LECTURE -5

MUSKINGUM-CUNGE METHOD

R. D. Singh Sceintist 'E’

Surface Water Analysis & Modeling Division
National Institute of Hydrology

Roorkee

Objective: The objective of this lecture 1is to describe the
methodology for stream channel routing using
Muskingum-Cunge method. The advantages and limitations
of the Muskingum-Cunge method are also highlighted
in the lecture.

1.0 INTRODUCTION

As discussed in one of the earlier lectures, the routing

equation for conventional Muskingum method is given as:
0 e B +8, I +C, 0 (1)

in which, Co’ C1 and 02 are routing coefficients defined in terms

of At, K, and X as follows:

_ (At/K) = 2%
o  2(1-X) + (4At/K)

(At/K) + 2 X

1 72 (1-X) + (At/K)
_2(1-X) - (At/sK)
2 T ZOx) * (AE/K) s

where, I = Inflow, O = Outflow, K = a time constant or storage
coefficient and X = a dimensionless weighting factor.

The Muskingum method can calculate runoff diffusion,
ostensibly by varying the parameter X. A numerical solution of
the linear kinematic wave equation using a third order - accurate
scheme (current number C = 1) 1leads to pure flood hydrograph
translation (see lecture on ’'Hydraulic Methods of Flood Routing’).
Other numerical solutions to the linear kinematic wave equation
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invariably produce a certain amount of numerical diffusion and/or
dispersion. The Muskingum and Tinear kinematic wave
routingequation are strikingly similar. Further, unlike the
kinematic wave equation, the diffusion wave equation does have the
capability to describe the physical diffusion.

From these propositions, Cunge (1969) concluded that the
Muskingum method is essentially a linear kinematic wave solution
and that the flood wave attenuation shown by the calculation is
due to the numerical diffusion of the scheme itself. He
discretized the kinematic wave equation on the xt plane (Fig.1) 1in
wave that parallels the Muskingum method to prove this assertion
and came out with a physically based alternative to the Muskingum
method. The alternative method is popularly known as Muskingum-
Cunge method.

2.0 MUSKINGUM CUNGE METHOD

The kinematic wave equation discussed in Tlecture on
'"Hydraulic Methods of Flood Routing’ is given as:

aQ aQ

:\%T CW = 0.0 (5)

in which, ¢ = fiv is the kinematic wave celerity.

Eq.(5) was discretized by Cunge (1969) on the xt plane
shown in Fig. 1 in a way that parallels the Muskingum method,
wherein the spatial derivative was centred and the temporal
derivative was off centered by means of a weighting factor X. The
resulting equation is given as:

n+1 n n+1 n
X (Qj Qj) + (1-%) (Qj+1 Qj+1)
At
+
(@, QD) + @7yq - '
+c 2 2 =0 ivei48)

24x%

solving Eg.(6) for the unknown discharge 1leads to the
following equation:
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Figure 1. Space-time discretization of

kinematic wave equation paralleling
Muskingum method.
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il s o Qg+1 +C, Q; +Cc.Q (T

n
J+1 o 2 T j+1
The routing coefficients are:

_ ¢ (At/Ax) - 2X
% T 20-X) * ¢ (At/A0) ce..(8)

. © (At/Ax) + 2'X
1~ 2 (1-X) + ¢ (At/Ax)

.(9)

_2(1-X) - c (At/Ax)

Cz T 2(1-X) + c (At/AX)

s wona (105

By defining:

_ Ax
K = — o % w0 10D

it is seen that the two sets of Egs.(8) to (10) and (2) to (4) are
the same.

EqQ.(11) confirms that K is in fact the flood wave travel
time, i.e. the time taken for a given discharge to travel the
reach length Ax with the kinematic celerity c¢c. In a linear mode, c
is constant and equal to a reference value, in non-linear mode, it
varies with discharge.

It can be seen that for X = 0.5 and C = 1 (C = ¢ At/Ax =
f3v At/Ax, the courant number), the routing equation is third order
accurate, i.e. the numerical solution is equal to the analytical
solution of the kinematic wave equation. For X = 0.5 and C # 1,
it is second crder accurate, exhibiting only numerical dispersién.

For X # 0.5 and C # 1, it is first order accurate exhibiting both
numerical diffusion and dispersion. For X # 0.5 and C = 1, it is
first order accurate, exhibiting only numerical diffusion. .These
relations are summarized in Table 1.

Table 1 : Numerical Properties of Muskingum Cunge Method
Parameter Parameter Order of Numerical Numerical
X C Accuracy Diffusion Dispersion
0.5 1 Third No No
574



0.5 1 Second No No

<0.5 #1 First Yes Yes
<0.5 1 First Yes No

In practice, the numerical diffusion can be wused to
simulate the physical diffusion of the coefficient (Vn) for the
scheme can be derived by expanding the discrete function Q (J Ax,
n At) in Taylor series about grid point (j 4x, n A4t) (Ponce,

1989):
= L
Vn = ¢ Ax (2 X) (12)

Eg.(12) reveals the following:

(i) For X = 0.5 there is no numerical diffusioen, although
there is numerical dispersion for C # 1.

(i1) For X > 0.5, the numerical diffusion coefficient 1is
negative, i.e. numerical amplification which explains the
behaviour of the Muskingum method for this range of X
values:

(111) For Ax = 0, the numerical diffusion coefficient is zero,
clearly the trival case.

The hydraulic diffusivity (Vh) which is a characteristics
of flow and channel is defined as:

Q a

o] o]
Vh = 378~ §~ 25 E18)
o]

(o]

in which, q0=QO/T is the reference flow per unit of channel width.

A predictive equation for X can be obtained by matching
the hydraulic diffusivity Vh (Eq.13) with the numerical diffusion
coefficient of .the Muskingum scheme (Eg.12). This Jleads to the

following expression for X:




1
X =-(1 - —— SR (17 X
4 ( Socﬁx) ( )

With X calculated by Eq. (14), the Muskingum method 1is referred to
as Muskingum Cunge method (NERC, 1975). The routing parameter X
can be calculated as a function of the following numerical and
physical properties:

(i) Reach length 4x;
(1) Reference discharge per unit width qo;
(iii) Kinematic wave celarity, ¢, and

(iv) Bottom slope So'

It should be noted that the Eq.(14) was derived by
matching physical and numerical diffusion (i.e. second order
processes) and does not account for dispersion (a third order
process). Therefore, in order to simulate flood wave diffusion
properly with the Muskingum-Cunge method, it 1is necessary to
optimise numerical diffusion with Eg.(14) while minimising
numerical dispersion (by keeping the value of cuorant number as
close to 1 as practicable).

A unigue feature of the Muskingum method 1is the grid
independence of the calculated out flow hydrograph. If numerical
dispersion minimised (keeping cuorant number C close to one), the
calculated outflow at the downstream end of a channel reach will
be essentially the same regardless of how many sub-reaches are
used in the computation. This is because X is a function of Ax

and the routing co-efficients Co’ C1 and 02 vary with reach

length.

An improved version of the Muskingum-Cunge method 1is due
to Ponce and Yevjevich (1978). The current number, C is defined
as the ratio of wave celerity (C) to grid celerity Ax/At i.e.

TRRTR e s 159
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The grid diffusivity is defined as the numerical diffusi-
vity for the case of X = 0. From Eq.(12), the grid diffusivity is

\"} = J— ....(16)

The cell Reynold number (Roache, P., 1972) is defined as
the ratio of hydraulic diffusivity (Eq.13) to grid diffusivity
(Eq.16). This leads to

D = r ....(17)

in which, D = Cell Reynolds number. Therefore, from Eq.(14) and
(17)

(1-D) v wmn k 18)

| —

Eq.(17) and (18) imply that for very small values of Ax, D
may be greater than 1, leading to negative values of X. In fact,
for the characteristic reach length

o
Ly -
uXC-—SC ....(19)
o
the cell Reynold number is D = 1, and X = 0. Therefore, 1in the

Muskingum-Cunge method, reach length shorter than the characteris-
tic reach length result in negative values of X. This should be
contrasted with the classical Muskingum method, in which X is
restricted in the range 0.0 - 0.5. In the classical Muskingum, X
is interpreted as a weighting factor. As shown by Eq.(17), and
(18) non negative values of X are associated with long reaches (Ax
more than characteristic length AxC given by Eq.(19), typical of

the manual computation used 1in the development and early
application of the Muskingum method.

In the Muskingum-Cunge method, however, X is 1interpreted
in a moment matching sense (USDA, 1973) or diffusion matching
factor. Therefore, negative values of X are entirely possible.
This feature allows the use of shorter reaches than would
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otherwise be possible if X were restricted to non-negative values.

The substitution of Eg.(15) and (18) into Eq.(8) to (10)
leads to routing co-efficients expressed in terms of courant and
cell Reynolds numbers:

-1+ C+D

Co - 1+ C+D w0 (20)
- 1+C+D

C1 = T +C+D v e (21)
-1 +C+D

C2 - 1 +C+ D vewni22)

Thus C and D are the two routing parameters required to be
estimated for Muskingum-Cunge method.

2.1 Estimation of Routing Parameters

(a) Estimation of parameter C (Courant number)

The parameter C can be estimated using Eqg.(15). It
requires an estimate for wave celerity (c) in addition to grid
size (Ax, At). The wave celerity can be calculated with either

c = fiv° s 5w 2 (23)

dQ

or (o] = a?

<. (24)

—l

Where, /3 is an exponent in the discharge area rating equation
given as

f

Q = a (A) . e o3(E2E )

The calculation of /7 is a function of frictional type and
cross sectional shape.

Theoretically E£q.(23) and (24) are the same. For practical
applications, if a stage-discharge rating and cross sectional
geometry are available "(i.e. stage - discharge - top width
tables), Eg.(24) is preferred over Eq.(23) because it accounts
directly for cross sectional shape. 1In the absence of a stage -
discharge rating and cross sectional data, EQ.(23) can be used to
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estimate flood wave celerity. The velocity V in EQ.(23) can be
taken as the velocity at reference flow. The choice of reference
flow has bearing on the calculated results although the overall
effect is 1likely to be small. The peak flow value has the
advantage that it can be readily ascertained, although a better
approximation may be obtained by using an average value.

(b) Estimation of parameter D (Cell Reynold number)

Cell Reynold numbers (D) can be caiculated using the reach
length (Ax), reference discharge per unit width a,: kinematic wave

celerity (c), and bottom slope (SO) in Eq.(17).

2.2 Resolution Requirements

When using the Muskingum-Cunge method sufficiently small
values of Ax and At should be taken 1in order to approximate
closely the actual shape of the hydrograph. For smoothly rising
hydrographs, a minimum value of tp/At = 5 is recommended. This

reguirement usually results in the hydrograph time base being
resolved 1into atleast 15 to 25 discrete points, considered
adequate for Muskingum routing.

Unlike temporal resolution, there is no definite criteria
for spatial resolution. A criterion borne out by experience is
based on the fact that courant and Cell Reynolds numbers are
inversely related to reach length Ax. Therefore, to keep A4x
sufficiently small, courant and Cell Reynolds numbers should be
kept sufficiently large. Thus leads to the practical criterion:

C+D=Z 1 co..(26)
Which can be writtern as: -1 +C +D = 0.

This confirms the necessity of avoiding negative values of CO in

Muskingum-Cunge routing (Eq.7). Experience has shown that

negative values of either C1 or 02 do not adversely effect the

methods over all accuracy (Ponce and Theurer, 1982).

Notwithstanding Eqg.(26), the Muskingum Cunge method works
best when the numerical dispersion is minimised, that is, when C
is kept close to 1. Values of C sufficiently different from one
are likely to cause the notorious dips, or negative outflows, 1in
portions of the calculated hydrograph. This computational ancmaly
is attributed to excessive numerical dispersion and should be
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avoided.

3.0 METHODOLOGY

The steps involved in flood routing through a channel
reach using the Muskingum-Cunge Method are given as follows:

(i) Estimate the parameter C (Courant number) wusing the
following equation:

The wave celerity ¢ 1is computed using the procedure
described in section 2.1. The temporal and spatial resolutions
(At and Ax) should be such that the routing co-efficient CO should

not be negative as well as the value of courant number (C). should
be close to one in order to minimise the numerical dispersion.

(ii) Estimate the parameter D (Cell Reynolds number) using the
following equation

%

S CAx
0

The wave celerijty (c) and reference discharge, qo(:Qo/T)
per unit width are used togather with channel slope SO and reach

length 4x in the above equation to provide the parameter D (Cell
Reyno1ds number). Please ensure whether -1 +C +D = 0, which is
the practical criterion to avoid the negative values of CO in

Muskingum Cunge routing.

(ii1) Estimate the routing co-efficients Co’ C1 and 02 using the
following equation:

s e Ioh e+ B
o 1 +C+ D
1 &6 =D

G = ————
1 o0 s A
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1 - C+ D
2 1 +€C + D

Route the inflow hydrograph (Q ) using the following
equation in order to have the outflow hydrograph (Qj+1):

n+1 n+ n n
; = C P i o ;
J+1 o QJ C1 QJ Cz QJ+1

If the channel is divided into sub-reaches, the steps (1)
to (iv) should be repeated for all the sub-reaches
considering the cutflow from the first sub-reach as inflow
to second sub-reach and so on.

Example 1: Use the Muskingum-Cunge method to route a flood
wave with the following flood and channel characteristics:

1000 m3/s

peak flow Q
R 3
0Om/s

Base flow Qb
Channel bottom slope SO = 0.000868

flow area at peak discharge Ap = 400 m2,

top width at peak discharge Tp = 100 m

rating exponent /7 = 1.6,

reach length Ax = 14.4 Km.

time interval At = 1 hr.

Time (h) 01 2 3 4 5 6 7 8 9 10
Flow (ma/s) 0 200 400 600 800 1000 800 600 400 200 O

Solution:

Compute the wave clerity (c)

c = {"'V
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(i)

(ii1)

(iv)

here /= = 1.6 and the mean velocity (based on the peak
discharge) is V = QD/AD = 1000/400 = 2.5 m/s

c=1.6 x 2.5 = 4 m/s
Compute the Courant number (C)

-3
At 4 x 1 x 3600 10 ~ _ 14.4
Ax ~ 14 .4 14.4

here qO = the flow per unit width (based on the peak

discharge)

HSE—M-‘IOmE/S
- T T 100

10 10

0.000868 x 4 x 14.4 x 103 0.368 x 57.6

Compute the routing co-efficients

-1 +C+0D =1 41 + 0.2

Co - 1 +C+D ~ 1+ 1+ 0.2~ S
1 +C-D 1 +1 - 0.2

&y = 1+C+D TR 1§ b2 = 9.8

G = ‘hql_;wg_i_g o agma -‘1“f”032 - 0.091
2 1+ C+ D 1+ 1 + 0.7
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(v) Compute the ocutflow hydrograph using the following routing
equation:

+
Q"
J+1

The routing calculations are shown in Table 2

n+1

n
+ C .+ C
1QJ 2Q

+
0.091 Q"""+ 0.818 Q7 + 0.091 Q"
J J J+1

Table 2 Channel Routing by Muskingum-Cunge Method
Time Inflow Partial Flows Outflow
n+1 n n+1
c ) .
(Qj ) OQ. C1Qj ZQJ+1 (QJ+1)
P ] 3 L g . 3
Chr) (m /s) (m (m™ /=) (m~/s) (m™/s)
{1 G2 (31 (4) (5) (3)+(4)+(5)
0 0 0
1 200 18.2 ) 18.2
2 400 26.4 163.6 1.66 201.66
3 600 54.6 B2t S8 18.35 400.18&
4 800 72.8 490.8 36.41 600.01
& 1000 91.0 654 .4 54 .60 800.00
6 800 72.8 818.0 72.80 963.60
7 600 54.6 654.4 87.69 796.69
8 400 36.4 490.8 12 .50 599.70
9 200 18.2 327T.2 54 .57 399.97
10 0 163.6 36.40 200.00
11 0 18.20 18.20
12 0 1.66 1.66
13 0 0.16 0.16
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4.0 NON LINEAR MUSKINGUM-CUNGE METHOD

The kinematic wave-equation (Eg.5) is non Tlinear because
the kinematic wave celerity varies with discharge. The non
linearity is mild because the wave celerity variation 1is wusually
restricted within a narrow range. However, it becomes necessary
to account this non linearity in certain cases. This can be
achieved in two ways: (i) during the discretization, by allowing
the wave celerity to vary, resulting in a hon Tlinear numerical
scheme to be solved by iterative means; and (ii) after the
discretization by varying the routing parameters, as 1in the
variable parameter Muskingum-Cunge Method where the routing
parameters are allowed to vary with the flow. The latter approach
is particularly useful if the overali non-linear effect is small,
which is often the case.

In the variable Parameter Muskingum-Cunge method the
values of C and D are based on local qO and ¢ values instead of

peak flow or other reference value in the constant - parameter
method. To vary the routing parameters, the most expedient way is
to obtain an average of qo and ¢ for each computational cell. This

can be achieved with a direct three point average of the values at
the known grid points (Fig.1), or by an iterative four point
average, which includes the unknown grid point. To improve the
convergence of iterative four point procedure, the three point
average can be used as the first guess of the iteration. Once qO

and ¢ have been determined for each computational cell, the
courant and cell Reynolds numbers are calculated by Eqg.(15) and
(17). The value of bottom slope, SO, remains unchanged within

each computational cell.

The variable parameter Muskingum-Cunge method represents a
small yet some times perceptible 1improvement over the constant
parameter method. The differences are likely to be more marked
for very long reaches and/or wide variations in flow 1levels.
Flood Hydrographs calculated with variable parameters show a
certain amount of distortion, either wave steepening in the case
of flows contained in bank or wave attenuation in the case of
typical over bank flows. This is a physical manifestation of the
non-linear effect 1.e. different flow levels travelling with
different celerities. On the other hand, flow hydrographs
calculated using constant parameters do not show such wave
distortion.
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5.0 ADVANTAGES AND LIMITATIONS OF MUSKINGUM~-CUNGE METHOD

(i)

(i1)

£ 50 )

(iv)

(v)

The Muskingum-Cunge method is a physically based
alternative to the Muskingum method. Unlike Muskingum
method where the parameters are calibrated using
streamflow data, in the Muskingum Cunge Method the
parameters are calculated based on flow and channel

characteristics. This makes pcssible channel routing
without the need for time consuming and cumber some
parameter calibration. More importantly, TE makes

possible extensive channel routing 1in ungauged streams
with a reasonable expectation of accuracy.

With the variable parameter feature, non-linear properties
of flood waves (which could otherwise only be obtained by
more elaborate numerical pr#&cedures) can be described
within the context of the Muskingum formulation.

Lithe Muskingum method, the Muskingum-Cunge method is
limited to difussion waves. Furthermore, Muskingum-Cunge
method is based on a single valued rating and does not
take into account strong flow non uniformity or unsteady
flows exhibiting substantial 1loops 1in dischrage-stage
rating (i.e. dynamic waves). Thus the Muskingum-Cunge
method is suited for channel routing 1in natural streams
without significant back water effects and for unsteady
flows that classify under the diffusion wave criterion.

An important difference between the Muskingum and
Muskingum-Cunge methods is that the former is based on the
storage concept and, therefore, the parameters K and X are
reach averages. The later method, however, ‘is kinematic
in nature, with the parameters C and D being based on
values evaluated at channel cross sections rather than
being reach average. Therefore, for the Muskingum-Cunge
method to improve on the Muskingum method, it is necessary
that the routing parameters evaluated at channel cross
sections be representative of the channel reach under
consideration.

Historically, the Muskingum Method 4“as been calibrated
using stream flow data. On the contrary, the
Muskingum-Cunge method relies on physical characteristics
such as rating curves, cross sectional data and channel
slope. The different data requirements reflect the




different theoretical bases of the methods 1i.e. storage
concept in the Muskingum method, and kinematic wave theory
in the Muskingum-Cunge method.

6.0 REMARKS

Muskingum-Cunge method is a better alternative to the
Muskingum method. It works best when the numerical dispersion 1is
minimised. The method can be applied to the ungauged reach
without any difficulty as it involves the wuse of physical
characteristics for the estimation of parameters. Since the
method is limited to diffusion waves and does not take into
account the substantial 1loops 1in discharge-stage rating (i.e.
dynamic waves), its application is restricted for channel routing
of the natural streams without significant backwater effects and
for wunsteady flows that <c¢lassify under the diffusion wave
criterion.
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