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LIST OF SYMBOLS 

- number of time steps upto which pumping is carried out 

QA(t) - aquifer contribution during time t 

Q
p
(t) - pumping rate during time t 

Q (t) - well storage contribution during time t 

- constant pumping rate 

r1 - distance of pumping well from the impermeable boundary 

r2 - distance of the pumping well from the river boundary 

r
c 

- radius of the well casing 

r
w 

- radius of the well screen 

- radial distance from the centre of the well 

s(t) - drawdown at the well face 

- drawdown 

- transmissivity of the aquifer 

- duration of pumping 

-time 

2 
a - a parameter equal to .(r /r )

2 
we c 

— a parameter equal to T/0 

0 - storage coefficient 
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ABSTRACT 

Large-diameter wells are extensively used in many parts of the 

world. The cheapness and simplicity of construction and operation 

of these wells are often the main reasons for their use. Besides, large-

diameter wells are suitable for shallow aquifers with low transmissivity. 

In many situations an impervious boundary or a recharge boundary is 

encountered in the vicinity of the well. In the present report a general 

but simple mathematical tool has been developed to analyse unsteady flow 

to a large-diameter well located near a river and an impervious boundary. 

The analysis has been done using image well theory and discrete kernel 

approach. 

Variations of drawdown at the well point with time have been 

presented in non-dimensional form for various durations of pumping and 

for different values of storage coefficient for specific positions of 

the hydrologic boundaries. The influence of the hydrologic boundaries 

on drawdown at well point has been analyzed. The recovery of the well 

storage when the well has been pumped for different durations have 

been determined for different values of storage coefficient. Making use 

of the graphs, the time required for 90 percent recovery of the well 

storage can be known. It is seen that as the value of storage coefficient 

decreases the time span for 90 percent recovery increases. 
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1.0 INTRODUCTION 

Large-diameter wells are extensively used in many parts of the 

world. The cheapness and simplicity of construction and operation of these 

wells are often the main reasons for their use (Jaila,1977). Another 

important advantage is that large-diameter wells are suitable for shallow 

aquifers with low transmissivity. Since ancient time, people in India and 

in other South Asian Countries have used large-diameter shallow dug wells, 

tapping mostly the phreatic and in some cases the semiconfined or confined 

near surface aquifers. Dug wells of this type continue to be the primary 

source of ground water in rural India. According to Baweja (1979), of the 

total 9.5 million wells in India, 79% were dug wells with large-diameter, 

18% were shallow tubewells in the hard rocks and soft rocks, and the 

remain2ng 8% were deep tube wells in alluvial basins. Lahiri (1975) has 

estimated that about 71% of the ground water abstracted in the year 1971 

was from large-diameter wells. The farming community in hard rock areas 

is heavily dependent on these type of wells as a supplemental source for 

irrigation and domestic water. A better understanding of large-diameter 

well is therefore important for an optimum development of ground water 

resources. In the present report a solution is given for unsteady flow 

to a large-diameter well in a confined aquifer located near a fully 

penetrating river and a no-flow boundary. 



2.0 REVIEW 

Several investigators have analyzed the effect of pumping from a 

nonflowing well of large-diameter in an aquifer of infinite areal extent 

(Papadopulos and Cooper, 1967; Lai et al, 1973; Lai and Wusu, 1974; Boulton 

and Streltsova, 1975; Fenske, 1977; Seethapathi, 1978; Rushton and 

Redshaw, 1979; Rushton and Holt, 1981; Herbert and Kitching, 1981; Patel 

and Mishra, 1983; Rushton and Singh, 1983). Foremost among the solutionsis 

that of Papadopulos and Cooper. The solution given by Papadopulos and 

Cooper for a flow to a large-diameter well in a confined aquifer is based 

on the solution given by Carslaw and Jaeger (1959) for an analogous 

problem in heat flow. The evaluation of aquifer response by Papadopulos 

and Cooper's method requires numerical integration of an improper integral 

involving Bessel's function. The numerical integration therefore involves 

large computations. The family of type curves given by Papadopulos and 

Cooper depicting response of the aquifer at the well point during continu-

ous pumping contains straight line portions which are parallel. These 

straight portions of the type curves correspond to the period when most 

of the water is pumped from the well storage. If a short duration pumping 

test is conducted in a large-diameter well, the time drawdown curve 

matches with any of the straight line portions of the type curves. Although 

a unique value of transmissivity can be obtained, the evaluation of stor-

age coefficient with short duration pump test data is questionable. 

Papadopulos and Cooper (1967)have stated that the determination of 

transmissivity is not so sensitive to the choice of the type curve to 

be matched, where as the determined value of storage coefficient will 
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change by an order of magnitude when the data plot is moved from one 

type curve to another. According to them, the well storage dominates 

the time drawdown curve up to a time t given by t = (25 r
2 )/T, where r

c 

is radius of the well casing and T is the transmissivity of the aquifer. 

For accurate determination of storage coefficient the well should be 

pumped beyond this time which is quite long for aquifer with low 

transmissivity. Large-diameter wells are generally constructed in shallow 

aquifers with low transmissivity and long duration pumping test in such 

wells is therefore not practicable (Herbert and Kitching, 1981). Under 

these circumstances, analysis of the unsteady flow during recovery 

and evaluation of aquifer parameters with the help of recovery data need 

due consideration. Rushton and Holt (1981), and Herbert and Kitching(1981) 

used numerical methods to analyze flow to a large-diameter well during 

the abstraction phase and the recovery phase. 

Generally, in India centrifugal pumps are used by farmers for 

withdrawal of water from a large-diameter well. When centrifugal pumps 

are used the abstraction rate falls off significantly with increasing 

drawdown. Though analytical expressions have been derived by Lai et al 

for a linear or exponential decrease in abstraction rate with time, 

the characteristics of centrifugal pumps require a reduction in abstrac-

tion rate with the unknown well drawdown. Using numerical model, Rusthon 

and Singh (1983) developed type curves for large-diameter wells when 

the abstraction rate decreases with drawdown. 

In reality no aquifer is of infinite areal extent. Hydrologic 

boundary such as a river or an impermeable boundary is often encountered 

in the vicinity of a well. Flow to well located near hydrologic 

boundary has been analyzed conveniently by image well theory. According 

3 



to the image-well theory hydrologic boundaries are replaced by 

imaginary wells which produce the same effects as that of the boundaries. 

Boundary problems are thereby simplified to consideration of an aquifer 

of infinite areal extent where-in the real and the image wells operate 

simultaneously. The effects of real and image well are computed making 

use of-the principle of superposition. 

In the last decade, many complex ground water problems have been 

analyzed by the discrete kernel approach (Maddock, 1972; Morel -Seytoux 

and Daly, 1975; and Morel -Seytoux, 1975). Discrete kernel approach 

has been found to be convenient for analysing unsteady flow to large - 

diameter well in a homogeneous confined aquifer (Patel and Mashra, 1983). 

In the present report the unsteady flow to a large-diameter well 

influenced by an impermeable boundary and a perennial fully penetrating 

river has been analyzed during and after stoppage of pumping, using 

discrete kernel and image well theory. The well storage has been taken 

into consideration in the analysis. 

14 



3.0 PROBLEM DEFINITION 

Figure 1 shows a schematic cross-section of a large-diameter well 

in a confined aquifer located near a fully penetrating perennial river 

and an impervious barrier. The well screen has a radius equal to 

r. Radius of the unscreened part of the well is re
. The aquifer is 

homogeneous, isotropic, and initially at rest condition. Pumping is 

carried out at a uniform rate upto time t. It is necessary to 

determine the drawdown in the piezometric surface at the well face and 

at any distance r from the centre of the well at time t after the 

onset of pumping. 
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4.o METHODOLOGY 

The following assumptions have been made in the analysis: 

At any time the drawdown in the aquifer at the well face is 

equal to that in the well. 

The time parameter is discrete. Within each time step, the 

abstraction rate of water derived from well storage and that from 

aquifer storage are separate constants. 

The basic differential equation for axially-symmetric, radial, 

unsteady ground-water flow in a homogeneous, isotropic, confined 

aquifer of uniform thickness is given by 

2 
+ — — as 1 as t. as.  
2 r 

ar T at 
Dr 

where, s = drawdown; r = distance from the centre of the well, t = time, 

0 = storage coefficient, and T = transmissivity of the aquifer. 

For the initial condition s(r,O) = 0 and the boundary condition 

s(=, t) = 0, solution to the above differential equation when a unit 

impulse quantity is withdrawn from the aquifer is given by (Carslaw and 

Jaeger, 1959) 

s(r,t) - 6 = Tht, ... (2) 

 

4rmt 

Defining a unit impulse kernel 

r2  
- 
e 

ITT 
k(t) - 4wmt 
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drawdown for a variable pumping rate can be written in the form 

s(r,t) = PQA(c) . k(t-c)dc, ... (4) 

where , QA(c) is the variable discharge rate from the aquifer at time c. 

Dividing the time span into discrete time steps and assuming that 

the aquifer discharge is constant within each time step but varies from 

step to step, the drawdown at the end of time step n can be written as 

(Morel -Seytoux, 1975) 

s(r,n) = 6r
(n-Y+1). QA  

Y =1 

where, the discrete kernel coefficient 6r
(m) is defined as 

1 r2 "2 
{E( s ) —E (  1 } 

4TIT 1 48m ' 1 '11.16(m-1)' 

where, E1( ) is an exponential integral defined as 

e
-u 

El(X)  = !L 
an (Abramowitz and Stegun, 1970). 

The discrete kernel coefficient 6r
(m) is the drawdown at the end of the 

m
th time period at a distance r from the pumping well in response to 

withdrawal of a unit quantity of water from the aquifer storage during 

the first time period. A unit time period may be 0.1 day, 1 day or 1 week 

etc. 

The disturbance created by the river and the no-flow boundary 

on drawdown can be simulated by image well theory. The locations of 

the image wells which simulate the boundary effect are shown in Fig.2. 

Drawdown, sw
(n), at the well face at the end of time step •n due to 

abstraction from well storage is given by 

(5) 

6 r(m) = I k(m-c)dc = 
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sw(n) = 
1  
2 rtr 

E Qw(Y) Y=1 

where, Q(Y) is the withdrawal rate from well storage at time step Y . 

Qw(I) values are unknown a priori. A negative value of Qw 
 (Y) means 

there is replenishment of well storage which occurs during the recovery 

period. 

In addition, drawdown at the well face at the end of time step n 

due to abstraction from aquifer storage is given by 

sA(n)  = YE1 QA (Y)  6rw(n-Y+1)+61'n-Y+1)-62(n-Y+1)-63(n-Y-1-1) ) 

where 
r2 r2 

... (8) 

6rw(m) = .1rT 
) (9) 

E1 4m ( -21-) E1( 10(m-1) 

r2 r7  
1 

61(m) = wa 1 El ( Smi) - El ( / a( 111711—)  

2 r + r2 r2+ r2 
1 2 1 2) ( 

)1  
...(11) 

62(m) 
= 1 El  ( ml 5(m-1) 

r2 r2 
1 1 ... (12) 

63(m) - 41a' {E1 ( sm
2 ) - E1 ( Km2-1) ) 

Because sw
(n) = sA 

(n) , therefore 

E Q (1)  
Y1 

ffsrw(n-Y+1) +61 
 (n-y+1)-62

(n-y+1) -83
(n-y+1)1 

= A  

1 
*r2 

E  
y=1 

Rearranging, 
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drw(1)+61(1)-62(1)-d3(1)' 
1 
2 

Wr 

1 1 

Qw(y) - nil  Q (Y) icsrw  (n-7+ 1 1)+6  (n-Y+1)-(52(n-Y+1)-63(n-Y+1)/ y =1  A  
1 
2 

lit 
C 

n-1 

y=1 

2, it 

Q(n) 1 n-1 Q
w(Y) f

rw
(1)+61(1)-62(1)753(1)1 QA(n) - 2 - 2 wr C y=1 

- = QA(y){6rw
(n-y+1)+61(n-y+1)-62(n-y+1 )-63(n-Y+1)}  

y1 

At any time the algebraic sum of the quantities of water withdrawn 

from aquifer storage and from well storage equals the quantity pumped. 

Let the total time of pumping be discretised to m units of equal 

time steps. The quantity of water pumped during anytime step n can be 

written as 

QA(n) Qw(n) = Qp(n) 

in which, 

QA(n) = water withdrawn from aquifer storage, and 

0 (n) = water withdrawn from well storage. 'w 

For n >m, Q
p
(n) = 0. Otherwise Qp(n) = Q, where Q is the pumping 

rate for unit time period. 

Equations (14) and (15) can be written in the following matrix form: 

Hence, 

11 



QA(n) 
s (1)+ 
rw is (1)—s2(1)—(53(1)' 1 

1 
2 
c 

Q(n) 1 

n-1 n-1 
VY) - E  

y=1 y=1 
2 

1 
6rw(1)+61(1)-62(1)-83(1), 2 0 

wrc  

1 1 

-1 

... (17) 

Thus, QA(n) and Q
w(n) can be solved in succession starting 

from time step 1. 

In particular, for time step 1 

... (18) 

Once QA(n) values are solved, the drawdown at any point can be 

found using the following equation: 

sr(n)  = E QA(1)f6R (n-Y+1)+6R(n-Y+1)-6R
3(n-Y+1)-6R(n-Y+1)1 'I' (19)  y 2 =1 1 14 

in which, 

= distance between the production well and the point 

at which drawdown is to be known, 

R2 = distance between the image discharge well and the point, 

R3,R4  = distance of image recharge wells from the point, 

12 



2 R R2 
1 1 1  

{E r--- )} R1(m)  - 1e- ) - E 4am 1(  4$(m l) •  
14-ITT 

Equation (17) is a general equation. When any one of the 

hydrologic boundaries or both are at infinity, the contribution of aquifer 

storage and well storage to pumping can be derived from equation (17) as 

follows: 

Let the perennial river is at a finite distance from the well 

and the impermeable boundary is at infinity. In such case r1 

Consequently61(m) and o2
(m) tend to zero and equation (17) reduces to 

-1 

QA(n) 2 
irr 

1 1 

1 n-1 n;1 
Qw(y) - E QA

(Y){ rw (n-y+1)-63
(n-y+1)) 

rr
2 

Y=1 Y=1 .. (20) 

• 
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5.0 RESULTS 

The discrete kernel coefficients drw
(m), 51(m), 52(m), and 5 

3
(m) 

are generated and stored for known values of aquifer parameters ( T,*), 

radius of the well screen ( rw
), and distances of the hydrologic 

boundaries from the large-diameter well (r1, r2
) for different values of 

time (m). After generating the discrete kernel coefficients, QA(n) and 

Qw
(n) are found by solving eqs. (14) and (15) for known values of re 

and 

duration of pumping (t ). The drawdown at the well face is then 

obtained with the help of equation (7). 

The variation ofAsw(t)}/{ Q/4nT) with {4Tt/Or:} for a specific 

location of the hydrologic boundaries for different values of a , 

where a=*frw
/rc , is shown in Figures 3. sw

(t) is the drawdown at the 

well face at time t and {sw
(t)}/{ Q/4xT}ean be regarded as the well 

function for a large-diameter well located near a river and a no-flow 

boundary. The type curves shown in Figure 3 contain the response of the 

aquifer during the abstraction as well as the recovery phase. Each 

of the recovery curves is characterized by a non-dimensional time factor, 

flat /{0T2w 
,at which it leaves the time drawdown curve of the,  

abstraction phase. This non-dimensional time factor can be used to check 

the accuracy of the aquifer parameters determined by curve matching. 

The variations of. fsw
(t)1/{Q/4TeT} with {4Tt} , 

for a = 0.000001 are shown in Figure 4 for the cases when 

the aquifer is of infinite areal extent, 

a river boundary exists at a distance ofIrdfirw} = 50, 

and the impervious boundary is at infinity, and 

14 
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iii) a no-flow' boundary exists at a distance of (r1)/(r) = 50, 

and the river boundary is at infinity. 

It is seen from the figure that when the river is present near the 

well the recovery of the large-diameter well is very rapid in comparison 

to the cases where a no-flow boundary exists or none of the boundaries 

are present. Comparison of drawdowns when pumping stopped shows that 

because of the presence of the no-flow boundary the drawdown is increased 

by 16.5 percent. On the contrary if there is a river boundary the draw-

down is decreased by 25.6 percent. 

The recovery of the well storage has been analyzed for different 

durations of pumping for various values of storage coefficients. Figure 5 

shows the plot of percentage recovery of well storage with non-dimensional 

time measured since pumping stopped, for different values of storage 

co-efficient and pumping time. It is seen from the figure that as the 

storage coefficient decreases the time span for recovery of well storage 

increases. The duration of pumping has little or no effect on the 

percentage recovery of well storage for small values of storage coefficient. 

For example, when 45= 0.0001, the duration of pumping beyond 5 hours of 

pumping has no influence on the recovery of well storage. This is because 

of the fact that with smaller value of 4), the pump withdraws more water 

from well storage and the withdrawal from well storage ceases some time 

after pumping. Within the duration of pumping considered, the contribution 

of well storage has ceased. On the other hand the recovery of the well 

storage is influenced by the duration of pumping when the +value is high. 

For example, for += 0.1 when the duration of pumping is 5 hours the non-

dimensional time factor for 50 percent recovery of well storage is 31. 

When the duration of pumping is 20 hours the corresponding value is 39. 

17 
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6.0 CONCLUSIONS 

A general and simple mathematical model has been described 

which determines drawdown due to pumping of a large-diameter 

well located near a no-flow boundary and a river. The recovery of the 

well storage after stoppage of pumping has been analyzed. From the 

results, the time span, in which a specific fraction of the well storage 

is recovered, can be known. 
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