SR-10

IDENTIFICATION OF FORMATS FOR COLLECTION OF DATA FOR DROUGHT STUDIES

NATIONAL INSTITUTE OF HYDROLOGY JAL VIGYAN BHAWAN ROORKEE - 247 667 (U.P.) INDIA 1987-88

PREFACE

Effective planning and management of any water resources project small or big, depends to a large extent the availability of timely and accurate flow of on hydrological data and allied information. These data are the key inputs in assessing the hydrologic problems, their impacts and taking remedial decision. A large amount of water resources and allied data are presently being collected by a number of departments/agencies both at Central and State levels. Many times it is not known as to what data is being collected, by which agency and in what format and sometimes these data are not directly accessible to users in time. This also at times leads to duplication of efforts. So there is a need to have a standard format for collecting the data at national as well as state level at specified frequency of collection.

This report describes about the data required for drought analysis. The planning of station network as well as ways of collection of data, their handling and presentation are discussed in brief. Application of computer in data storage and retrieval system proves to be very helpful in this context. Format of data collection for computer storage adopted by various agencies are given. Besides, the available formats of collection of different data, used by different state/central agencies were collected, their drawbacks are discussed and the modified format for each type of data collection are also suggested. This report entitled "Identification of Format for Collection of Data for Drought Studies" is a part of research work of 'Drought Studies Division' of the Institute. The study has been carried out by Shri V K Lohani, Scientist 'C'; Shri Sudhir Kumar Goyal, Scientist 'B' and Shri Anupam Srivastava, Ex-S.R.A. under the guidance of Dr. G C Mishra, Scientist 'F'. The manuscript has been typed by Mrs. Mary D'Souza, Stenographer of the Division.

SATISH CHANDRA

CONTENTS

LIST OF FIGURES

PAGE

ABSTR	ACT		
1.0		INTRO	DUCTION
		1.1	General
		1.2	Nature and extent of problem
		1.3	Present Status of Data Collection in India
2.0		DROUG	HT
		2.1	Definition of Drought
		2.2	Identification of Drought
		2.2.1	Drought indices
		2.2.1	(a) Meteorological drought indices
		2.2.1	(b) Agricultural drought indices
		2.2.1	(c) Hydrological drought indices
		2.3	Importance of Hydrological Drought
		2.4	Drought in India
3.0		DATA F	REQUIRED IN THE STUDY
		3.1	General
		3.2	Type and Frequency of Data Needed
		3.3	Handling of Data for Hydrologic Studies
		3.4	Itemwise Data Collection from various agencies/ organisations
4.0		FORMAT	S FOR COLLECTION OF DATA
		4.1	Rainfall Data Format
		4.2	Discharge Data Format
		4.3	Groundwater Data Format

4.4 Other Types of Data

5.0	PLANNING OF STATION NETWORK	27
6.0	USE OF COMPUTER IN THE STUDY	30
	6.1 Computerised Storage and Retrieval System	30
	6.2 Problem of Man Machine Communication	35
7.0	CONCLUSION	39
	REFERENCES	41
	APPENDIX	

PAGE

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 1	Variation of G.W. Level	10
Figure 2 (a)	31 Card format	33
Figure 2 (b)	24 Card format	33
Figure 2 (c)	Hourly Rainfall Card format	33
Figure 3 Daily dat	ca format of CWC	34
Figure 4 (a) & (b) Format of Ground Water data adopted	36
	by CGWB	

i

Abstract

Basic hydro-meteorological data are essential for planning and management of water resources projects and therefore are collected over the years with enormous effort and expenditure. For the analysis of drought, those data which are conventionally stored in registers and files without a proper inventory are needed. Often very little effort is put in for their documentation in a scientific manner, resulting in loss/damage to the data, their limited use, and non-availability in time. Besides, data in unprocessed form is of limited use. Hence processed data in the desired form, known as informations are of real importance to the end user.

In this report data required for the drought analysis are discussed. The definitions of drought, problem of drought in India, and type of drought are also discussed. The planning of station network as well as ways of collection of data, their handling and presentation are discussed in brief. Application of computer in data storage and retrieval system proves to be very much helpful in present context. Format of data collection for computer storage adopted by various agencies are given. Besides, the available formats of collection of different data, used by different state/central agencies were collected, their drawbacks discussed and the modified format for each type of are data collection are also suggested. The existing formats for data collection are presented in Appendix L. II. III & IV for different parameters and the modified formats for all these parameters are presented in Appendix V.

ii

INTRODUCTION

1.1 <u>General</u> : Hydrometeorological analysis form an important and integral part of hydrological research. The hydrometeorological analysis comprises of a wide range of studies for providing input for water resources estimation of design storm for determining design flood for hydraulic structures. And since nowadays country is facing a problem of drought, so hydrometeorological analysis is essential to estimate the problem of drought in past and to provide control measure for drought in future. Over the years, drought impacts have been felt in agriculture, energy production, pollution, recreational facilities and other such activities which ultimately reflect on the economy of a nation. The problem of drought is a global phenomenon. World Meteorological studies indicate that in recent past (1968 to 1979-80) severe droughts have affected African sahal, parts of India, part of Brazil, Queensland in Australia, Central America and Mexico.

1.2 <u>Nature and extent of problem</u> : Water even though found abundantly on earth is scarcely available to all for satisfying the basic necessities of life at all times and is becoming one of the most precious commodities. The demand for water has been steadily increasing with industrialisation and with the population explosion.

The effective planning and management of any water resources project small or big, depends to a large extent on the availability of timely and accurate flow of hydrological data and allied information. These data are the key inputs in assessing the hydrologic problems, their impacts and taking remedial decision. As an example, regular and timely data are required for impact assessment and mitigation of disasters like droughts and floods for effective management of water

resources projects and solving other hydrological problems like water logging, drainage etc. A large amount of water resources and allied data are presently being collected by a number of departments/ agencies both at Central and State levels. Many times, it is not known as to what data is being collected by which agency and in what format and sometimes these data are not directly accessible to users in time. This also at times lead to duplication of efforts. So there is a need to have a standard format for collecting the data at national as well as state level at specified frequency of collection.

1.3 <u>Present status of data collection in India</u> : The primary object of any data collection programme is to collect the data by using suitable available techniques, process it in a presentable form and store it for future use. Most of the hydrological data collection activities are still based on manual observations. Also, at present the system of transfer of data from place of collection to place of final storage is in a very primitive stage in India. The recording, processing and scrutiny of data are being done manually.

Inspite of technological advancement and improvement on hydrological network, certain deficiencies in data are still noticed mostly due to lack of proper instrumentation. The conventional instruments do not have the necessary range of working under extreme conditions like high flood, heavy storm, low flow etc. Besides they could not be located in accessible areas because of their incapability to be operated by remote control.

These data, collected manually by field observers or termporarily or part time employed persons in the field, and from the field office,data are sent to sub-divisions or sub-offices by messenger or surface mail where computations are performed manually to process

data and record it. The data are further transmitted by surface mail or messenger to the head quarters or to the place where data are stored. Normally, there is considerable time lag for the data to reach at the head office or head quarters in the existing systems of data collection. In some of the cases, where rainfall and river gauge data are required instantaneously or at short interval, these data are transmitted by Telex, Telegram and Telephone to the required place where regular record is maintained.

There is no uniform format and system of data storage. The most common form of data storage is to store data on data sheets and registers. Various agencies have their own format of data recording and storage. Another form of data storage and transmission system is in the form of compiled water year books, which is again not so common and considerable time lag exists in preparation of water year books.

With the development of computer facilities in the country, the state and central organisations have started thinking of storing data on computer or micro-computer. The organisations like CWC, CGWB, IMD & NRSA, DST etc. have started using computer for data storage, processing and retrieval.

2.0 DROUGHT

2.1 <u>Definition of Drought</u> - Drought is lack or insufficiency of rain for an extended period that causes a considerable hydrologic (Water) imbalance and consequently water shortage, crop damage, stream flow reduction and depletion of ground water and soil moisture. It occurs when evaporation and transpiration (the movement of water in the soil throught plants into the air) éxceeds precipitation for a considerable period (Framji 1986)

The term drougnt is generally taken as a period of abnormal dry spell of weather, sufficiently prolong due to lack of rain. A drought results form a combination of climatic and human factors. Irrational, if not imprudent, human activities, poor cultivation practices, deforestation, overgrazing, overuse of marginal lands are some of the culpable human factors contributing to the recurrence of drought (Krishan 1979).

The problems posed by droughts vary from area to area depending upon the amount of precipitation and its variability and on the demand of water for the specified user. The term drought has different connotation for different users. In general terms, it is lack of water with respect to a specific need in a conceptual supply and demand relationship. Drought is however explained differently by persons of different disciplines. To a meteorologist drought is the absence or sever deficiency of rainfall, to an agriculturist, it is the inadequacy of moisture in soil and to a hydrologist, it is a shortage of water in stream and reservoirs.

A common man generally considers the drought or lack of water in such a extent that the agricultural production is badly affected. The agricultural drought is result of inadequate soil moisture in the root zone of the crops to meet the evapotranspiration needs over a fairly long period affecting seriously the crop yield. The agricultural drought, in other words, is caused by an inadequate amount of soil water available over a critical time period of crop growth, this condition will evidently depends also on plant species and soil type. Agricultural drought distinguished from hydrological drought by a difference in concept of effective rainfall. In agricultural drought, the effective rainfall is the availability of water

in the root zone, while in hydrological drought effective rainfall is determined by the portion of rain that escapes through surface or sub surface drainage. But for a common man it means disaster and despair (Sikka 1984).

2.2 Identification of Drought

The ratio of rainfall to potential evapotranspiration gives an indication of the status of soil moisture and this ratio is defined as soil moisture index (SMI). The region where this index is less than 0.66 can be classified as drought prone and the region where this index is less than 0.33 is categorized as arid region and the region where this index is between 0.33 to 0.66 is categorized as semi arid region (Hershfield 1973).

A large part of Gujarat and Rajasthan and some pockets of Southern India are in the arid zone and the annual normal rainfall is generally less than 500 mm.

The semi arid regions cover portions of Maharashtra, Madhya Pradesh, Uttar Pradesh, Haryana and Punjab states and the annual normal rainfall is generally between 500 mm to 1000mm. Some pockets of Bihar, West Bengal and Orissa where the normal rainfall is more than 1000 mm but nct well distributed are also covered under semi arid zone.

The Irrigation Commission 1972, set up by the Govt. of ndia after making detailed studies of various factors, have given a definition of drought areas which has been now accepted in identifying such areas. The irrigation commission considered the following data furnished by the Indian Meteorological Department and the State Governments

(i) Meteorological data

(ii) Revenue Remissions

(iii) The frequency of famine and scarcity, and

(iv) The availability of Irrigation facilities

After considering the meteorological criteria i.e., the distribution of rainfall and the adequacy of rainfall the commission has sought to identify drought areas and chronically the drought affected areas as follows:

(a) Drought Areas:

Areas having 20% probability of rainfall deficits of more than 25% from the normal.

(b) Chronically drought affected areas:

Areas having 40% probability of rainfall deficits ofmore than 25% from the normal.

They have further stated that such of the Taluks, which enjoy an irrigation of 30% or more of the cultivated area should be excluded from the list of drought affected areas. (R. Chikkanna & T.C.R. Rao).

2.2.1 Drought Indices:

2.2.1(a) Meteorological Drought Indices: According to IMD, the meteorological droughts can be classified as below:

Percentage departure from normal rainfall	Intensity of Meteorological drought
0.0 or above	No drougnt
0.0 to -25.0	No drought
-25.1 to -50.0	Moderate drought
-50.1 or less	Severe drought

Statistical analysis of a long record is carried out to derive long term mean, standard deviation and coefficient of variation(Cv) of rainfall. If annual or seasonal Cv of rainfall is 30% or more, the area is termed "drought prone", or when CV in any of the month is 50% or more, the area is termed drought prone (CWC, 1982).

The probability of occurence of dry spells of short and long duration have been studied by Rao et al (1971), Ramana Rao et al (1976), Victor and Sastry (1979), Correria and Bohra (1980). The sequence of dry and wet spells during the monsoon periods in India using the Morcow chain model have been investigated by Chowdhary et al (1984), Khambeta and Biswas (1981), Ramkrishna et al (1984), and others. Khambate and Biswas (1984) for example use two state mark on chain model of 1st order to evaluate sequences of dry and wet weeks during S-W monsoon over dry forming tract of Maharashtra and proposed an index of drought proneness as given below based on parameters of this model.

$$DI = \frac{P \times P_1}{1 - P_0} \times 100 \qquad \dots (1)$$

where, P_{1} and 1-Po are wet and dry sequences

2.2.1(b) Agricultural drought indices

Since rainfall governs the water supply, and evapotranspiration represents the crop water demand, both of these hydrologic variables have been used to define index of agricultural drought by various workers in many ways. In order to replace crude rainfall indices, Presscott (1958) advanced this index in Australia considering the fact that water need of growing plants is dependant on climatic conditions vis-a-vis complex association between soil and vegetation. This index utilises plant soil rainfall interaction concept in any indirect way and uses different ratios of pan evaporation to classify intensity of drought. The CCGI is given as:

$$CCGI = P/(E_{y})^{0.75}$$
 ...(2)

where P = rainfall, and $E_w = measured$ or calculated evaporation rate Das et al. (1971) modified this equation using potential evapotranspiration (PE) instead of E_w and gave the following equation:

$$CCGI = P/(0.769 PE)$$
 ...(3)

On the basis of equivalent rainfall amounts to these limiting CCGI values, four drought classes were defined as given below:

P _i = Nil	growth	= 0.4 (0.769PE)=0.307PE, influ-
Severely	restricted	ential rainfall required
	growth	for a break of season
P_d = Restricted	growth	=0.8(0.769 PE)= 0.615 PE, the
		minimum rainfall for satisfactory
		growth of drought tolerant crop
P _h = Satisfactory	growth	= 1.2 (0.769 PE) = 0.992 PE, minimum
		rainfali for satisfactory growth
		of average crops & pastures.
P _a = abundant	growth	= 1.6 (0.769 PE)=1.220 PE, the
		rainfall creating conditions for
		good growth for most crops,
		plants and dense growth.
P _{a2} = Surplus	growth	= 2.4 (0.769PE)=1.844 PE, the rain-
		iall for abundant and dense
		growth of paddy.
Classification of	duarrah da ad	use helen

Classification of drought is given below: Moderate drought = when $P_a/P_n < 1$ Large drought = when $P_h/p_n < 1$

Severe drought = when $P_d/P_n < 1$

Disastrous drought = when $P_i/P_n < 1$ where P_n is the normal rainfall

Das (1980) classified the country into various drought intensity classes using this concept for advocating necessary soil conservation measures. They estimated that nearly 80% of the country is subjected to droughts. While, 6% to disastrous droughts, 36% to severe, 14% to large and 24% to moderate droughts.

2.2.1(c) Hydrological drought indices

Hydrological drought indices are concerned with the effect of rainfall deficiencies in hydrological components such as surface water, ground water and soil moisture. In the direction of hydrological drought the indices in the form of numerical number indicative of drought occurrence are not many. Rather more complex statistical and stochastic hydrologic models are found in the literature. The hydrological drought has been defined by various researchers, Whipple (1966), defined a drought year as one in which the aggregate runoff is less than the long term average runoff. Yevjevich (1967) defined the term hydrologic drought as "the deficiency in water supply or deficiency in precipitation, effective precipitation, runoff or accummulated water in various storage capacities".

Based on Ground Water Levels the common approach to study hydrological drought using ground water data is to construct well hydrographs superimposed with rainfall data using long term historical record. The correct assessment of draft is one of the main problems in judging the impact of drought on ground water. For example, figure 1 presents few typical well hydrographs in Karnataka State depicting the trends of water table over the past few years and this confirms the lowering of water

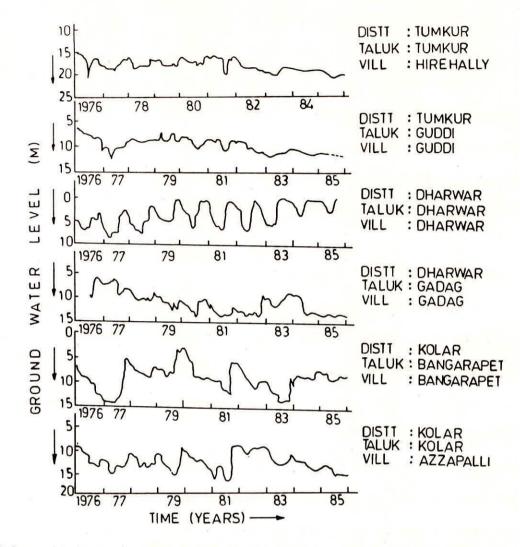


FIG. 1. VARIATION OF GROUND WATER LEVEL (KARNATAKA) ILLUSTRATING DROUGHT IMPACTS

table over the past few years and this confirms the lowering of water table due to drought (Sikka, i986b). Like other drought indices giving some numerical numbers, there appears to be no such attempts made in this direction to develop indices based on groundwater levels.

2.3 Importance of hydrological drought

The drought characteristics and problems posed by droughts vary from area to area, depending upon the amount & variability of available water supplies and the demand of water for specific users. The drought studies done so far have mainly concentrated on meteorological aspects and by some extent on agricultural aspects. The hydrological aspects of drought are poorly understood and have not been scientifically studied. In order to understand the hydrological aspect of drought and its consequences on water supply, availability of fodder and agricultural production, the drought management strategies have to be developed both as short term and long term measures. There is a need to take up systematic drought studies in a coordinated and integrated manner following interdisciplinary approach.

Yevjevich (1968) defined the term "Hydrological Drought" as the deficiency in water supply on the earth's surface, or the deficiency in precipitation, effective precipitation runoff or in accumulated water in various storage capacities. Linsley et al (1975) defined hydrologic drought as a period during which stream flows are inadequate to supply established uses under a given water management system. Basically a hydrologic drought means a deficit of water supply in time, in area or both. Any hydrologic drought involves the following factors:

I) Duration

II) Aerial Extension

- III) Severity (Intensity)
- IV) Probability of occurence
- V) Initiation (or termination) which means its location in the absolute time.
- 2.4 Drought in India

Drought is a frequent hazard in India, striking in some part or the other. It is not only confined to arid and semi-arid regions but often visits in potentially good rainfall areas too, which are otherwise productive (i.e. humid and sub humid rainfed agricultural areas). In this century, the Country had severe droughts in the year 1907, 1977, 1918, 1920, 1939, 1951, 1965-67, 1972-73 and 1979.

During the 1979 drought, crops over nearly 35 million hectares in 12 states viz. Andhra Pradesh, Bihar, Madhya Pradesh, Himachal Pradesh, Rajasthan, Orissa, Jammu & Kashmir, Punjab, Haryana, Maharashtra, Uttar Pradesh and West Bengal involving about 200 million people, have been affected in varying degrees. During the 1965-67 drought, which affected 156 districts of the country, expenditure in drought relief was 722 crores of rupees. During the two consecutive droughts of 1971-72 and 1972-73, the expenditure was nearly Rs.790 crores for the 227 affected districts and during the 1979 drought, nearly Rs.160 crores was approved by Govt. of India (Journal 1981). The recurrent incidence of drought has been causing local as well as regional imbalances and continues to be one of the heaviest dragon for the growth of national economy (Krishna 1979).

3.0 DATA REQUIRED IN THE STUDY

3.1 <u>General</u>: Data in science and technology are usually the results of experiments or observations carried out by research workers. In some instances the primary objective of the research is to obtain the data, but more frequently the data are generated for some other purposes, e.g. to confirm the identity of a synthesized compound and are published only if the author deems it necessary to complete his presentation of the main results of the research. As a result some potentially valuable data are not published at all. It is however desirable that such data be submitted to and stored in appropriate data banks and data depositories to facilitate their later utilisation.

Data are usually understood to be numerical representation of magnitudes of various quantities. More exactly, this is expressed by :

physical quantity = numerical value x unit

Data originate usually from measurements carried out in laboratories and in the field using various measuring apparatus. Measurement in the sense is a process of extracting desired information from specimen under inspection.

To evaluate data as to accuracy or reliability, it is necessary to know the internal structure of the apparatus used and details of the principles of the measuring methods. In most ordinary handling of data, however one need not know all such details, which should not be done.

Environmental conditions, such as date, location, temperature, humidity and atmospheric pressure should accompany the recorded data as necessary. Parameters of the measuring instrument, accuracy,

precision and calibration method should also be noted because they are essential factors in data evaluation.

3.2 Types and frequency of data needed

Data needed for drought studies and other hydrological studies can be categorised in the following four sub-heads :

- a) hydrological variables
- b) water use data
- c) catchment details
- d) other data

The desired frequency of data collection for various hydrological and water use has been given against each item as below, however, the frequency will depend upon the purpose for which data is being collected :

(a) Hydrological Variables

Sl.No.	Variable		Frequency of observation	Time of observation
(1)	(2)		(3)	(4)
1.	Rainfall	(i)	Daily	08.30
		(ii)	hourly	-
2.	Snow		daily	
3.	Glacier		yearly	
4.	Panevaporation		Dáily	08 30
				1400
5.	Interception		selected days	
			during rainy season	
6.	Infiltration		Hourly/daily	-
7.	Soil Moisture	(i)	Weekly	
		(ii)	Daily	0700
			14	

		(ii) H	lourly
9.	Other routine meteo- rological	(i)	Daily
		(ii)	Hourly
10.	Stream/river flow Discharge Stage	Thric	Daily ce a day
			Hourly
		Four	times a
11.	Reservoir (inrlow,	(i)	Daily
	Outflow and levels)	(ii)	Fortnig
			tank ga
12.	Ground Water table	(i)	Monthly
		(ii)	5 times
		(iii)	Seasona
13.	Sediment load		Daily
14.	River Water quality	(i)	Monthly
		(ii)	Thrice
		(iii)	Forthig
15.	Ground Water Quality	(i)	Pre & P Monsoon
		(ii)	Yearly
(b)	Water Use		
	Municipal Water use		D
	Agriculture water use		S
			15

(2)

Evapotranspiration

(1)

8.

(4)1400 0700 hrs (LMT) 1400 hrs (LMT) - do -

Once a day 8, 13 & 18 Hrs.

7, 11, 15 & 19 hrs.

-

_

Jan, Apr., June, Aug. and Nov.

Once a month

Pre and postmonsoon.

Once a day with discharge

Once a month

Twice a month

- Pre & Post Monsoon
- Yearly

(3)

Seasonal

Thrice a month

Daily

Seasonal

Forthightly

times a day

Fortnightly

tank gauge data

5 times a year

(1) Daily

Once a year

Sourcewise Irrigation areas	Seasonal
Crops & cropping patterns	Seasonal
Area under each crop	Seasonal
Area under dry land or rainfed agriculture	Seasonal
Sourcewise water supply for domestic uses	Seasonal
Water demands for domestic and cattle uses	monthly
Industrial water use	monthly
Catchment details	
Hydrological structure and gauging sites	Yearly
Soils, landuse	Yearly
Wells and tubewells	Yearly
Irrigation tanks	Yearly
Percolation Tanks/Ponds	Yearly
Area affected by flood/drought	Yearly
General features (Socio-economic details)	
(i) Population Human and Animal	5 yearly
(ii) Occupation	5 yearly

(c)

(d)

(iii) Land holdings 5 yearly

Source : Draft National Hydrological Monitoring Centre document.

3.3 Handling of data for nydrological studies :

Many of the observations of hydrology resulted in data values which are space and time dependent, and the type of analysis employed is related to the dimensionality of the data. Furthermore, many hydrological observations are made at sites removed from the bulk of their study material and workers must rely

upon data in which there are substantial amounts of uncertainity. If the data are statistically independent, a wide variety of standard elementary data analysis techniques can be applied to start and understand better the nature of the data the level of uncertainity and the characteristics of population being examined. Typical procedures include probability

analysis, the use of statistics to estimate the parameters of parent population and to test hypothesis about population, the analysis of distribution and analysis of variance. These are straight forward procedures and need no further explanation. Perhaps the main caution in their use in the hydrology is that one be certain that the sometimes rigorous assumptions underlying the different procedures are met before the results of the analysis are relied upon.

Data sets with one or more dimensions pose a somewhat greater analytical challenge. One dimensional data in space or in time can perhaps be visualised as a series of data values occuring in sequence along a line. Two dimensional data can be thought of as a set of data values distributed on a surface (typically involving the analysis of data derived from maps, charts and photographs). Much of the same risk of uncertainity about the samples encountered in spatial data has to be tackled in the new type of data. Similarly, there is an interest in the general tendencies exhibited by the one and two dimensional data, so that one can interpolate between data points, extrapolate beyond the data sequence in the presence of trends, or estimate the characteristics that may be of interest to the hydrological scientist.

Interpolation procedures for data along a line are fairly straightforward in concept. The two dimensional version is, of course, the process involved in contouring a set of points. The first step in interpolation is usually producing a regularly spaced set of values.

When contouring a surface, values at regular arid points may be produced in variety of ways, ranging from estimates derived from the nearest originally observed values, the estimates derived from the fitting of a trend surface. The former approach results in a rather coarsely approximated set of contours, the latter has the disadvantage that none of the original points are likely to be on the generated contours.

Frequently one is not only interested in the magnitude of changes in a sequence or on a surface, but also curious about when these changes occur. If certain assumptions can be justifiably made about the distribution of population on which the samples are collected, statistical tests called "regression analysis" can be performed. The simplest of these is the family of least squares methods for determining a line about which the variance is at a minimum. Linear regression techniques are supplied to fit a line through a series of points with a controlled or atleast a well understood, degree of fit.

4.0 FORMATS FOR THE COLLECTION OF DATA

In India, the work of collection of hydrological, meteorological and other allied data is done by different agencies and each agency has its own way of collecting the data in its own format. All the hydrological data specially for drought studies e.g. rainfall, discharge, groundwater, soil moisture etc. are such that one data is collected by more than one agency in its own format. So there is not a uniformity in data collection, in their way of presentation and in their unit. Some agencies are following newly adopted S.I. or metric unit but some agencies are still using old units. (Ramasastri, 1987).

4.1 Rainfall data format:- At present all rainfall data collected through (i) IMD (ii) State Irrigation departments and (iii) Central Water Commission and other agencies as given in Table I.M.D. maintains about 600 surface observations for collection of meteorological data. Some of the State Irrigation departments and agricultural colleges and universities also collect meteorological data through their own observatories. More than 6000 raingauge stations are maintained by state government & for collection of rainfall data. The formats of collection of data by different agencies are given in Appendix II. As can be seen that there are different formats as CWC, P.W.D., Irrigation Department of states, all are independently choosing the formats of rainfall data collection, which creates problem for the handling of the rainfall data, which is the most important parameter. Hydrological and related meteorological data are required for assessing, developing and managing the water resources of the country and its water related environment, and rainfall is the most important meteorological parameter which determines the quantity of runoff in streams directly as overland flow and individually as sub surface flow and ground water (base

	13.	12.	11.	10.	9.	8.	7. (6.	5.	4.]	3. (2.		A)		Items
Other Met.Vari-* ables.	W.Q. (Sediment)	Surface Water Quality	Reservoir	Streamflows	Evap.Transpi- ration	Pan Evaporation	Ground Water	Soil Moisture	Infiltration	Interception	Glacier	Show	Raintali	Hydrological Parameters		2
1. '*	_	*			*	*		*				,	+ >	۴.		IMD
*	*			*		*						,	+ >	ŧ	2	CWC
				*			×						,	ŧ	ω	CGWB
*	*			*		*		*	*					+	4	Min.of Agril.
*					×	*	*	*	*					*	σ	ICAR
*	*	*	*	*	*	*		*	*					*	6	IMD CWC CGWB Min.of ICAR St.Irr. St.GWB St.Ag. RVA BES Agril. Deptt. Deptt.
							×							*	7	St.GWB
*								*	*		F			*	8	St.Ag. Deptt.
	*	*	. *	- ×		*	•						*	*	9	RVI
														*	10	BES
*					,	· >	F	,	-	F)	+			*	1	FRI/St. For.Dept.
			,	ť											12	PHED/ . St. WSB
*						* >	+ >	+ >	+ >	ł				*	13	UNIV./ Ag. Cell
*						* :	+		* >	+					14	ICRI SAT
Board/ NEERI	avi	DOE/St.Pd	CBDCMD/	NDSA	BDC0		NONT	NCUT	JAJE	CACE	US1	ISU	SASE/NRS	RDSO	15	Mic Cel.

ITEMWISE DATA COLLECTION FROM VARIOUS AGENCIES/ORGANISATIONS

Tab

1	10.	9.	8.	7.	6.	5.	4.	ω.	2	-	B)	
Other Info : Recreation etc.	Industrial Water Use	Water Demand- Domestic & Cattle	Sourcewise W.S for Domestic Uses	Fodder & Crop Yields	Area of Dryland/ Rainfed Agri.	Area under Each Crop	Crops/Cropping pattern	Sourcewise Irr.Areas	Agriculture	Muncipal Water Use	Water Use (Surface & Ground	1 2
												ω
				*	*	*	*	*	X			4
					*	*	×		*			თ
					*	*	*	*		*		6
			*									7
				*	*	*	*	*	*			8
												9
	*	*	*	*				*	*	*		10
												11
	×		×							*		
	4	4	4									12
												13
												14
												15

6.	ა	4.	ω.	2.		ι .	2.	-	D)	7,	6.	. •	4.	ω.	2.		C)	
St. Irr. Dept.	ICAR	Min. of Ag.	CGWB	CWC	IMD	Land Holdings	Occupation	Population Human & Animal	General Features (Socio-Economic Details	Percolation Tanks/ Ponds	Irrigation Tanks	Wells & Tube wells	Land Use	Soils	Hyd.Structure/ * * Gauging sites	Catchment	Catchment Details	1 2
										*		*			*			ω
									••									
Stat	Indi	Mini	Cent	Cent	Indi	*		*		*		*	*	*	*	*		4
e Irr	an Co	stry	ral (ral W	a Met					*			*	*				υ
State Irrigation Department	unci l	Ministry of Agriculture	Central Ground Water Board	Central Water Commission	eorol					*	*				*			6
on D	of	ļricu	1 Wat	Comm	ogic													
epart	Agric	lture	er Bo	issio	al De					*	*	*			*			7
ment	Indian Council of Agricultural Research		ard	n	India Meteorological Department					*	*	*		*				ω
	Rese				4						*	*		*	*	*		9
	arch						*	*				*	*					10
													*	*				11
																		12
																		1 <u>3</u>
																		14
						St.Rev.Dept.				2 2				NGRI/GSL		GSI/SOI		15

7. St. GWB	State Ground Water Board
8. St. Ag. Dept.	State Agrıculture Department
9. RVA	River Valley Authorities
10.BES	Bureau of Economics & Statistics
11.FRI	Forest Research Institute
12.St.For.Dept.	State Forest Department
13.PHED	Public Health Engineering Department
14.St. WSB	State Water Supply Board
15. ICRISAT	International Crops Research Institute for Semi Arid Tropics
16. RDS0	Railway Design & Survey Organisation
17. SASE	Snow & Avalanche Studies Establishment
18 . NRSA	National Remote Sensing Agency
19.GSI	Geological Survey of India
20.DST	Department of Science & Tecnnology
21.NGRI	National weophysical Research Institute
22. CBPCWP	Central Board for Prevention & Control of Water Pollution
23.DOE	Department of Environment
24.St.Poll.Board	State Pollution Board
25.NEERI	National Environmental Engineering Research Institute
26.St. Rev.Dept.	State Revenue Department
27.501	Survey of India

flow). Thus the amount, intensity and serial distribution of rainfall are essential in any hydrological study. Preliminary processing of rainfall data is essential before it is put to further use in analysis.

4.2 <u>Discharge data format</u> : The total amount of precipitation which reaches the ground in a statical period is expressed as the depth to which it would cover in a liquid form, the horizontal projection of the earth's surface. Snowfall is also expressed by depth of fresh snow covering on even horizontal surface.

The units of precipitation are linear and daily amounts of precipitation should be read to the nearest 0.1 mm. In India all precipitation observations are made at 08.30 hours when measurements of other meteorological parameters are also made at observatories of India Meteorological Department and other departments.

The other important parameter for hydrological studies is streamflow which is required for the efficient day to day management and regulation of a river system. The stream flow data are also required for design, planning and modelling purposes. The stream flow data collected from the field have to be processed or reduced in a manner to seal it for an analysis.

The Appendix I shows the formats for the collection of discharge data, which clearly shows the difference. Some agencies present data in monthly manner and some in daily manner but the way of their presentation is entirely different. These data are collected by State Irrigation departments and Central Water Commission. The Central Water Commission operates 462 gauge and discharge and water quality monitoring sites. Gauges are observed at a hourly intervals during the monsoon season (June-Oct) and thrice daily during the non-monsoon period. The discharge and rest observations are taken once a day and

water quality data are taken once in a month.

There are about 1800 stage discharge sets maintained by various states. Other than these, Railways and Poad transport agencies are also maintaining gauge sites and measure gauges and discharge at railway/road bridges.

4.3 <u>Ground Water Data Format</u>: Ground water is not an isolated resource because except in specal cases, precipitation and surface water of an area are part of the boundary condition for the ground water body, they are part of the input, output of a complex system. Ground water basin, geology, basin precipitation, surface streams are either inherent properties or boundary conditions of the ground water body. As such, these data may have equal or greater rank than data derived from water level measurement (Mishra 1987).

Ground water data are usually not transferable from one basin to another. Streamflow data can be transfered in the sense that the sequence of flows in different screams can be correlated with meteorological phenomenon that affects, to some extent, all the streams in a region.

Formats of ground water data collection also are given in the Appendix III. The ground water data are collected by Central Ground Water Board and State Ground water Boards or agencies through various observation wells.

4.4 <u>Other type of data formats</u> : Data and location of hydrologic station have also been presented in the Appendix IV. As can be seen the format and the contents, are different because each agency usually give details about their own observation site with latitudes and longitudes.

The population, the ratio of population in terms of male and female, their socio-economic activities are also concerned directly or indirectly for drought analysis of the area. Some central government

organisations and Central water Commission also give these details. In the formats of CWC, different formats for human population, population of livestock and poultry etc. are given in the Appendix IV.

Central Water Commission, State departments and other agencies (Central as well as State) and some Agricultural colleges provide data for land use patterns and area under different crops. These are given in Appendix IV and the modified formats which should actually be taken into work are also given in Appendix V.

Formats for Water quality data, Meteorological data etc. which are used by different agencies nowadays needs some modification to meet the requirement of uniformity and simplicity of handling of the data both existing and modified formats are given in Appendix IV & V respectively.

A data collection programme is meaningful only within a problem solving context. In other words, the design of a data collection programme must be in response to an overall plan established to achieve a well specified and feasible objective such as developing and testing appropriate model of a ground water system. The need for hydrological data is related directly to the stresses imposed on the system natural or manmade, because the response to a particular stress may occur at a distant point long after the event. In other words a properly designed system for the collection of ground water data must be organised around solving problems and only on the basis of solving existing or potential problems specific to individual hydrologic system.

5.0 PLANNING OF STATION NETWORK

There is a problem of planning the station network for Ground Water observations. The planning should be such that it gives the best result for the analysis with the help of data obtained from thes stations but the economic consideration should also be taken into account. For some times, economic consideration is the ideal approach of planning the station network (0.A. Drozdor 1936).

This network can, first of all, be divided into the basic network and special stations. Special stations are organised for a comparatively short time (a few years). The observational data from these stations are not analysed and stored with the data from the basic netowrk, but are studies separately according to the requirements which each of these stations was organised to meet.

As opposed to the special stations, station of the basic network can only be closed down in exceptional cases. If, as the result of building developments in the area, or for other reasons, a station in the basic network ceases to be representative of the surrounding area, it is permissible for a station to be moved a short distance away. In every case, careful provision should be made of the information on such a transfer. In planning stations of the basic netowrk, it is essential to make every effort to ensure that movements of this kind occurs as rarely as possible.

On the basis of the classification adopted by WMO, stations belonging to the basic network may be divided into three groups: (1) Stations of the first group carry out observations of atmospheric phenomenon, visibility, cloud amount, precipitation, snow cover, air and soil temperature, numidity of the air, wind, pressure and sunshine

auration. The rational distance between the station of the group is, on an average, 150 to 200km and should be specifically adopted to the physical and geographical conditions of the region.

Amongst the stations of the tirst group, a number of reference stations should be selected. Reference stations serve essentially two purposes: the study of long term climatic changes and correlating data from other stations. In accordance with these purposes, the stations selected as reference stations should already possess longest possible observational series, and should also be such that the probability of having the transfer them in future is as remote as possible. The apparatus at reference stations should be of the highest quality and should be most carefully verified.

Estimates of the rational density of reference stations should be carried out on the basis of data concerning the statistical structure of the monthly mean values of meteorological elements. There has been hardly any systematic research of the statistical structure data suggest that reference stations should be located at distance 300 to 400 km apart, so that approximately every fourth or fifth station of the first group should be a reference station.

(2) The volume of observations carried out at stations of the second group is smaller than the case of the first group. At these stations, observations of sunshine duration and soil temperature at depth are not made. Stations of the second group need not, as a rule, measure atmospheric pressure: but mountain stations are an exception to this. Apart from that, if a station is also a synoptic station, it should determine the so called barometric tendency, i.e. the changes of pressure at the last three hour intervals. For this purpose, however, it is not necessary to measure pressure by a barometer; an appropriate differential instrument

may be used.

The rational distance between station of the second group is, on an average, about 50 to 60 km. This means that approximately every tenth station of the second group is a station of the first group.

(3) The third group of stations consists of so called posts, at which only observations of atmospheric phenomenon, precipitation and snow cover or even only some of these elements are carried out. The rational distance between these stations is on an average 25 to 30 km in flat country and approximately half that distance in mountaineous areas. it is highly probable that the network density requirement for these stations will be considerably reduced in the future, but at present, this method is not sufficiently accurate. Moreover, it must be borne in mind that, even after the introduction of radar installation, it will be necessary for some time to measure precipitation by ordinary methods alongside radar measurement. (Technical report WMO 1970). 6.0 USE OF COMPUTER IN THE STUDY

6.1 Computerised Data Storage and Retrieval System

Computers are capable of performing a series of fixed operations which can be described by three simple steps:

- 1. Input : read incoming data
- Processing: Perform arithmetic operations, comparison, data transfers
- s. Output: produce outgoing information.

The term data processing is used to describe the procedures defined above. Strictly speaking, data is a collection of incoming facts which need to be processed so that information is produced. Information is defined as structured, processed and meaningful data. That is, data are entered as input, it is processed, and information is produced. Electronic Data Processing (EDP) is the term used to describe the processing of data by computer.

There are three major reasons why computers are used. These are:

(1) Speed: Electronic computers are capable of processing data at a speed typically measured in nano seconds or billionths of a second. Since thousands of arithmetic operations can be performed in a single second by computers, they have a decided advantage over calculators and other mechanical devices.

(2) Accuracy: The electronic circuit of these machines is such that when they are programmed correctly and when incoming data is error-free, the accuracy of output is relatively assured.

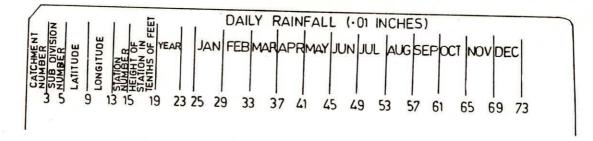
Because of their speed and accuracy, computer systems are capable of processing large amounts of data more cheaply than if manned methods were used.

(3) To provide capability that would otherwise be impossible, because computers can operate on data at such phenomenal speed, they can produce results that would simply not be feasible otherwise.(Source: principles of data processing: Robert A Stern).

Present day computers are capable of processing large amount of mathematical, physical, chemical and other data in a very short time. The equivalent of hundreds of pages of numerical or tabular data can be obtained in a few hours or even in a few minutes. The most common output of computerised data handling system is still that of typing or printing. In the past several years, the interaction of computers and type setting devices has attracted a great deal of attention, and increasingly automated techniques have emerged for use in publication and printing process.

The computer based systems for storage and retreival of hydrological data are now in vogue for more than a decade in many countries. In India also, a number of organisations dealing with hydrological data are attempting to develop such systems. These attempts are so far scattered and a consolidated picture is yet to emerge. Moreover, these attempts are so far limited to Central Govt. Departments. As regard State Government Department where bulk of the data lies, a perceptible beginning is yet to be made.

The major central agencies involved in development of computer based storage and retrieval system for hydrological and meteorological data are CWC, CGWB, IMD and NRDMS under DST. The Indian Meteorological Department has been storing meteorological data on punch cards for last four decades. Regarding rainfall data, the daily rainfall data were being punched in 24 cards format since 1971 onwards in this format, the card contains a catchment number subdivision number, latitude and longitude


of the station alongwith station number. The IMD has assigned a unique 3 digit catchment number to different catchments in India. In the 31 cards format, the catchment number, sub division number and station number were recorded in each card. For each year, 31 cards were required & each card contained data for a specific date of each month. For storage of data in 24 cards format, 2 records are needed for each month. The field in each record are catchment no., latitude, longitude, station no., year, month and 16/15 rainfall values.

A different scheme is used for storage of hourly rainfall data of the self recording raingauges. This format includes element code, index number of raingauge stations, year, month, Jate, card number (either 1 or 2) and hourly rainfall values. The second card also has field observation for amount and duration of maximum one hour precipitation during the 24 hours period. These formats are shown in fig. 2.

Quality control check for the data being input is very essential. Several techniques for this are available. It is not known whether these are applied in practice for data checking.

The Central Water Commission is engaged in computerised storage and retrieval of hydrological data for quite sometime. Recently, a major exercise of coding the data was completed. In the approach adopted by CWC the entire country has been divided in 20 basins. These have been further sub-divided in sub-basins. Codes nave been devised for these basins and sub basins. The coding for individual station is under process. It is understood that the past data is being converted into the new devised format. The format which has been in use in CWC is shown in Fig. 3.

About five years ago, CGWB, started the work for computerised storage and retrieval of ground water data. At first stage of this work,

17 18	19	20												
		20	21	22	23	24	25	26	27	28	29	30	31	MONTHL
1	1 1	1st	CA	RD		DAIL	Y RA	AINFA	ALL	0·1n	nm)		9	
1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
19 2	23 2	7 3	n :	35 3	9 4	3 4	7 5	51 5	5 5	96	3 6	57 7	1 7	75 79
	1 2 19 2	1 2 3 19 23 2	2 3 4	2 3 4 5		2 3 4 5 6 7	2 3 4 5 6 7 8	2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9 10	2 3 4 5 6 7 8 9 10 11	2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11 12 13	1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FIG. 2 b. DAILY RAINFALL - 24 CARD FORMAT

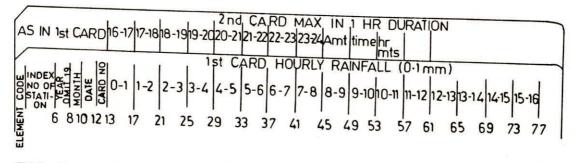


FIG. 2 c. HOURLY RAINFALL FORMAT

CENTRAL WATER COMMISSION DIRECTORATE OF STATISTICS STAGE OF DISCHARGE DATA FOR : NARMADA AT DHARMRAI (NAA0220) BASIN : NARMADA SUB-TRIBUTARY :

STATE SITE *******

******		10//	MAY	1966
	APRIL	1966	STATE	DISCHARGE
DATE	STAGE	DISCHARGE	(METRE)	(CUMECS)
	(METRE)	(CUMECS)	(MEINE)	***************
******	* * * * * * * * * *	*****	****	
	44	57.68	53	39.05
1	44	46.98	52	45.53
2	44	35.08	52	46.81
3	45	67.05	53	46.16
4	45	47.46	53	24.86
5	45	20.70	53	32.31
6			55	28.77
7	49	25.00		21.83
8	49	36.44	55	27.41
9	49	31.38	56	25.51
10	47	31.77	56	338.24
TOTAL	-4.65	399.55	-5.39	33.82
AVERAGE	46	39.95	54	25.60
11	48	49.36	57	34.35
12	48	39.81	57	25.97
13	48	49.98	57	35.33
14	48	31.63	58	
15	48	24.78	55	34.55
16	49	25.17	55	42.11
17	49	28.94	56	27.47
18	50	30.10	56	26.45
19	50	53.18	56	35.45
20	50	48.90	56	33.44
TOTAL	-4.87	381.85	-5.62	318.71
AVERAGE	49	38.19	56	31.87
21	50	37.26	58	34.04
22	51	25.90	59	26.76
23	51	28.23	60	25.26
24	51	29.76	60	28.43
25	51	33.87	60	23.08
26	52	30.38	61	22.71
27	52	27.33	61	25.12
28	52	24.07	59	29.28
29	52	22.88	59	30.24
30		25.57	56	30.24
31		23.31	57	29.99
TOTAL	-4.61	286.25	-6.50	305.14
AVERAGE		28.63	59	27.74
Contract of the second states and		1067.66	-17.51	962.09
NTH-TOTAL			56	31.04
TH-AVERAGE	49	35.59	50	46.81
XIMUM		67.05		3
TE		4	41	21.83
NIMUM	52	20.70	61	8
TE	29	6	20	v

Figure 3 : Daily data format of C.W.C.

computerisation of data of National hydrograph stations was taken up. An elaborate coding mechanism has been developed by CGWB for this purpose. Codes have been assigned to each state, district and river basin in which the station lies. The information stored also include the latitude, longitude of a weil and a well number. Three character codes have been chosen for the geology of the well site and water quality parameters. Further, the lithology of the geological unit have also been codified. The data format adopted is shown in Fig. 4 (a) & (b).

The data has been computerised on IBM PC compatible computers. The software package and BASE III plus has been used for storage and retrieval' of data.

6.2 Problem of Man Machine Communication

Man is an indispensable part of many processing systems and sometimes he works as an integral part of the whole system, when information being transferred from the system to him and vice versa. Thus special care must be taken over the way in which man machine dialogue is performed. As human data aquisition capacity is limited, emphasis must be put on the simplification of man machine communication.

Many studies have been performed with the objective of determining the main parameters related to human behaviour. Some of these are based on emperical measurements while others have relied on control theory. Whichever way is chosen, human behaviour is complex to be described because of its enormous verstality. The human in a man machine system is at the top of the hierarchy and he works as an optimal controller. Despite these obstacles, different ways have been proposed in order to increase the knowledge of human response to external stimuli.

CENTRAL GROUND WATE BOARD HYDROGEOLOGICAL DATA FILE AND UPDATE FILE

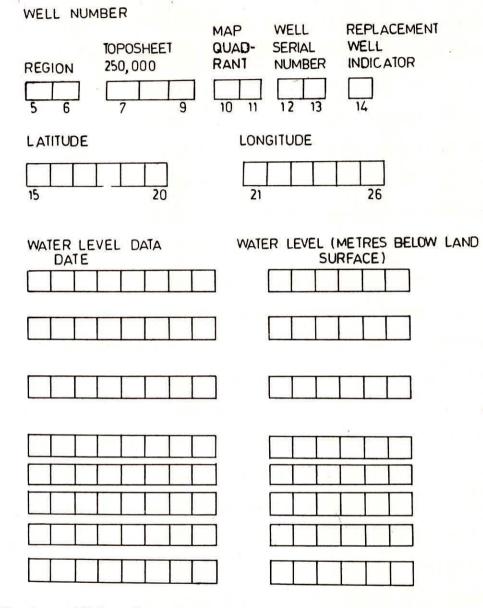


FIG. 4a. FORMAT FOR GROUND WATER STORAGE ADOPTED BY CGWB CENTRAL GROUND WATER BOARD MASTER FILE FINDEX

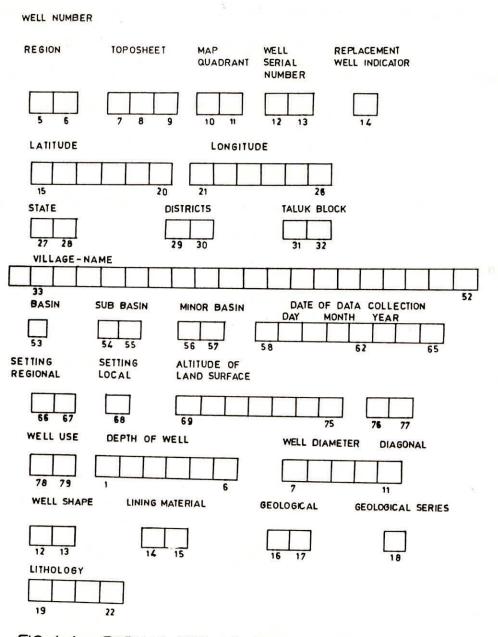


FIG. 4 b. FORMAT FOR GROUND WATER DATA STORAGE ADOPTED BY CGWB

The success of most computer system is dependent on their ability to interact with the user. Despite the internal quality of the programme, it is the users acceptance or rejection of the system which decide its position and life span in the working environment.

Unfortunately, the interaction used to be one of the more neglected parts of many computer systems for several reasons.

1. System builders have been more concerned about, making system work, than the fact that it is supposed to be used by a human being as a tool for problem solving.

2. Man/machine interaction is a fairly poor understood aspect by system builders, because it involves so many factors which probably can't pin down by an algorithm.

3. Human factors involved in communication has not yet been studied.

4. Necessary techniques for utilizing all the human resources in communication have not been available.

7.0 CONCLUSION

India, being a developing country needs thorough research and development of its hydrological resources to maintain its economic growth. For any hydrologic research, data are the first and essential requirement. So it must has a systematic way of collection, storage and analysis of data. In this effort, the use of computer is increasing rapidly and to stand with the other nation's development it will have to modernise our system of collection of data and their handling. For a long time the need of universal format for the whole country is felt so that various discriminaries can be eleminated in the hydrologic research.

The existing system of hydrologic data collection storage and transmission has the following short comings :

(a) There is a lack of centralised place both at Centre and State from where timely data/information of various types, useful for water resources planning and management can be accessed to avoid any delay.

(b) Data of various types are being collected by various agencies but there is no coordination and monitoring cell to regularly monitor the data and develop links between the agencies engaged in collection of surface water, ground water, hydrometeorological, agricultural and other such data so that the hydrological and water resources problems can be looked in overall perspective.

(c) In order to monitor the hydrologic system to desire timely information and assessment of impacts, there should be minimum possible time lag in flow of data from place of collection to place of final storage/usage. Which is not so in the existing system as it uses a primitive way of data transfer and storage.

(d) The storage system available with some of existing agencies like IMD, CWC, CGWB are not very large and fast and there is always a back log of data which are yet to be computerised.

(e) There is no unified format of data storage and indexing system of the type of data, its availability and extent which result in restricted use of data duplication of effort.

(f) There is urgent need to develop a national hydrologic monitoring centre which will monitor the 'National Hydrologic Scene' for preparing the country to deal with extreme hydrologic phenomena like floods and drought.

REFERENCES

- 1. Cervera, J.S. and Arias, D.P.G.(1981) 'A perspective study of droughts in Mexico' Jour. of Hydrology 51 (1).
- 2. Das, D.C., K. Chandrasekhar, K. Hurian and P.K. Thomas (1971), Investigation on drought from various climatic parameters at Ootacamund, J. Agr. Engg. ISAE VIII(4).
- Das, D.C. and R K Mukerjee (1980), 'Climatic Crop Growth indices for drought classification and delineation in India.
- Framji, K.K., (1986), Fourth Ajudhia Nath Khosla Lecture, University of Roorkee, Roorkee.
- 5. Gandin L.S.(1970), 'The Planning of meteorological station network, Technical Note No.111, W.M.O.
- 6. Ground water survey of Rajasthan Project Area (Sept.1974) Technical Report, Ground Water Surveys in Rajasthan and Gujarat (Phase 11-Ind-71-614).
- 7. Guedj, Richard A, 'Methodology of Interaction, North-Holland Publishing Company, New York.
- Hershfield, D.M., D.L. Brakensick and G.H. Comer (1973), 'Some measures of agriculture drought. Proc. Second Int. Symp. Hydrol. Floods and Droughts, Fort Collins, Colorado, (1972).
- 9. Krishna, A., Key paper and definition of drought and factors relevant to specification of Agricultural and hydrologic Droughts. Proc. of International Symposium on hydrological aspects of drought, Indian Institute of Technology, Delhi.
- 10. Linsley, R.K., Kohler, M.A. and Paulhus, J.L.H. (1975) 'Hydrology of Engineers' McGraw Hill, New York.
- 11. Ministry of Irrigation, C.W.C., Ahmedabad, Report on Identification of Drought Prone Areas.
- 12. Mishra, G.C. (1987), Hydrologic data processing of ground water, Proc. workshop on data storage and retrieval system National Institute of Hydrology, Roorkee.
- 13. Raman, C R V and B Srinivasamurthy (1971), Water availability periods for crop planning, IMD Sci. Rep.No.173.
- 14. Ramasastri, K.S. et al (1985), 'Computerised processing and analysis of Rainfall data', Hydrology Journal of IAH Vol. VIII No.3.

- 15. Ramasastri, K.S. (1987), Data Acquisition System Conventional and automated, Proc. Workshop on Data Storage and Retrieval System, National Institute of Hydrology, Roorkee.
- 16. Rao, K.N., C.J. George, P.E. Morey and N.K. Mehta (1971), Spectral Analysis of Drought Under (Palmer) for India, IMD pre published scientific, No.169.
- 17. R Chikkanna & T.C. Rao, Seminar on Strategies for Drought proofing and Management, Ahmedabad (1985).
- 18. Rossamassler, S.A. and David G. Watson (1980) 'Data handling for Science & Technology, North Holland Publishing Company, Amsterdam.
- 19. Sanders, Donald H. (1985), Computers today, McGraw Hill Inc. New York.
- 20. Sikka, A.K. (1984), Drought Estimation and Control Status Report, National Institute of Hydrology, Roorkee.
- 21. Sikka, A.K., G.C.Mishra (1986), 'Drought Analysis using soil moisture simulation approach', National Institute of Technology.
- 22. Singh, R.D., (1986), 'Hydrological Aspects of Drought, Review Note, National Institute of Hydrology, Roorkee.
- 23. Stern, Robert, A. and Nancy R Stern, 'Principles of data processing', John Wiley & Sons, Inc., Toronto.
- 24. Verma P.K., A.K. Sikka (1986), Analysis of low flow to investigate drought characteristics and plan water use management, National Institute of Hydrology.
- 25. Victor, U.S. and P.S.V. Sastry (1979), 'Dry spill probability by Mark or Chain model and its application to crop developmental stages', Mausam 30(4).
- 26. Whipple, W. Jr. (1966), 'Regional drought frequency Analysis', J Irrigation Drain. Div., ASCE, 92(IR2).
- 27. WMO (1965), Data Processing in Meteorology, Technical Note No.73.
- 28. WMO (1966), Data Processing by Machine Method, Technical Note No.74.
- 29. WMO (1970), The Planning of Meteorological Stations network Technical Note No.111.
- 30. WMO (1971), Machine Processing of Hydrometeorological data, Technical Note No.115.

- 31. WMO (1975 a), 'Drought and Agriculture, Technical Note No.138.
- 32. Yevjevich, V.M.(1967), 'An objective approach to definitions and investigations of continental hydrological droughts', Hydrology paper No.23, Colorado State University, Fort Collins, Colorado, U.S.A.
- 33. Yevjevich, V.M.(1968), 'Objective definitions of hydrologic droughts', Proc. of the Conference on the drought in the Northern United States, Sterling Forest, New York.

	₩₩₩ 2007- 200- 200	Date	Station : River :	
		Gauge in Meter A.M. P.M.		
Total : Average : MM ³ :				Discharge
		Month Discharge in M ³ /S A.M. P.M.		rge Data
		in M ³ /S P.M.	R L of Zero Gauge : (C.A. upto) Gauge Site :	
		Average	iauge :	
		MM3		

I_1/ 7

Discharge Data

Discharge in Cusers Discharge in Cusers	Date Name of discharge Name of discharge site site	Main River Inflow	Name of Basin
Discharge in Cusecs	Name of discharge	Main River	Year

Period

N

ω

4

б

6

7

10⁸765432 Total :

Source : C.D.O., P.W.D. Ahmedabad

Average :

	N N
	Year
day	Jan.
MM	
day N	Feb.
DM Cay	March
M	
day day	April M
day M	ay in
day	differ
MCM Cum. day	different Months June July
MOM Curr day	nths Aug.
ay Mo	Sept.
day N	ĉt.
day Cum.	Nov.
MOM	
ž in so	Dec.
day	Annual
	Curree MCM Curr.

		Date	Site : Division
<u>33</u> 28 12 г. г. г. б.	5 4 0 <u>-</u>	June 19 Nater Dis Level rge M M ³ /	2
		19 Discha- nge M ³ /secM	
		July W.L. Dis. M ³ /sec.N	Ну
÷		Aug. W.L. Dis 1 M ³ /sec.M	drologic
		Sept. . W.L. Dis M ³ /sec.M	al Obser
		Oct. . W. L. Dis. M ³ /sec. M	vations Stage -
		Nov. W.L.Dis.	s & Flood Forecas (South) - Discharge data
		June 19 July Aug. Sept. Cct. Nov. Dec. Jan. Water Discha- W.L. Dis. W.L. Dis. W.L. Dis. W.L.Dis. W.L.Dis. W.L.Dis. W.L.Dis. W.L.Dis. Level rge M M ³ /sec.M	Hy drological Observations & Flood Forecasting Organisation (South) <u>Stage - Discharge data</u> Zero of Ga
		Jan. W.L.Dis. M ³ /sec.M	ing Orga
			ganisation Zero of Gauge
		March W.L.Dis. M ³ /sec.M	uge
		Ar June 19 to May 19 Feb. March April May W.L.Dis. W.L.Dis. W.L.Dis. W.L.Dis M ³ /sec.M M ³ /sec.M M ³ /sec.M	
		ar June 19 to May 19 Feb. March April May W.L.Dis. W.L.Dis. W.L.Dis. W.L.Dis M ³ /sec.M M ³ /sec.M M ³ /sec.M	

Source : CWC Govt. of India

I-4/7

C	0
F	Ξ.
L	
٢	2
-	
c	
1	3
(D
c	_
c	2
c	+
C	υ

Site :				Dist	District :
Month of		Mean Discharge Data in cum M/c sec	a in cum M/	c sec	Total volume for the
ule year	1-10	11-20	21-31	For the month	month in M.C.M.
Jan.					
Feb.					
March					
April					
lay					
June					
July					
August					
Sept.					
Oct.					
Nov.					
Dec.					

		Flow data		
	Name of riv	Name of river		
site No.				
atitude		Taluk	Sub basin	
Catchment area (in sq.km.)		District	Longi tude	
			Zero of the gauge	gauge
No. Month	Max ^m discharge	Min ^m discharge	Average discharge	Monthly flow
	in cumees	in cumees	in cumees	in M. cum
1				
2				
ω				
4	x			
5				
6				
7				
8				
9				
10				
•				
I				
nnual Yield			Book Vol. II 1984-85 Wate	r Resources
n (M cft)			Development Organisation	
This is the format for analysed data during the	lysed data during the			
THE OF PUPILCALION OF TOP	other means.			

5/

		V		Cito .
Stream :			:	
Date/Month	June	July		
	Z	M ³ /sec		
1				
N				
ω				
4				
5				
1				
•				
ſ				
8				
30				
31				
Total				
* This is the format for analysed data	lysed data	Source : Water Water	Water Year Book Vol.II 1984-85 Water Resources Development Organisation	-85 Organisation
other means.				

Flow data

PE NRF NIORD		COFI			1962			1961	NIORF	NNORD	NRF	PE	Year			
Potent Normal Normal Normal	C	BA	° C	в	A	C	в	A	С	в	A		Code			
ra No					а¥								Jan.			
evapotr hfall i of rai ensity													Feb.			
al evapotranspiration rainfall in mm No. of rainy days intensity of rainfall													March			
ion all		×											April			Mon
													May	Di Ta	St	thly ra
CBA													June			ainfal
Rainfa Rainy Intens													July			l and a
Rainfall in mm Rainy days Intensity of r													Aug.			Monthly rainfall and allied data
ainf													Sept.			data
1 Junce :													Oct.			
all Source : CWC, Govt. of India													Nov.			
ovt. of													Dec.			
" India													Annual			

Appendix - II

Station	Statement for Recording hourly rainfall	Unitmm Month & Year Period	
Hours	Date		
2 1			
Σ ω Ι			2/7
σ f			II-
- 24			
Raw total Mcan S/24 Max ^m reading Hour/time Duration of rainfall	Source : PWD Guj	Source : PWD Gujarat, Hydrological data I 1983	

P.W.D. Gujarat

Rainfall Data

Name of Basin :

basin	No. of
sub basin	of
Rain gauge station	of
Rain-Max" fall daily n rain- fall	Januar
Kain-Max fall daily rain- fall	Feb.
	March
	April
	May
	June
	July
	Aug.
	Sept.
	Oct.
	Oct. Nov. Dec.
	Dec.
	Total -
	- Total annual
	Remarks 1

Source : C.D.O., P.W.D., Armedabad

	Da	Daily Rainfall	all for	the year	ır 19					
Station :		Dia	District				State :	Ф 	•	
Taluka :		Lor	Longi tude		:		Lati	Latitude :	··· in m	in milimeter
Date Jan. Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
-										
Ν										
ω										
4										
J										
0										
7										
000										
10										
1 1										
-										
8										
30										
31										
Total rainfall			8							
Total Rainy days in the year .										
Max ^m recorded in one day		•								
	•••••	•••			S	Source : 1	PWD Deptt. Gujarat State	Gujarat	State	

II-4/7

	Hourly Rainfall in Milimeter
Station	Distt
Month	Year
Period	G.T. SkL in meter
Hour	Date
8.30 to 9.30	
9.30 to 10.30	
10.30 to 11.30	
11.30 to 12.30	
12.30 to 13.30	
13.30 to 14.30	
Neans/24	
Intensity of rainfall in mm/minutes	inutes
Max ^m reading (mm)	
Duration in H/m	Source : Inrigation Dentt Guiarat State
Dai actori tii n/ III	source : Irrigation Deptt. Gujarat State

II-5/7

Monthly and Annual Rainfali

Year	State :	District :	Station :	
Jan.				
Feb.				
Jan. Feb. March April May June				
Apri l				
May				
June				
July Aug.				
Aug.	Ŧ	_	_	
Sept.	Height :	Longi tude	Latitude :	
Oct.				
Nov.				
Dec.				
Nov. Dec. Annual				

Source : Monthly & Annual rainfall & No. of Rainy days 1901-50 IMU Part IV B

Source : Monthly & Annual rainfall & NO. of rainy days 1901-50 IMD Part IV B

					8								
Annual	Dec.	Nov. Dec.	Oct.	Sept.	Aug.	July	June	May	April	Jan. Feb. March April May June July Aug.	Feb.	Jan.	Year
			Height :	Hei								••	State
			Longitude :	Lon									District
			Latitude :	Lat									Station
					VS	Number of Rainy Day:	iber of I	Nun		3			

Appendix- III

Fluctuation of Groundwater table inDistt.

	S.No.
	Year
	Name
	of Taluka
village	Name of

Fluction in sub soil water level

Difference

Premonsoon (m) Post monsoon (m)

Source : C.W.C. Govt. of India

Source : P.W.D. Karnataka

		S.No.	-
		S.No. District	2
		Taluka	ω
		Year	4
		Month	ъ
		Well No.	6
	ordinate	Locality	7
	well	Type	8
(m)	OF WELL	Diameter	9
(m)	measuring	Depth	10
(m)	measuring point	R.L. of	#
	land		12
	land surface	R.L. of	ដ
	water of the well	Quality of	14

Details of Groundwater table & Groundwater quality

S. No.	
Name of Tehsil	
Shallow wells Nos. Area Irrigated	Details
Govt. Tube well Nos. Area Irrigated	Details of Groundwater use in the District
Private Tubewells Nos. Area Irrigated	in the District
Total area irrigated	
Total water use MCM with a delta of 0.3 meter	

Source : CWC Govt. of India

Source : Report produced by Ground Water Survey of the Kajasthan project Area, India1974

	Location
(m)	Depth Drilled
(m)	Well depth
(m)	Water level
(m)	Screen
(m)	Thickness
(m ³ /h)	Discharge
(m)	Draw down
(m ³ /h/m)	Specific capacity
	Nature of aquifer

Results of Representative Existing Tubewells

S.No.

	S.No.
	S.No. Location
	Depth Drilled (m)
	Zone tested (m)
	Zone Screen tested section (m) (m)
	Tapped (m)
	Thick. of aqif. (m)
	Depth to water level (m)
	Dis- Draw charge down (m ³ /hr) ^(m)
	8 1 0
	Auality OS CT Remarks Om ppm
	marks

Results of the bore holes drilled by the project

Source : Report produced by Ground-water survey of the Rajasthan Project Area India 1974

Source : Report produced by Ground Water Survey of the Rajasthan Project Area India 1974

Chemical analysis of water from existing tubewell samples collected

S.N.
Location
Topo sheet Nb.
Aquifer
lab.
Conduc- tivity
ng/1
SiO mg/12
<mark>ଞ</mark> ‡
+ Mg++ Na+
8+
- ما 1
۔ مل
Hi0_
₽_
= ⁸ 4
Ъ- Г
Total B Hard-SA mg/1 ness mg/1

III-6/7

Status of present water use for ali purposes in Distt. Durin		
us of present water use for ali purposes in D		
us of present water use for ali purposes in D		
us of present water use for ali purposes in D		
us of present water use for ali purposes in D		
us of present water use for ali purposes in D		
us of present water use for ali purposes in D		S
us of present water use for ali purposes in D		e.
t water use for ali purposes in D		-
t water use for ali purposes in D		2
t water use for ali purposes in D		
t water use for ali purposes in D		0
t water use for ali purposes in D		"
t water use for ali purposes in D		D
t water use for ali purposes in D		3
t water use for ali purposes in D		S
t water use for ali purposes in D		P
r use for ali purposes in D		7
r use for ali purposes in D	1	120
r use for ali purposes in D		X
r use for ali purposes in D		H
r use for ali purposes in D		D
purposes in D		3
purposes in D		
purposes in D		S
purposes in D		D
purposes in D	1	-
purposes in D	1	0
purposes in D	-	,
purposes in D	- 1	Ъ
purposes in D		_
purposes in D		
in D		D
in D		5
in D		ð
in D		Ō
in D		ê
in D		S
in Distt. Durin		
Distt. Durii		5
Distt. Durin		
stt. Duri		0
tt. Duri		S
t. Duri		+
Duri		-
Duri		
Duri		
Irii		2
12		3
Di	c	ă
1		
10		ē
a		à
17		3
		•
:	- 1	
:		
	1	
	21	

Name of Tehsil <u>Water use for Irrigation & Agricultur</u> Surface <u>Ground</u> Total water water	l <u>Water use for Irrigation</u> Surface <u>Ground</u> water water	l <u>Water use for Irrigation & Agriculture</u> Dom Surface <u>Ground</u> Total pur water <u>water</u>
· Irrigation . Ground water	<u>ririgation & Agriculture</u> Dom Ground Total pur water	<pre>^ Irrigation & Agriculture Domestic Ground Total purpose water</pre>
	e Domestic purpose	

Source : C.W.C. Govt. of India

S. No.	Name of river	Name of site	Kind of Record	Name of ayency maintained by	Drainage area in	Period of date	Remarks
					co km		

Appendix - IV

ωN б Þ

Taluk wise area/population and density of population in 1981 --- Distt.

	S.No.
Taluk	Name of
sq. km.	Area in
Male	Population
Female	lation
Taluka	6 6
per sq.km.	Density of
	Rem

Remarks

Source : CWC Govt. of India

Classi
fication
of p
opulation
based
g
their
Classification of population based on their economical activities in
activities
in
Distt
Distt.
1.

S. No.
Name of Taluka
Total population
Workers Total % of cal. 4 or 3
kers % of cal. 4 or 3
Culti- vators
Agricultural Labour
Total 6+7
Non agri- cultural sector
% of cal. 9 over 3
Total
% of cal. 11 over 3

Source : CWC, Govt. of India

Drinking Water supply facilities in Distt.

Name of Taluka

Total No. Viallage

Declared under No. source village Village Hmalet

Water supply scheme completed village/ Hamlet pipe H.P.T. S.W. toal

> Urban sector supply sector

Source : C.W.C., Govt. of India

Name of Taluk	
Cattle	Taluk wise 1
æ	ive stock
Buftalos	and poultry
Sheep	Taluk wise live stock and poultry population of Distt.
Goats	
s Others	Distt.
Total	
Poultry	

S.No.

Source : C.W.C., Govt. of India

Land Utilisation Pattern of different year inDistt.

A: Area in ha. B: Percentage

S. NO.	
Year	
Forest	
Uncultivated Land	
Land put to non-agricul- ture areas	
Culti- vable waste	
Perma- nent pasture grazing land	
Curr- ent fallen	
Net area sown	
Area sown more than once	
Total cropped area	
Prep- oratory area	

Source : C.W.C., Govt. of India

Area under different crop in Kharif/Rabi season for the year..... in Distt.4

		S. No.
	crop	Name of
		Year
	area in ha.	Irrigated
ted area	total irriga-	% for the
	area	Unirrigated
gated area	total unirri-	% for the
	in kgs.	Yield per ha.

Source @ Report on Identification of Drought prone area, CWC, Drought area studies and investigation

	Year
	Name off basin
	Name of station with class
	January uFeb. X Y /d /w
	uFeb.
	March
	April
	May
	June
	July
	≯ug. Sept.
8	t ft
	Nov.
	Dec.
	Name of class
	Name of station with class
	*i th

Temperature Data

Source: C.D.O., P.W.D., AHMEDABAD

X = Monthly :verage of Max^m temp. Y = Monthly average of min^m temp. Zd = Monthly average of dry bulb thermometer readings Zw = Monthly average of wet bulbs thermometer readings

Geo hydrological data in....Distt. in....state.....Year

ł

11. Rech from MCM/ 1.2. Rech		MCM/	10. Rech	9. Rech seep year	8. Rect in M	7. Av.	6. Tota Irri	5. Net	4. Sali	3. Harc	Z. Allu	in s	1 Tot	S.No. II	
	Recharge due to dams in MCM/year	Recharge due to return seepage from paddy irrigated field MCM/year	Recharge due to return seepage from irrigated field in MCM/year	Recharge due to return seepage from canal in MCM/ year	Recharge due to rainfall in MCM/year	Av. rainfall in mm/year	Total area under surface Irrigation in sq.km.	Net suitable area in sq.km.	Saline area in sq.km.	Hard rock area in sq.km.	Alluvial area in sq.km.	in sq.km.	al Coorseption asso	Item/Taluka -	
														•	
														1	

15.

Total No. of dug wells.

s	S. No.	Item/Talukas -	
1	16.	Total No. of wells with pumpsets	
	17.	Total No. of private tubewells	
	18.	Total No. of Govt. tubewells	
	19.	Total No. of GWRDC tubewells	
	20.	Draft due to dugwells in MCM/year	
	21.	Draft due to compact in MCM/year	
	22.	Draft due to pvt. tubewells in MCM/ year	
	23.	Draft due to Govt. tubewells in MCM/year	
	24.	Draft due to GWPDC tubewells in MCM/year	
	25.	Total draft in MCM/year	
	26.	Net draft in MCM/year	
	27.	Potential available in MCM/year	
		E.S.T. Fractional recharge by	

1

I

I

I

E.S.T. Fractional recharge by existing draft in %

Appendix - V

STREAM FLOW DATA

SITE ZERO O DIVISI	: F GAUGE : ON :		WA	TER YEAR	
Month Date	Water Level	Disch	Water Level	Dicob	Natan Laval Disah
bube	Mater Level	M ³ /Sec.	Mater Level M	M ³ /Sec.	Water Level Disch. M M ³ /Sec.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 22 23 24 25 26 27 29 30 31 MEAN					
MEAN Days					
DAYS REMAT	11-20 NING DAYS				
MONTH					

NAME OF STREAM	E WATER DATA F THE PROJECT :	1	STREAM FLOW/RESERVOIR (MAJOR / MEDIUM) DISTRICT TRIBUTORY : RIVER :					:	
YEAR :	JUNE	a	,	JUL'	GAUGE : Y		A	UGUST	
IN FLOW	OUT FLOW LEVEL	STO- RAGE	IN FLOW	OUT FLOW	LEVEL	STO ² RAGE	IN FLOW	OUT FLOW	LEVEL STO-

YEAR :			R.L. C	OF GAUGE :					
SEPTE	MBER			OCTOBER			NOVEM	BER	
IN OUT FLOW FLOW	LEVEL	STO- RAGE	IN FLOW	OUT FLOW LEVEL	STO-	IN FLOW		LEVEL	STO- RAGE

SURFACE WATER DATA	STREAM FLOW/RESERVOIR	
NAME OF THE PROJECT :	(MAJOR/MEDIUM) DISTRICT :	
STREAM :	TRIBUTORY : RIVER :	
YEAR :	R.L. OF GAUGE :	
DECEMBER	JANUARY FEBRUARY	
IN OUT LEVEL STO- FLOW FLOW RAGE	IN OUT LEVEL STO- IN OUT FLOW FLOW LEVEL RAGE FLOW FLOW	O- Ge

IN FLOW	OUT FLOW	STO RAGE	IN FLOW	OUT FLOW LEVEL	STO- RAGE	IN OUT STO- FLOW FLOWLEVEL RAGE
	MARCH		1	APRIL		MAY
YEAR :			R.L	. OF GAUGE :		
STREAM	:		TRIB	UTORY :		RIVER :
NAME OF	THE PROJECT :		(MAJC	R/MEDIUM)	DIST	RICT :
SURFACE	WATER DATA :		STRE	AM FLOW/RESE	RVOIR	:

Date	R.L.	Inflow	Outflow	Live Cap.	
1. 2. 3.		1			×
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 9. 30. 31.					
9. 10. 11.	,				
12. 13. 14. 15.					
16. 17. 18. 19.					
20. 21. 22.					
23. 24. 25. 26.					
27. 28. 29.					
30. 31.					

Daily R.L., Inflow, Outflow and Live capacity data

Year :

Name of Reservoir

Sta	tion	•				D	istri	ct :			State	:
Talı	uka	:				L	ong.	:			Lat.	:
Dt.	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1.												
2. 3. 4. 5. 5. 7.												
3. 4.												
5.												
7.												
3.).							4					
10.												
11.												
13. 14.												
15. 16.												
16. 17.												
18.												
19. 20.												
20. 21. 22. 23. 24. 25. 26. 27. 8. 29.												
23.												
24.												
6.												
B.					ŝ							
29. 30.												
31.												
Tota	1											
Rain	-											
fall												
Vorm												
Rain Fall												

DISTRICT/BLOCK
-
S
R
I
0
-
2
$\underline{\omega}$
-
2
0
~
-
WISE
1
2
1.1
_
LAND
5
6
0
-
5
USE
Ē
-
Þ
F
-
DETAILS

9.	8.	7.	6.	5 <mark>.</mark>	4.	÷	2.	1.	District/Block
									Total Geographical Area
									Forest Tot
									Total Geographical Forest Total uncultivated Area Land
									Net Area Sown
								-	YEAR : Net Area Gross Area Sown Sown
									Area Surface
									Area irrigated Surface Groundwater

10.

σ
PROFORMA
\mathbf{O}
Т
4
4
~
-
S
Ð
-
WATER
2
5
~
S
ш
-
¥
4
DATA
9
П
A
12
Ťń
50
RESERVOIRS
O
Ē
2
S

Years	
Kharif Rabi	Name c Locati (Dist.
Area Irrigated (ha)	Name of Reservoir Location (Dist./taluka)
Crops	
No. of Irrigations	
Depth of Irrigation	Designed CCA/IC Crop Rotation
Remarks	Designed CCA/ICA Crop Rotation

12. 10	\$ 9. 12 <u>-</u>	Taluk Sl. No.	<u>Year</u> : Station :
		 Month	
		Temp.(o) Daily Mean	
	Daily	Wind vel. Km.P.H.	
		Latitude : Relative humidity (in %) Daily mean	HYDROMETEOROLOGICAL DATA District :
	Port A	Vapour Press. (in mb.)	
		M.S.L. in Mrs Evaporation in mm S Daily mean s	Maintained by Longitude :
	Daily.	Mrs : Sun Shine (hrs.)	: by :
V-	10/14		

CROP AREA & PRODUCTION DETAILS

YEAR :

| Area/Prod. |
|------------|------------|------------|------------|------------|------------|------------|----------------|
| 8 | 7 | 6 | ഗ | 4 | ω | 2 | - |
| | | CROPS | | | | | District/Block |

	PROFOR
	MA FOR
	DATA
A)	Ŷ
WATER DEM	DOMESTIC,
A) WATER DEMAND (YEAR WISE)	MUNICIPAL
WISE	AND
)	PROFORMA FOR DATA OF DOMESTIC, MUNICIPAL AND INDUSTRIAL WATERUSE
	WATERUSE

No.
DISTRICT
TALUK BLock
VILLAGE
POPULATION & D HUMAN POPULATION N
Demand LIV Demand Stock Normal Scar Times City Times
NOR SCAR MAL CITY TIMES TIMES
TOTAL DEWAND · NOR SCAR MAL CITY TIMES TIMES
INDUSTRY DEWAN INDUSTRY NOR SCAR TYPE NUM MAL CITY BER TIMESTIMES

DISTRICT	
TALUK BLOCK	
SOURCE OF WATER SUPPLY	
QUANTITY OF WATER SUPPLIED FOF Y HUMAN LIVE INDUSTRIAL USE STOCK	ACTUAL DETAILS OF WATER SUPPLIED
D FOR RIAL	LIED

B) WATER SUPPLY (YEAR WISE)

No.

TOTAL

C)
DETAILS
PF
GROUND
WATER
SUPPLY
SYSTEMS
(YEAR
WISE)

		No.	SI.
			DISTRICT
			TALUK
		NAME	SURFACE
		INFLOWS	RESERVOIR
	CAPACITY	DESIGN	FOR MUNIC
	STORAGES	INFLOWS DESIGN ACTUAL RELEASES	SURFACE RESERVOIR FOR MUNICIPAL WATER SUPPLY
			SUPPLY
(TUBEWELLS)	WELLS	NO. OF	
	DRAFT	TOTAL	

DIRECTOR : DR. SATISH CHANDRA TECHNICAL COORDINATOR : DR. G C MISHRA

1 mm

STUDY GROUP : V.K. LOHANI SUDHIR KUMAR GOYAL ANUPAM SRIVASTAVA