APPENDIX—II
NASH MODEL

I1.1. The Linear Differential Equation with Constant Coefficient

With the assumption that the input and output are related by the linear differential equation
with constant coetficients, the equation may be written as :
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here, x (t) is input and y (t) is output.

As x (t) is usually known and y (t) is unknown the Eq. (11.2) may be written as :

1
y (1) = (aD"+bD"1 f¢c D*2........)) x (t) (11.3)
which may be factorised as :
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We may assume that all the elements in the catchment operate in a stable and highly damped
manner, i e. the effect of a disturbance such as instantaneous rainfall dies out eventually without
oscillating about zero. In such cases the roots of the polynomial are all real and negative (Eq.11.4)
i.e. the C's in Eq. (11.4) are all real and positive. It may also be shown that if the requirement
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of continuity is observed (i.e. if [ idt = J qdt) as itis in the present case then
o 0

Therefore Eq. [11.4] may be written as :
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where, K's are all real and positive

The Eq. (11.5) is the general linear differential equation of a stable highly damped system which
obeys the law of continuity and whose elements do not change with time. Now consider a linear
reserveir with storage coefficient K. As we know for a linear raservoir the storage S is proportional
toyie. S = Ky here, y is outflow from the linear reservoir.
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and hence :
S (1) = Ky (1) (11.6)

Equation of continuity tells us that inflow-outflow = rate of change of storage :

dS (t

i.e. x ()—y (t) = dt( ) (11.7)

; d s (1) dy (t)
From equation (11.6) T = K = (11.8)
Therefore, x (t) —y (t) = K dyd(:) (11.9)
Denoting -th as a differential operator D, the Eq. (11.9) may be written as :

x (1) — vy (1) = KDy () (11.10)
or KDy (t) -y (t) = x (1) (1.11)
or (1 + KD) y (1) = x (1) (11.12)
or 1) = mpele gt t) 11.13
Eq. (11.13) shows a relationship between input and output with an operator ﬁ—;—KD) for single

linear reservoir.

Now we consider the two linear reservoirs in series and their storage coefficients are K;
and K.. Since the twe reservoirs are in series, the outflow from the first reservoir will be inflow
in the second reservoir :

Taking first linear reservoir into consideration, the operation of the first linear reservoir
may be written according to Eq. (11.13).

‘ 1
el Xl (t) == W X (t) (”1 4)
Similarly, the operation of the second linear reservoir may be expressed as
1
y (1) = x; (1) (11.15)
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Substituting value of x, (t) from Eq. (11.14) in Eq. (11.15), we will get : (for linear reservoirs)
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Y= ax5) GIRD) - Koy * O (11.16)

Here, K's are storage coefficients for n linear unequal reservoirs connected into series. If we
want to know impulse response of the system, we have to know (n - 1) parameters i.e, values
of K and value of n itself. Method of moments is one of the most important methods and easy to
handle from mathematical point of view. Ifinput and output datais in error, the higher order
moments will be associated with magnified error. Since to estimate (n+1) parameters, (n—1)
moments are required which may not give reliable estimate of parameters due to magnification in
error for higher order moments. The easiest way is to reduce number of parameters taking n
linear reservoir of equal storage coefficients and the operation of n equal linear reservoirs is

given as :

y (1) = (1_+l|<“bT)n x (1) (11.17)

Eq. (11.17) represents the system having two parameters n and K. Note that it is not necessary
that the value of n will be always integer it may be real as well.

The Laplace transform of Eq. (I1.17) is given as ;

1
Y )= G rxep* © (11.18)
y (s) = U (s) x (s) (11.19)
where, u (s) = (—,H_LK;)T (11.20)

Since inverse Laplace transform of the function u (s) given as :

1 n—1
u (t) ~m=11 [ﬂ:"f1 u (s) e (s—p)"] s = p for nth order pole.
1 dn-1 1 n .
Hence, u(t) = TEERN [ ds"*l(-‘l—kKs ) e’ (s—p)"] s=p for nth order pole (11.21)
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So impulse response or IUH for the system having n equal linear reservoirs of storage coefficient K
is given by the Eq. (11.22).

I1.2. First and second moments of impulse response about the origin

The equation of rth moment of any function f (t) about the origin is given as ;

@)
M= [ f (1) (1) dt (11.23)
— 0

Therefore rth moment of impulse response u () is given by the relation

T OF u (t) (1) dt (11.24)
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Since the system is initially at rest, therefore, the lower limit of Eq (11.24) will be equal
to zero and hence ;
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My = [ i i -t/K
S o (K) €y dt

putting t/K = x

1
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for first moment about the origin r = 1
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for second moment about the origin r = 2,
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2”‘: = (:K)2 -+ nK2 (11.26)

Now theorem of moments introduced by Nash (1959), may be used to relate moments
of input and output with the moments of impulse response. Using moments theorem. (See
APPENDIX—III for the proof).

My = (M’ + M)’ (11.27)

where, suffixes are written as power indices without of course interpreting them as such except
for purposes of expansion.

Expanding Eq. (11.27) forr = 1 and r = 2, the resulting equations are :
My = 1M'x L 1M* g (11.28)

2M'y = 2M' x L 2, M'x 1My 4 2M‘y (11.29)
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Eq. (11.28) and (11.29) may be written as :
1My = IM*y — M’ (11.30)
2My = Mty __ OMY D 1M ¢ (M' (11.31)

Combining Eq. (11.25) and (I1.30), Eqg. (11.26) and (I1.31), we geat :

1My — 1M’ y = nK (11.32)

2My Mty 2 M x  AM y = (nK)® + nK?

2M'y — 2M* x — (nK)? + nK2 2 nK . M x

2M'y _2M' x — n (n + 1) K* 4 2nK . M'x {11 33)
Since moment of IUH is normalized, so moments of input and output should aiso be

normalised before using in the above Eq. (11.32) and (11.33). In the case of calculating moments,
excess rainfall is assumed as input and direct surface runoff as output,

11.3 Unit Hydrograph from Impulse response (IUH)

Since the unit hydrograph of period T is expressed in terms of S-curve hydrograph by the
equation :

W) =[S =S =T (11.34)

where, S (t) is S-curve ordinates of unit intensity and S (t— T) is the ordinates of the S-curve
hydrograph but shifted by T hours.

The general equation for the IUH of Nash model is given as:

1

U ) = 0% (K (11.35)

As discussed in the lecture no 6 on ‘Unit Hydrograph Analysis’ that relationship between
the S-curve and IUH is given by the equation :

t
S(t) = [ u(ot) dt (11.36)
(@]
therefore,
o K
SaHI= S (f)e‘”K (t/K)* d (t/K) (it 37)
=1 (n, t/K) (11.38)

where, | (n, t/K) is the incomplete gama function of order n at (t/K).

Similarly,
5 iy =1 for 2T

Hence from Eqg. (11.37)

U(T.t) = -.1r—[ I (n, :{) — 1 (n, i%l)] (11.39)

which is the general equation of the unit hydrograph of period T hour.
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