(6) 0 0 0 0 0 0 -0.243 -0.391

a(7) 0 0 0 -0.268 0 -0.374 0 0

a(8) 0 -0.102 0 0 -0.320 0 0 0

a(9) -0.051 0 0 0 0 0 0 0

a(10) 0 0 -0.073 0 0 0 -0.177 0
a(1l) 0 0 0 0.069 0 0.130 0 0.111
b(0) 0 0 0 0 0.187 0.173 0.293 0.379
b(1) 0 0 0 0.192 0 0.154 0.187 0.264
b(2) 0 0 0.105 0 0.205 0.220 0.246 0.283
b(3) 0.087 0.123 0.157 0.246 0.217 0.232 0.225 0.245

b(4) 0 0.139 0.172 0.250 0.232 0.221 0.163 0

b(5) 0 0.105 0.107 0 0 0 0 0
b(8) 0 0 0 0 0 -0.125 -0.156 -0.180
b(9) 0 0 0 -0.107 -0.147 -0.151 -0.156 -0.185
b(10) 0 -0.096 -0.150 -0.152 -0.173 -0.166 -0.177 -0.207
b(11) 0 -0.156 -0.206 -0.184 -0.224 -0.217 -0.248 -0.163
R 0.994 0.991 0.988 0.984 0.981 0.978 0.974 0.970
R 0.989 0.981 0.975 0.968 0.962 0.956 0.945 0.942
Adjusted R | 0.989 0.981 0.975 0.968 0.962 0.956 0.949 0.941

3.3

Discussions

From the forecasting equations developed, one can adopt the following
scheme also. At time t,

- forecast the discharge at Kalabagh with lead time equal to 6 hours
(one unit)

- consider the forecast value at Kalabagh as the observed value at
time t+1 and forecast the discharge at Chasma with lead time equal
to 6 hours, hence one obtains the forecast for Chasma at time t+2,
i.e. the forecasting lead time is two units.

By moving dowstream and repeating the same procedure, ane can obtain
the forecast values for Taunsa at t+3, for Gudu at t+4, for Sukkur at
t+5, and for Kotri at t+6, i.e. 6 time units ahead. Since the
accuracy for the forecasting equation with lead time equal to 6 hours
at any station is wvery high, this scheme 1leads to same slight
improvement as compared to the accuracy obtained directly f£rom
regression analysis.
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Table 5 Forecasting equations for Sukkur with Gudu as upstream station
(10 years of record)

Lead time (units of 6 hours)
Coefficients 1 2 3 4 5 6 7 8
A -2.531 -1.870 -1.941 -2.118 0.957 -1.332 -3.768 -2.993
a(0) 0.237 0.234 0.214 0.199 0.147 0.14 0.166 0.125
a(l) 0.179 0.146 0.162 0.104 0.105 0.612 0 0
a(2) 0.104 0.112 0.085 0.080 0.062 0 0.076 0.057
a(3) 0.079 0.061 0 0 0 0 0 0
a(ll) 0 -0.035 0 -0.033 0 0 0 0
b(0) 0 0.252 0 0.380 0 0 0.859 0.954
b(1) 0.225 0 0.359 0 0 0.815 0 0
b(2) 0 0} o} 0 0.795 0 0 0
b(3) 0 0 0 0.265 0 0 0 0
b(4) 0 0 0.236 0 0 0 0 0
b(5) 0 0.227 0 0 0 0 0 0
b(6) 0.176 0 0 0 0 0 0 0
b(8) 0 0 0 0 0 0 0 -0.142
b(9) 0 0 0 0 -0.120 0 0 0
b(10) 0 0 0 0 0 0 -0.104 0
b(11) 0 0 -0.059 -0.033 0 -0.072 0 0
R 0.986 0.985 0.984 0.968 0.982 0.981 0.986 0.984
R? 0.972 0.970 0.964 0.937 0.963 0.963 0.971 0.968
Adjusted R?| 0.972 0.970 0.969 0.967 0.963 0.963 0.971 0.968

Table 6 Forecasting equations for Kotri with Sukkur as upstream station
(10 years of record)

Lead time (units of 6 hours)

Coefficients 1 2 3 4 5 6 7 8
A -0.693 -1.496 -1.987 -2.980 -3.791 3.144 3.918 4.937
a(0) 1.063 1.144 1.248 1.426 1.512 1.828 1.908 1.992
a(4) 0 0 0 0 0 -0.843 -0.925 -0.013

a(5s5) 0 0 0 -0.452 -0.547 0 0 0

a(7) 0 0 -0.267 0 0 0 0 0

a(8) -0.070 -0.157 0 0 0 0 0 0

b(1) 0 0.012 0.017 0.024 0.031 0 0 0

b(2) 0.006 0 0 0 0 0 0 0
R 0.999 0.998 0.997 0.996 0.994 0.992 (0.990 0.987
R2 0.998 0.996 0.995 0.992 0.989 0.984 0.979 0.974
Adjusted R2| 0.998 0.996 0.995 0.992 0.989 0.984 0.979 0.974
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Although stepwise regression analysis is capable of selecting the best
predictors, the resulting equation lacks apparent physical meanings.
For example, in the forecasting egquation for Chasma:

C(t+L) = A+a(0)C(t)+a(1)C(t-1)+a(2)C(t-2)+b(0)K(t)+b(1)K(t-1)
+b(3)K(t-3)

where C and K stand for Chasma and Kalabagh, respectively, one may
question why K(t-2) does not appear while K(t-3) does. In this case,
it should be understood, from a statistical point of view, that due to
a high correlation between K(t-1) and K(t-2), the ocontribution of
K(t-2) has been well taken care by that of K(t-1).

Howewver, to overcome this lack of physical interpretation, several
other altermatives 1like ridge regression on regression on principal components
are being attempted. Results of the study will scon be reported.

4.0 CONCLUSIONS

Regardless of its simple form and its less demand for input data, the
proposed statistical approach leads to forecasting models with high accuracy for
all the stations on the lower part of the Indus River. The resulting models,
being expressed as simple 1linear equations, can be conveniently used for
operational forecasting purposes because forecast values can be computed easily.

The high accuracy obtained by the developed models is believed to result from
the fact that past values of discharges at the station considered are taken into
+account and these lagged variables would be able to take care of all factors
affecting the variation of the discharge in the following time units. Due to
the use of stepwise regression, the forecasting models may seem to lack some

physical interpretation but this, it is hoped, would be overcome by adopting an
alternate technique.
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