LOW FLOW FOR MINIHYDRO POWER PLANTS

Piergiorgio Manciola

Stefano Casadei

Institute of Agricultural Hydraulics, University of Perugia Borgo XX Giugno, 74—Perugia

SYNOPSIS

This paper is a contribution of a multidisciplinary research and suggests an estimation method of low flows, to individuate the best places of minihydro plants. In fact the low flows of a river define the period of low productivity and they qualify the technical and economic feasibility of minihydro plants.

Particularly the localization of these plants needs large territorial investigation and for this purpose it is necessary to evaluate the hydrological droughts for ungaged rivers.

The research suggests an estimation methodology of low flow based on the geomorphological and hydrological characteristics of a given basin, which can be evaluated by hydrogeological thematic maps.

The method required the preliminary analysis of 53 gauged basins of a region and the definition of a functional relationship between low flow (dependent variable) and hydro-geomorphological parameters (independent variables).

1.0 INTRODUCTION

Low flow have been investigated by different authors and particularly the aspects of interaction between surface, ground water and low flow regime of a basin $\left[1,2,3,4,5\right]$.

For this problem a very important role has the value of a Base Flow Index (BFI) [8,9], derived by recorded flow hydrograph separation on ground water runoff and overland runoff.

An investigation of 53 gauged basins showed that the BFI has a high correlation with the hydrogeological characteristics of the basins. Then we assumed BFI as an indicator of the basin hydrogeology.

This hypothesis has been verified very well in the second part of this work when we found that BFI is the most important variable for total investigated basins.

The obtained results for discharge greater than 40 percentile, calculated by multiple regression equations, allowed to derive the lower line of duration curve for ungaged basins. It gives an evaluation of the hydrogeological regime of the river.

2.0 GAUGED SITES

The main characteristics of the 53 analyzed basins are reported in table 1. These basins have been chosen because they have a record years greater than 6 years and for them it is possible to define the hydrogeological characteristics (*).

The investigated area is equal to $50,000~\rm{Km}^2$ and the area of gauged basins is equal to $31,763~\rm{Km}^2$, about 2/3 of total.

The values of SAAR (Standard Annual Average Rainfall), BFI (Base Flow Index) and AREA (Basin Surface) are the independent variables which showed the best correlation with low flows.

Particularly BFI, which is calculated from annual recorded hydrograph, and its annual values have been found to be stable. The standard deviation is less than 5% 10.

The correlation between BFI and hydrogeological characteristics of gauged basins (see Tab.1) allowed to derive tab.2, where each geological complex is associated to a BFI average value. It can be accepted at a 5% significant level in according to t Student test of the date sample of every investigated basins.

The reliability of the results derived also by the consideration that BFI increases with the storage capacity of investigated geological complexes [6] which can be gauged in the following way:

- (1) complex of marine clay, (2) argillaceous flysch complex. Areas where both surface runoff and evapotranspiration prevail over infiltration, percolation and aquifer capacity are consequently negligible.
- (4) Volcanic complex, (5) marly-calcarenitic complex.

 Areas where the values of effective infiltration are comparable to those of runoff.
- (6) basin edge complex, (7) complex of slope deposits, (8) dolomitic complex, (9) complex of pelagic deposits, (10) complex of carbonate shelf, (11) carbonate shelf edge complex.

Areas where effective infiltration prevails over surface runoff.

^(*) See "Hydrogeological scheme of Central Italy" [6,7], where it is possible to derive the effective infiltration of various complexes

Generally the BFI variability for each geological complex is small (see tab.2) and this derived by different elements, for example the thickness complex, presence of clastic deposits, spring captation and urban drainage.

3.0 UNGAUGED SITES

By means of daily discharge of 53 gauged basins the duration curve for each basin has been calculated.

The Q(P) discharge values have been expressed as a percentage of Average Daily Flow (ADF) in such a way to have an homogeneous comparison between basins with different flow regime.

Then we studied the multiple linear regression between Q(P)% and SAAR, BFI, AREA:

$$\sqrt{Q(P)\%} = a_0 + a_1 \sqrt{SAAR} + a_2 \sqrt{BFI} + a_3 \sqrt{AREA}$$
 (1)

The square root has been employed to eliminate negative value of $\mathbb{Q}(P)\%$. The application field of equation (1) is for the $\mathbb{Q}(P)\%$ value of percentage of time discharge exceeded $\mathbb{P}(\mathbb{Q} \ge \mathbb{Q}_{\ell}^*) \ge 40\%$.

The obtained results suggested to divide the sample in two subsamples:

subsample A: AREA>100 Km² (Tab.3) subsample B: AREA≤100 Km² (Tab.4)

For A Q(P)% showed a strong correlation only with BFI, consequently satisfactory results can be obtained by simplified equation:

$$\sqrt{Q(P)\%} = b_0 + b_1 \sqrt{BFI} + b_2 BFI$$
 (2)

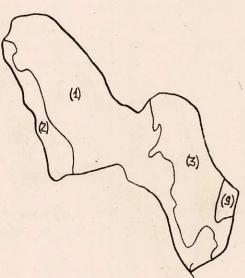
For B Q(P)% had a good correlation with BFI but also AREA parameter showed sometime a relevant weight.

Finally equation alike (1) is analyzed to derive the Q(P) values without the ADF component:

$$\sqrt{ADF} = a_0 + a_1 \sqrt{SAAR} + a_2 \sqrt{BFI} + a_3 \sqrt{AREA}$$
 (3)

The equations (1) and (3) have been applied to 51 basins and, then, they have been verified for the other two basins, considered as "ungauged" sites and with inputs only hydro-geomorphological parameters: SAAR, BFI and AREA.

4.0 EXAMPLES


The examples studied regard two characteristic basins located along the Appenninic Ridge in Central Italy, a great basin on river Chiani at Morrano bridge and a little basin on river Velino at Posta village.

River Chiani at Morrano bridge

Characteristic data are: SAAR=962 mm., BFI=35 calculated from annual hydrograph and catchment area 422 Km².

Hydrogeological complex BFI theoretic average

- (1) Complex of marine clay 23 (237 Km²)
- (2) Argillaceous flysch complex 32 (47 Km²)
- (3) Arenaceous flysch complex 44 (123 Km²)
- (9) Pelagic deposits 80 (15 Km²)

BFI estimated by weighted area mean is 32, with a simple difference from BFI calculated.

The results obtained by equations (1) and (3) with Tab.3 are: ADFest.=4.06 cumecs ADFobs.=4.50 cumecs \triangle %=9.8

P %	Q(P)obs. cumecs	Q(P)est. cumecs	<u> </u>	
40	2.30	1.94	15.6	
50	1.58	1.32	16.5	
60	1.04	0.89	14.4	w .
70	0.65	0.58	10.7	
80	0.38	0.38	0.0	
90	0.23	0.28	-21.7	
95	0.15	0.21	-40.0	

River Velino at Posta village

Characteristic data are: SAAR=1017 mm, BFI=71 calculated from annual hydrograph and catchment area $95~{\rm Km}^2$.

Hydr	rogeological complex BI	FI	
	theoretic	average	
(3)	Arenaceous flysch complex (24 Km ²)	44)e) (
(5)	Marly-calcarenitic complex (27 Km ²)	76	(5)
(6)	Basin edge complex (44 Km ²)	80	

BFI estimated by weighted area mean is 70, with a very simple difference from BFI calculated.

The	results	obtained	by	equations	(1)	and	(3)	with	Tab.4	are:	
	ADF	est.=1.07	cur	necs A	DFobs	s.=1	.53	cumecs	. \triangle	%=30	

P %	Q(P)obs.	Q(P)est.	<u>^</u> %	
			~	
40	1.32	0.96	27.3	
50	1.07	0.83	22.4	
60	0.91	0.73	19.8	
70	0.76	0.62	18.4	
80	0.66	0.50	24.2	
90	0.54	0.38	29.6	
95	0.46	0.30	34.7	

The results of the examples are reported graphically in figures 1 and 2.

5.0 CONCLUSIONS

This paper suggests a mathematical model to derive an estimation of water resources of a region. Particularly we obtained the low flow evaluation for gauged and ungauged basins with an accuracy included on average between 10% and 25%. This accuracy can be considered acceptable to design a minihydro plant relating to its optimal regime.

Further developments could allow the optimization of the entire duration curve which can define completely the hydrological regime of a given basin. Moreover we are planning to extend the research to other regions with different hydrogeological characteristics in such a way we can have a confirmation of the goodness of the proposed methodology.

Tab.1 CHARACTERISTIC DATA OF STUDIED CATCHMENTS (I part)

)=4%			(3)=9% (4)=19% (9)=1%		=48%											%9=							
2)				(3)=29% (9)=4%			(3)=9% (4)	(4) = 70%	lake area				(6)=47%				(9)=10%			5)=4% (6)=		(6)=35% (10)=18%					(10)=10%
hydrogeological complexes (tab.	(3)=100%	3)=100%	3)=82% (9)=18	(1)=56% (2)=11%	(3)=53% (9)=47%	(3)=38% (6)=62%	(1)=53% (2)=18%	(1)=10% (2)=20%	(4)=52% natural	2)=39% (4)=61%	(4)=100%	(10)=100%	(3.)=25% (5)=28%	(4)=8% (10)=92%	(6)=100%	(1)=77% (2)=23%	(1)=56% (2)=34% (9)=10%	(9)=100%	(6)=100%	(1)=81% $(3)=9%$ $(5)=4%$ $(6)=6%$	(3)=71% (5)=29%	(3)=47% (6)=35%	(1)=100%	(2)=58% (5)=42%	(6)=100%	(7)=35% (8)=65%	(7)=14% (8)=76% (10)=10%
SAAR BFI AREA hy mm obs. Km² co		43 2033 (3	51 4147 (3	35 422 (1	59 1956 (3	64 1220 (3	30 1320 (1	59 818 (1	92 273 (4	42 220 (3	76 497 (4	85 233 (1	71 95 (3	67 382 (4	93 1445 (9	25 580 (3	28 192 (:	80 110 (9	82 118 (9	57 117 (:	58 147 (;	66 213 (;	28 50 (39 90 (5	78 72 ((.) 69 26	82 42 (
SAAR BI		973,	980	362	1038	1014 (1015	940	945	1071	1018	1394 8	1017	1282	1052	815-	1151	1327	1317	795	1044	1129	847	1360	1175	1476	1346
years of record	31	34	37	10 37	40	38	14	00 10	era 26	11	llana 13	44	19	12	na 46	ta 21	no 12	20	na 23	tica 12	34	no 34	25	iano 15	7	14	ω
hydrometric station	S.Lucia	P.te Felcino	P.te Nuovo	P.te Morrano	Torgiano	Bettona	Orvieto	M. di Castro	P.te Cartiera	Rota	Civ. Castellana	Subjaco	Posta	Fossanova	Torre Orsina	Monte Amiata	Monte Merano	P.te Giove	Pieve Torina	Alba Adriatica	Teramo	S.Pellegrino	S.Vito	Pesco Lanciano	Carpinone	S.Elia	Picinisco
river h	Tevere	Tevere	Tevere	Chiani	Chiascio	Topino	Paglia	Fiora	Marta	Mignone	Treia	Aniene	Velino	Amaseno	Nera	Orcia	Albegna	Chienti	Chienti	Vibrata	Tordino	Tavo	Feltrino	Trigno	Carpino	Rapido	Melfa
żι	Н	2	က	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Tab.1 CHARACTERISTIC DATA OF STUDIED CATCHMENTS (II part)

															(11)=3%										
hydrogeological complex (tab. 2)	(2)=11% (3)=11% (4)=49% (5)=2% (10)=27% (3)=21% (10)=79%		(3)=17% $(6)=13%$ $(10)=34%$ $(11)=36%$	(3)=34% (7)=36% (11)=30%	(4)=100%	(3)=90% (9)=10%	(3)=90% (9)=10%	(1)=20% (3)=29% (9)=51%	(3)=28% (9)=52%	(3)=5% (5)=15% (6)=55% (9)=25%	(3)=69% (5)=5% (6)=26%	(3)=50% (5)=9% (6)=36% (8)=5%	(3)=65% (5)=11% (6)=19% (8)=5%	(3)=47% $(5)=15%$ $(8)=5%$ $(10)=28%$ $(11)=5%$	(3)=23% (5)=12% (6)=30% (8)=5% (10)=27% ((3)=15% (6)=40% (7)=25% (11)=20%	(3)=9% (6)=39% (7)=26% (11)=26%	(3)=5% $(6)=60%$ $(7)=5%$ $(10)=15%$ $(11)=15%$	(2)=35% (5)=65%	(3)=33% $(8)=12%$ $(10)=28%$ $(11)=27%$	(2)=46% (10)=54%	(3)=47% $(6)=18%$ $(10)=12%$ $(11)=23%$	(3)=100%	(1)=50% (3)=50%	(3)=100%
AREA Km²	923	1329	139	71	851	617	1045	791	439	100	85	28	114	531	1303	80	108	2033	32	130	201	593	62	1271	738
BFI obs.	39		82	37	72	41	43	22	73	92	71	63	53	29	74	17	94	93	9	47	78	67	39	33	43
SAAR	1336	1181	850	1377	910	1249	1169	1133	1144	1358	1285	1357	1001	1015	920	1221	1285	914	1376	1610	882	1284	1298	825	1271
years of record	12	24	11	9	34	6	20	7	59	25	16	36	59	23	33	6	53	35	36	20	13	14	56	30	34
hydrometric year station rec	Ceccano	Sora	Pescina	Settignano	Centr.Traponzo	Acqualagna	Barco di Bella.	Moie	Cannucciaro	Amandola	Comunanza	Ponte Rio Arno	Treponti	L'Aquila	Molina	Scanno	Villalago	Maraone	Montenero	Opi	Vicenne	Ripalimosani	Stia	Can. Chiana P.te Ferrovia	Subiano
N. river hy 	Sacco		Giovenco	Rio Mollo	Marta	Candigliano	Metauro	Esino	Potenza	Tenna	Aso	Rio Arno	Aterno	Aterno	Aterno	Tasso	Sagittario	Pescara	Zittola	Sangro	Aventino	Biferno	Arno	Can. Chiana	Arno
żι	28	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53

Tab. 2: BFI for various hydrogeological complexes

N.	hydrogeological complex.	BF	I
		range	theoretic avera
(1)	COMPLEX OF MARINE CLAY	16 - 30	23
(2)	ARGILLACEOUS FLYSCH COMPLEX	26 - 38	32
(3)	ARENACEOUS FLYSCH COMPLEX	34 - 54	44
(4)	VOLCANIC COMPLEX	55 - 75	65
(5)	MARLY-CALCARENITIC COMPLEX	72 - 80	76
(6)	BASIN EDGE COMPLEX	78 - 82	80
(7)	COMPLEX OF SLOPE DEPOSITS	81 - 85	83
(8)	DOLOMITIC COMPLEX	83 - 91	87
(9)	COMPLEX OF PELAGIC DEPOSITS	70 - 90	80
10)	COMPLEX OF CARBONATE SHELF	80 - 88	84
11)	CARBONATE SHELF EDGE COMPLEX	85 - 95	90

Tab. 3: a_i , regression coefficients and error in estimating of equations (1) and (3) for great basins

DURATION %	a _o 	a, 	a ₂	a ₃ 	R -	s.e.
40	0.,30567	0.04562	0.85062	0.00802	0.956	0.362
50	-1.42331	0.02824	1.02005	0.00974	0.970	0.353
60	-2.48781	0.00575	1.14567	0.00968	0.965	0.429
70	-3.36114	-0.01615	1.25613	0.01007	0.941	0.618
80	-3.14045	-0.05650	1.31633	0.00729	0.928	0.727
90	-0.47679	-0.14774	1:31319	-0.00266	0.927	0.755
95	-0.38704	-0.15590	1.28022	-0.00226	0.912	0.817
ADF	-3.87034	0.10213	0.06288	0.11417	0.938	0.522

Tab. 4: a, regression coefficients and error in estimating of equations (1) and (3) for little basins

DURATION %	a ₀ 	a ₄	a ₂	a ₃	R. -	s.e.
40	2.10505	-0.01615	0.88963	0.03431	0.960	0.344
50	-0.80221	-0.03360	1.09886	0.13720	0.961	0.429
60	-3.29659	-0.05369	1.28691	0.24037	0.956	0.539
70	-5.29048	-0.05586	1.37536	0.30770	0.958	0.568
80	-8.13366	-0.02220	1.39641	0.39344	0.947	0.683
90	-12.01316	0.03609	1.43296	0.47731	0.938	0.753
95	-15.10780	0.09569	1.45035	0.51670	0.929	0.835
ADF	-3.87034	0.10213	0.06288	0.11417	0.938	0.522



Figure 1

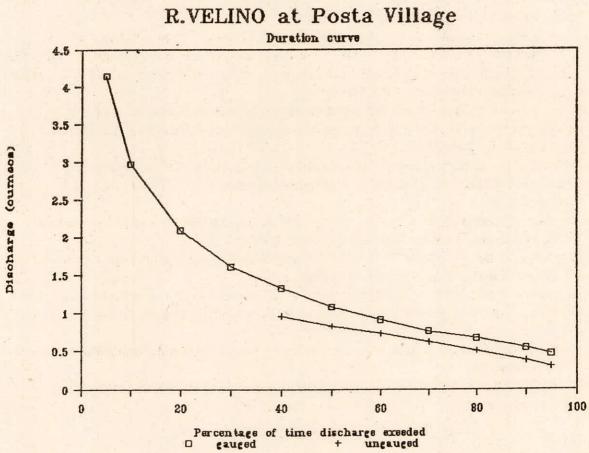


Figure 2

REFERENCES

- [1] Martin J.V. and Cunnane C. 1976 "Analysis and prediction of low-flow and drought volumes for selected Irish rivers" The Institution of Engineers of Ireland.
- [2] Simmers I. 1975 "The use of regional hydrology concepts for spatial transation of stream data." The Institution of Civil Engineers. Introductory Paper to the Hydrological Group.
- [3] Musiake K., Inokuti S., Takahasi Y. 1975 "Dependence of low-flow characteristics on basin geology in mountainous areas of Japan." Publication of Nx 117 de L'Association Internationale des Sciences Hydrologiques de Symposium de Tokio." 147,156
- [4] Midgeley D.C. 1957 "Generalized drought sequence probabilities for storage draft frequency analysis." International Hydrology Symposium, Fort Collins, 443,450.
- [5] Knisel W.G. 1963 "Base flow recession analyses for comparison of drainage basins and geology." Journal of Geophisical Research, 68,12, 3649-3653.
- [6] Boni C., Bono P., Capelli C. 1987 "Hydrogeological Scheme of Central Italy. Hydrogeological Map scale 1:500.000".
- [7] Boni C., Bono P., Capelli C. 1987 "Hydrogeological Scheme of Central Italy. Hydrology Map scale 1:500.000".
- [8] Lvovitch M.I. 1972 "Hydrologic budget of continents and estimate of the balance of global fresh water resources." Soviet Hydrology, Nx 4. pp. 439-360.
- [9] Institute of Hydrology Crowmarsh Giffort Wallingford, Oxon 1980 "Low Flow Studies".
- [10] Tonini D. 1974 "Elementi di idrografia ed idrologia" Vol. I-II.