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PREFACE 

The first meeting of working group of priority area of 

hydrologic analysis of stream flows in a basin'was held on 16.4.1982 . 

The members attending the meeting felt that there is a need for preparation 

of a state-of-art report in this area highlighting the development in 

India as well as other countries so that priorities of research work in 

this area can be defined. 

Dr Arun Kumar, Associate Professor, Delhi College of Engineering, 

Delhi was invited to National Institute of Hydrology during 8-28 June 

1982 for preparation of the state-of-art report on 'Hydrologic Time 

Series Modelling- an Overview' in discussions with the scientists in 

NIH. 
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ABSTRACT 

Hydrologic variables might vary in space, as well as 

time and are represented by either continuous or discrete 

series. Much of the statistical methodology is concerned 

with models in which the observations are assumed to vary 

independently. However, a great deal of the data in water 

resources planning and management occur in the form of time 

series where observations are dependent and the nature of 

this dependence is an important characteristic of time series. 

The report gives a short review on hydrologic time 

series with particular emphasis on river flow time series 

modelling. The analysis of deterministic and stochastic 

components of time series has been discussed in the 

beginning and further extended to stochastic models. Short 

memory models like autoregressive models, moving average models, 

autoregressive moving average models, autoregressive 

integrated moving average models have been discussed in 

the light of identification of the model, parameter estimation 

and diagnostic checking. Long memory models like fractional 

Gaussian noise models , fast fractional Gaussian noise models 

and broken line models have also been described. Details 

of multisite short memory and long memory models have been 

provided. Final remarks including areas in which further 

research is needed and extensive list of references is 

given at the end of the report. 



1.0 INTRODUCTION 

In recent years, stochastic modelling and time series analysis 

have gained tremendous importance in hydrological studies. This is 

because primary hydrological variables like rainfall, lake levels, river-

flows etc. are essentially stochastic in nature and are not amenable to 

solution by the classical statistical methods. Since the number of 

research papers in time series modelling have been phenomenal in recent 

years, it is impossible to encompass all the details of modelling in a 

short review paper. The aim of this study is, therefore, limited to bring 

forward to the practising hydrologists an overview on general broad 

areas of stochastic modelling. The present study mainly concentrates on 

the stochastic behaviour of riverflow time series and discusses its 

modelling and applications by hydrologists. 

A time series is a continuous set of observations that measures 

some aspect of the phenomenon, for example, the discharge or stage, 

in a river with respect to time. The time series may be continuous 

or discrete. It is a continuous time series, if the hydrologic variable 

is measured continuously with reference to time, for example, the chart 

of an automatic flow gauge on a river. In discrete time series, the 

continuous hydrologic variable is measured in discrete intervals of time 

for example, the hourly measurement of stages. Generally the time series 

analysis is done on discrete series because, unlike a continuous series, 

it can easily be handled by a digital computer. The hydrologic time 

series is stochastic in character as the output of a hydrologic event 

from a given input is not unique. For example, the discharge in a river 



is, primarily, a function of the effective rainfall during the previous 

period. This functional transfer relationship between the effective 

rainfall and runoff is dependent on many interrelated physiographic and 

meteorological factors which cannot be quantified explicitly, making 

the riverflow stochastic. 

The main objective of studying hydrologic time series is to 

understand the mechanism that generates the data so that the future 

sequences may be simulated, or to forecast the future events over a short 

period of time(forecasting). These are attempted by making inferences 

regarding the underlying laws of the stochastic process from the histori-

cal data and then by postulating a model that fits the data which can in 

turn be used for simulating/forecasting the future values. It is, there-

fore, necessary to identify the various components of the hydrologic time 

series. 

1.1 Hydrologic Time Series 

In general, a time series can be divided into two components, viz., 

deterministic and stochastic. Deterministic component is the one which 

can be determined by the predictive means, whereas, the stochastic 

component consists of chance and chance dependent events. Hydrologic time 

series has both these components. The deterministic components are in 

terns of trend (increasing or decreasing flows as the time increases) 

and cyclicities (over the years or within year) and the stochastic 

component due to erratic atmospheric circulation. The annual cyclicities 

in the hydrologic process are produced by the anhual astronomical cycle 

e.g. in a given river basin high intensity and high frequency of preci-

pitation in wet season and low intensity and low frequency of precipita-

tion in dry season are expected. The low runoff in the dry season result 
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mainly from the groundwater effluence with relatively small variation, 

while the high runoff in wet season is formed either by highly fluctuating 

rainfall or snowmelt or both. Thus the mean and the variance of the 

stream runoff are large in wet season and small in dry season. This 

phenomenon indicates within the year periodicity in mean and variance. 

Usually periodicity in a hydrologic time series would appear in such 

statistics like means, standard deviation, etc. However, the periodicity 

is deterministic and can be identified in a given series. 

After the deterministic components like the trend and the periodi-

city are removed from the data, the residual series is the stochastic 

series. The stochastic nature of the hydrologic time series is caused by 

such factors as the variable opacity of the atmosphere to solar radiation, 

fluctuating turbulence, large scale vorticities and heat transfer in the 

atmospheric, oceanic and continental air and water movements. However, 

there may exist certain amount of time dependence in the stochastic series 

which may be created or increased by water storage of various types in the 

hydrologic environment. A stochastic model may be required to model this 

time dependence. 

The analysis of hydrologic time series is to identify the determini-

stic i.e. the trend, the periodicity components in the series and separate 

them from the original series. The resultant stochastic series is then 

modelled and the combined effect is determined by superimposing them. 

An excellent discussion on determinism and stochasticity in hydrological 

time series is given by Yevjevich (1974). 
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2.0 DETERMINISTIC COMPONENT ANALYSIS 

2.1 Trend 

A steady and regular movement in a time series, through which 

the values are, on the average increasing or decreasing, is termed as' 

trend. The existence of trend in hydrological series may be due to low 

frequency oscillatory movement induced by climatic changes or through 

changes in land use and catchment characteristics. Many hydrologists 

have the view that hydrological (river flow) time series have no 

important trends which can be identified by statistical analysis since 

the typical length of the series being less than 50 yeats (ttend analysis 

is generally done on annual series and not on seasonal series so as to 

supress the effect of periodic component) cannot reflect the long term 

climatic changes. It is, however, quite likely that there may be an 

adhoc change in the mean flow in a river due to some abstraction 

of water from one river to another or because of construction of some 

reservoirs. In such cases, the trend analysis is generally limited to 

adhoc modification in the mean. Such a study was done by Smirnov 

(1969) for the flow of the Volga river at Volgograd. 

However, if a trend in a particular series is obvious, it can be i 

described by fitting a polynomial equation of the form given in 

Eq.( 1 ) to the original x series. 

a t
n
+  X = x + aft+ a2t2+ + t o n Zt 

Where a1,a2,a
n
are estimated by least square. 

Generally, a simple linear type model is sufficient 

(1) 

X
t 
= x

o 
+at+Z

t 
where Z

t is the residual series 
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Many a times, the presence of trend in a series is not obvious. 

For this reason, a number of statistical tests for detecting trend have 

been devised. If a series is thought to have a trend component, Kendall's 

rank correlation test (Kendall and Stuart, 1973) can be used to test its 

significance. This test, referred to as T-test determine whether the 

series is trend free or not. It may, however, be mentioned that rank 

correlation test as well as the linear regression test are not valid for 

detecting, the presence of non-homogenities like 'Jumps' in the series. 

The important test for detecting the presence of jumps in the series is 

given by Buishand (1977) using Von Neumann's ratio method. 

Many a times, smoothing techniques are first used before the trend 

analysis is attempted. Smoothing techniques enables to bring certain 

systematic behaviour in the observed series. Smoothing techniques were 

first used by communication engineers in their attempt to separate 

signals from noise. Of the various smoothing techniques a linear moving 

average model is the most generally used. Durbin (1962) has given 

mathematical justification to these techniques. An undesirable consequence 

of this type of trend removal is that artificial cycles may be induced into 

the data. This is known as 'Slutzky-Yule' effect (1937). To circumvent 

this problem, harmonic and other weighted type of trend removal has been 

applied in meteorology (Holloway, 1958, Brier, 1961). Smoothing 

techniques have directly been borrowed from communication engineering 

literature. This may be quite useful to separate signals from noise, 

but are quite laborious if used in natural time series. Generally, these 

methods should be used in conjunction with spectral analysis. The details 

of various smoothing techniques are given by Kendall and Stuart (1976) 

and Brown (1963). 

5 



It may be observed from the references that hydrologists 

have not contributed significantly towards trend analysis. Absence 

of trend means that the time series statistical characteristics like 

mean, standard deviation, skewness etc are remaining same over the time 

space. Lack of discussion on trend analysis in hydrologic literature 

reflect that stationarity (absence of trend) is generally taken as an 

implicit aspect of hydrologic modelling. A danger in using trend 

techniques is that low frequency random effects may be taken as trends and 

this in turn may drastically affect the correct modelling of low frequency 

values. Since the length of hydrologic record is of very short duration, 

one hydrological approach is to treat trend like behaviour (which cannot 

be identified with changes in catchment characteristics) as low frequency 

movement; hydrologic models which cope with low frequency effects are 

then used directly. 

2.2 Periodic Component 

2.2.1 Long range periodicity 

A hydrologist is interested to know whether the series has long 

range periodicity (more than a year). For example, it is commonly said 

that drought occurs once in five years. The statement implies that drought 

has a periodicity of five years. Many climatologist and hydrologists in 

an effort to make long range forecasting have tried to relate the river 

flow series to various geophysical factors. The phenomenon which received 

maximum attention from researchers is the sunspots and its likely relation-

ship to precipitation and runoff series. The sunspots number vary approxi-

mately in a long term periodic manner, the period ranges' from 13 years to 

8 years with a mean of 11.1 years. Dixey (1964) showed that there exist 

a meaningful correlation between the sunspot number and the levels in lake 
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Victoria. Similarly, Smirnov (1969) found significant correlation 

between sunspot and the mean flows in the Volga. Indian scientists at 

Poona have recently correlated changes in the monsoon activity with the 

sunspot numbers. However, Rodriguez and Yevjevich (1967) investigated the 

relationship of 88 series of monthly precipitation, 174 series of annual 

precipitation of U.S.A. and 16 series of annual runoff from all over the 

world with the sunspot number and they could not find any significant 

correlation. It, therefore, seems reasonable to assume that the random 

influences on the hydrological cycle outweighs any effect due to 

geophysical effects like sunspots. It can be assumed that the observed 

riverflow series does not follow any long range periodic behaviour. 

2.2.2 Short range periodicity (seasonality) 

The riverflow series may be obtained as an annual , monthly, 

ten daily, pented (5 daily) or as a daily observed data. Though the annual 

data does not follow any long term periodic behaviour, the seasonal 

cyclic effects are present in other series. Within the year periodicity 

is due to annual revolution of the earth around the sun, by the moon and 

by daily rotation of the earth. These are called seasonal effects as 

they are repeated at the same time in each year and are thus determinis- 

tic. They show themselves in monthly data, say, the monthly means and 

variances being unequal. Similarly, the statistical distribution for 

different months will be different . Seasonality is also observed in 

pentad and daily data (Bernier, 1970). 

The hydrologist approach has been to identify the seasonality 

in a given series and removing its component from the original observed 

series. This is called 'prewhitening' of the series. The resulting 

series is said to be ideseasonalised' and assumed to be stationary. It is 

then modelled by a stationary stochastic model which is finally 
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'dewnitened' into a seasonal model. 

A common method of 'prewhitening' is to 'standardize and remove 

periodicity from, say an observed monthly sequence where x ,t=1.2....; to- 

and T=1,2...12 are the calender months, by using the formula 

X -M 
t,T T 

t,T 

Where m and a are the mean and the standard deviation of the 

months. The mean m and a will have 12 values each in a monthly series. 

Similarly, in the case of daily flow, m and a will have 365 values each. 

In case of short samples, the estimate of such large values may lead to 

sampling errors. In such cases, the values of m and a are smoothened 

by using harmonic analysis. It is observed that the periodicity can be 

represented by one or two harmonics in monthly series and by four or six 

harmonics in daily series. Objectively, the actual number of harmonics 

to be fitted in each case can be found through variance analysis using 

F-distribution. Extensive work has been done in harmonic smoothing on 

monthly and daily flows by Roesner and Yevjevich (1966),Quimpo .(1967) 

and Yevjevich (1972). Many times, before standardization, prior 

transformation of flow data is made, such as, logarithms, in order to 

reduce the variance effect and to make the distribution more Gaussian. 

It may, however, be noted that there may still be seasonality in the 

series such as in correlation and skewness coefficients which is not re-

moved by pre-whitening. 
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3.0 STOCHASTIC MODELLING 

The stochastic series is obtained after the deterministic compo-

nent has been identified and removed from the original series. Any mathe-

matical modelling will now require the modelling of the stochastic coipo-

nent. If the process is entirely random, then the set of values (Z
1, Z2  ... 

Z
n
), obtained after eliminating the trend and the periodic component 

will be independent of each other. They then constitute a pure random 

process. In many hydrologic series, the values of Zt 
 may depend upon 

the antecedent values of Z. In other words, there may exist an internal 

dependence in the time series which may now be written as: 

:= f(Zt -1, 
Z _2,  

) + a
t 

(3) 
Zt  

where at 
is the random component. The modelling of the time series, Zt

, 

depends upon the statistical properties of the Zt 
 series, the probability 

distribution to which this series belongs and the structure of the internal 

dependence. These are briefly explained as follows: 

3.1 Probability Distribution 

Every series has a particular probability distribution and in 

order to correctly model a given series, it is of importance to identify 

the probability distribution to which the series belong. A wide variety 

of probability distribution3have been used to fit hydrologic data and 

generalisation is not possible. However, it can be said that the annual 

data are likely to be nearer Gaussian than monthly data and that 

monthly data will be nearer Gaussian than the pentad data and so on. 

Departure from the Gaussian distribution means tnat the flow series 

have certain skewness which has a direct effect on the river flow 
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properties. For example, it has been observed that the riverflow series 

are generally, positively skewed. The presence of high skewness means there 

exist an unusually high flow in the midst of near average flows. Such a 

situation which is commonly observed in hydrological series is termed as 

Noah effect (Mandelbrot and Wallis, 1968). Many a time, there is an 

unusually long period of very low or high flows which is called as Joseph 

effect. Though Joseph effect can be modelled by the proper selection of 

the stochastic model, the Noah effect can be correctly modelled only by the 

proper use of the probability distribution. The identification of the 

distribution depends upon the coefficient of skewness and kurtosis 

observed in the sample. It is observed that pentad and daily flows are 

highly skewed. Seasonal data (after removal of seasonality) generally 

indicate variable skewness and different family of distributions for 

different months of the year. The problem of distribution identification 

gets aggravated because of the sampling errors in the estimation of 

skewness from the historical data. 

In the case of annual flow series modelling the probability 

distribution can be taken as Gaussian. This was corroborated by the work 

of Markovic (1965) who fitted various distributions to 2500 annual river-

flow and precipitation series across the USA and showed that 75 percent 

of the annual river-flow series and 90 percent of the annual precipitation 

series could be fitted by Gaussian distribution at 5 percent significance 

level.—However, in the case of pentad and daily data, family of Pearson 

distribution need be fitted. There is wealth of information available on 

fitting distributions to hydrological series, notable being Moran (1957, 

70),Domokos (1970), Matalas and Wallis (1973), Singh and Lonquist (1974) 

and many others. 
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Fitting a known distribution to the data is based on the apriori 

-atsurption that the series follows a particular distribution. However, 

the observed riverflow series may not follow the specified distribution 

and such a distribution may therefore yield a poor fit to the data. Alter-

natively, the data could be reconstituted by some suitable transformation 

such that the transformed data follows a particular distribution. The 

most commonly used transformation is the logarithmic transformation 

which assumes that the logarithms of the original flows follow a normal 

distribution. Presently such transformatiors are also assumed apriori 

without recourse to the analysis of the data and therefore suffers from 

the same defect aschcosing a particular distribution. Chander et al 

(1978) have suggested the use of Box-Cox transformation which for a 

particular value of X can render any given series nearly Gaussian. The 

advantage of power transformation is that it makes the analysis free 

from likely errors arising out of incorrect distribution identification. 

3.2 Dependence 

It is observed that many hydrological series have internal 

dependence i.e. there is a .tendency for a low flow to be followed by a 

low flow and a high flow is likely to be followed by high flows. If 

there is a marked persistence in the sequence of flows, there is a 
. _ 

notabletendencYofbothZ.and Z to be greater than Z or both 

to be less than Z. Thus there is a distinct tendency for the product 

-E) to be positive, since it is frequently the product of 

two terms of the same sign. In hydrological literature dependence has 

been classified as short term dependence and long term dependence. Whether 

a series is dependent or not is checked by the following analysis. 
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3.2.1 Correlation analysis 

The sequential dependence in a time series can be determined by 

autocorrelation analysis. The correlation coefficient Pk  between Zt  

and Z is given by 

EUZ
t
-2)(Zt+k-2)) 

Pk 2 a Z 

The sample estimate r
k 
is given below as : 

n-k n-k 
E Z

t 
Z
t+k n 

1 
( E Z

t 
) (S 

Zt  ) 
-k 

t=1 t=1 t=k+1 
rk n-k n 1 

2  E  Zt)2
1
0.5 

( Zt) ) E Zt  - 11-k  k 
t=1 t=k+1 t=k+1 

1 
n-k 

There are many different formulae for estimating unbiased rk  from 

the sample. The merits of different formulae for rk 
are discussed in many 

research papers (Fiering and Jackson, 1971, Wallis, 1972, Jenkins 

and Watts, 1968, Kisiel, 1969). The estimate rk 
given in Eq.(5) 

is by and large acceptable. Generally for low values of k, the differences 

are irrelevant and they are generally swamped by errors from the 

fundamental assumption of stationarity. 

For ancbserved stationary time series, the values of rk 
are unlikely 

to be zero, even if the corresponding values of pk  are zero. It is, 

therefore, essential to test the significance of rk. Although an exact 

test of significance of rk  is not available, various approximate tests 

have been devised. One of the commonly used test is the one proposed by 
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Anderson (1942) which is based on the assumption that the time series 

is circular and the observations are normally distributed. The significance 

test used, for example,by Roesner and Yevjevich (1956) is based on this. 

For a. serially independent series, E (rk) are 0.0 and are approximately 

distributed as a normal variate with zero mean and variance as l/n. 

Accordingly the test criterion is that if Irki>196/1h the hypothesis of 

independence is rejected. 

There are also many direct tests like the turning points , phase 

lengths to determine linear dependence in time series which do not 

require the determination of rk 
(Kendall, 1964, Matalas, 1967). 

3.2.2 Spectral analysis 

The correlogram analysis is in the time domain. A complementary 

method of finding the dependence in a time series is in the frequency 

domain by means of a spectrum, the term frequency being used in the 

harmonic sense and not in the histogram sense. 

All stationary stochastic processes can be represented in the form 

7  . 
= f eitwdz(w) 

-n 

Where i=( -1)2  and z( 4.)) is a complex random fluctuation. 

It can be shown that the autocovariance ( pk
a
2) of a stationary 

process is 

7 
y elkwdF(w)  

-7 

(7) 

Where k is the time lag,w is the angular frequency and 
 

is a distribution fuction monotonically increasing and bounded between 

F( -7) = 0 and F(u) = 02. The function F(w) is called the power spectral 
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distribution function. For k=0, Eq. (7) is 

yo =a
2 
= f dF(w) (8) 
-7 

In practical hydrologic application of spectral theory, Eq.(7) 

can be written as 

IT 

Yk =2 j Cos(kw) f(w) do 

or 

27 o + ! Y
k 

Cos kw) 
k=1 

(9) 

For a finite amount of data, an estimate of the power spectrum is 

1 T-1 , 
ft(w) =---(C+ 2 E CCos (kw)) 0 k=1  k 

Where C
k is the autocovariance for a time lag k. 

The estimate of the power spectrum by Eq. (10) is called the 

'raw spectral estimate' because it does not give a smooth power 

spectral diagram. To adjust for smoothness, the smoothed estimate is 

commonly used in the form 

1 
(w) C +2 E X (w) C Cos kw 2n o 

k=1 

Where X
k(w) are selected weighting factor, m is a number chosen 

much smaller than T. A commonly used weighting factor is the Tukey -Hamming 

weights given as 

Xic(w) = 0.54 + 0.46 cos ( wit/m) 

Where m < 
10 
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The significance of the spectrum is that it exhibits fewer 

sampling variation, than the corresponding correlogram. Consequently, 

the estimated spectrum would provide a better evaluation of the various 

parameters involved in a model. If the process contains periodic terms, 

the frequencies of these terms will appear as high and sharp peaks 

in the estimated spectrum. 

Extensive literature is available on the concept of spectrum and 

its statistical estimation procedure. ( Lee, 1960, Bendat and Piersol, 

1966). The use of spectral analysis to determine the non-random component 

in the time series have been done by many authors. For example, Julian 

(1967) used to determine the quasiperiodicities in precipitation, 

Landsberg et al (1959) investigation on water pollution in tidal estuaries. 

Wastler (1963) for the determination of dominant meander stream length, 

Adamowaski (1971), Carlson et al (1970), Andel and Balek (1971) for 

determining periodicities in hydrologic series. Fast Fourier transforms 

(FFT) have been used to estimate the predominant densities quickly. 

This approach becomes very handy when one is interested to determine 

hidden periodicities. 

Between the correlogram analysis and the spectral analysis, which 

one gives a better view of internal dependence? For the diagnosis 

and estimation of linear stochastic models, which are commonly used 

in hydrological modelling, the correlogram has direct appeal and are easy 

to handle. However, for input-output processes and in spatially 

correlated systems ,spectral methods are more conducive to physical 

interpretation. Some comparative studies on the use of correlograns 

and spectral analysis are given by Chow and Kereliotis (1970) and by 

Kottegoda (1970). 
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The correlogram and the spectral analysis though used for 

identifying the existence of persistence in the series, yet, these are 

not the direct important hydrological parameters. 

The two analysis which have direct bearing to the hydrological 

problems are (i) the run analysis and (ii) the range analysis. For example, 

if one has to determine whether droughts are persistent or not, the analy-

sis of runs can be directly applied. Similarly, the storage capacity 

required to be estimated for a given set of inflows and demand can be 

directly studied from the range analysis. The computation of run 

lengths and rescaled adjusted range of a given series directly tells 

us whether the observed series is dependent or not. These properties 

for determining the dependence of the series is briefly described. An 

excellent review on these analysis is given by Yevjevich (1972). 

3.2.3 Run analysis 

In general a run is defined as a sequence of observations of the 

same kind preceded or succeeded by one or more observation of another 

kind. For example, the duration of time, the observed flows remains above 

or below a specified level (truncation level ) is called the run length. 

Corresponding to the runlength, the magnitude of the surplus 

or deficit is known as the run sum. Such properties of a time series are 

called as the crossing properties. The number of crossings at various 

truncation levels as well as the run length and run sum distribution 

are of special significanceto a hydrologist. These properties can also 

be used to check whether the series is dependent or not. If a median value 

is taken as the truncation level the mean run length, for an independent 

series, should be equal to 2. The series is dependent if the mean run 

length is greater than 2. A significance test for this also can easily be 
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formulated. 

An advantage of run analysis is that the dependence structure 

thus estimated is independent of the coefficient of skewness in the 

observed series. Correlogram analysis is valid strictly only for normal 

distribution (Sen, 1978).Anotheradvantage is that differential persis-

tence i.e. persistence at different truncation levels can be easily 

computed (Sen, 1978 , Chander et al, 1980). 

3.2.4 Range analysis 

For an observed sequence Zl' Z2  
Z
n 
with E (Z) = , the 

, ' 

range is defined by 

R
n 
 = max E (Z. -2) - min E.(Z. -2 ) 

lcicn 1<i<n 

Range analysis is useful in the design of reservoir storage capacity. 

Take a hypothetical situation in which the observed flow sequence 

is routed through a reservoir of capacity Rn 
 with initial storage dn

- 

and a constant withdrawal rate of 2 . Under these conditions, it can 

be shown that the reservoir will be full on one or more occasions without 

overflowing, it will empty at least once and the withdrawal rate will be 

maintained throughout (Lawrence and Kottegoda, 1977). 

In order to compare the results from different observed 

sequences, the range given in Eq. (13) is divided by the standard deviat- 

ion of Z Z2 
 Z

n 
to give the resealed adjusted range. 

R* = R /a 
n n n 

A sequence can easily be checked to be dependent or independent 

as Hurst and Fuller (1951) showed that for an independent series 
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R
*
= (n/2)°

.5 
(15) 

A value of the exponent larger than 0.5 in natural series means 

that the series is dependent. For independent series, range analysis has 

been studied extensively by Feller (1951), Anis and Lloya (1953, 75,76) 

Solari and Anis (1957) and Moran (1966) 

3.3 Dependence Structure in Hydrologic Series 

Given an observed series, dependence can be quantified by any of the 

methods given in the previous section. The most commonly used methods are 

the correlogram and the range analysis. However, lot of controversy has 

been generated on the structure of dependence when computed on the 

basis of these methods. For a stationary hydrologic series, the observed 

correlation coefficient r
k rapidly decreases with lag k. It implies that 

the events in the distant past have negligible influence on the present 

state of the process. This type of dependence is referred to as short 

memory dependence. Using range analysis most of the hydrological series 

has an exponent greater than 0.5 in Eq. (15) meaning thereby that the 

series is dependent. However, short term dependence cannot explain why 

the exponent is greater than 0.5? This can be explained only by long 

term dependence. Long term dependence is associated by the failure 

of the correlogram to die out meaning thereby that a process has 

infinite memory. There has been considerable controversy over long term 

dependence approach as pointed out by Mandelbrot (1969, 70), Chie et al 

(1973), Klemes (1974, 81), Mcleod and Hipel (1978). The controversy has 

been primarily generated based on the extensive studies on natural series 

by Hurst (1951). The short term dependence (derived from correlogram 

analysis), though having physical validity fail to satisfy the Hurst 
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phenomenon. Whereas, long term dependence which does not seem 

physically realisable does statisfy the Hurst phenomenon. Thus there are 

two classes of models, long memory models and the short memory models. 

Long memory models are prescriptive type models ,whereas the short memory 

models are the descriptive type of models (Jackson, 1975). Before the 

details of these two classes of models (incorporating short and long 

memory dependence) are explained, the Hurst phenomenon is briefly 

explained. 

3.4 Hurst Phenomenon 

Hurst (1951, 57) did the range analysis on 690 annual time series, 

comprising streamflow, precipitation, temperature etc. It was shown that 

resealed adjusted range (r.a.r) R
I!: varies with the length of record n as 

R* = ... (16) 

Hurst computed k for each of the time series over all the 

phenomenon studied, k was found to have an average value of 0.73 with 

a standard deviation of 0.08. The exponent k to have larger value than 

0.5 (an independent series) is termed as Hurst phenomenon. 

The four possible explanations for the Hurst phenomenon as given 

by Wallis and Matalas (1970) are: 

i) Non normality of the probabilities distribution underlying 

the time series. 

Transience i.e. n not large enough for the Hurst coefficient 

to attain a limiting value of 0.5. 

Non stationarity in the observed series. 

Persistence in the time series. 
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For samples of moderate lengths, various simulation studies, 

(Matalas and Huzzen, 1967, Mandlebrot, 1969, O'Connel, 1977) have shown 

that R* is very nearly independent of the distribution of the random 

variable. Hence the non-normality of the time series is to be the cause 

of the Hurst phenomenon can definitly be excluded. 

With regard to hypothesis (ii), the implication is that if 

sufficiently long records are available in nature, k -wowd tend to a 

value of 0.5 corresponding to asymptotic independence. Rejection or 

acceptance of this hypothesis must await the availability of longer 

geophysical records. At this stage (ii), and (iv) must be considered as 

either of them could be advanced as an explanation to the Hurst phenomenon. 

Hurst (1957) suggested that a nonstationary model in which the 

mean of the series was subject to random changes could account for 

higher values of the Hurst coefficient k. Klemes (1974) has shown that 

even a zero order nonstationary model could reproduce the Hurst 

phenomenon. By simulation experiments with white noise, Klemes (1974), 

raised the mean level in different manner and showed how k increased 

due to this type of non-stationarity. But non-stationarity is rather 

an unt actable assumption as it will be very difficult to fit non-station- 

arity properly to a given historical series. 

It was therefore, conjectured that k having a value of 0.73 

instead of 0.5 is due to persistence. The interest in the Hurst 

. phenomenon increased manifold when it was-observed that a value of 

k> 0.5 cannot be explained by Markov type of dependence identified 

through correlogram analysis. In fact all the short term dependent 

'models belong to the Brownian domain wherein the estimate k tend 

to a value of 0.5 as the length of the sequence increases to infinity. 
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Hence Mandelbrot and others (1969) argued that if dependence is taken as 

the likely cause of Hurst phenomenon, then short memory models are 

inadequate and different class of models having infinite memory are needed. 

Hurst phenomenon remains a puzzle as how does one explain 

physically that a geophysical process like riverflows has infinite memory? 

Infinite memory may be possible, say, in biological processes through 

genetic coding, than with processes related to inorganic nature like 

geophysical processes. In geophysical process, the memory seems to 

manifest itself mostly through conservation of mass and energy and has 

the Markovian property the past influence the future only through 

its effect on the present and thus once the present state has reached 

it matters little for the future development how it was arrived at. 
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4.0 STOCHASTIC MODELS 

If by using correlogram analysis and the range analysis, it is 

observed that p
k 

560 and Hurst coefficient H >0.5 within the significance 

range, the series is said to have persistence. If correlogram analysis 

is taken as the criterion of dependence a class of models which are 

fitted to the series is called as short memory models. Whereas, if the 

dependence structure is quantified through the Hurst coefficient, then 

the long memory models are used. These two classes of models are briefly 

explained. 

4.1 Short Memory Models 

4.1.1 Introduction 

The use of short memory models in hydrologic analysis were 

introduced primarily to produce synthetic sequences of flows to route 

through a water resource system, the idea being to test it under a 

variety of conditions and with longer sequences of flows than historically 

available. The implication is that long sequences will contain more 

extensive events than observed and thus a more stringent test of the 

system. The basic requirement is that the synthetic flows should have 

properties which are indistinguishable from the historical flows, this 

is taken to mean that the statistical characteristics are maintained the 

same way as has been observed in the historical series. 

A very early work on the use of short memory models is by 

Thomas and Fiering (1962) now famous as Harvard Water Programme (Mass et 

al, 1962). They introduced a monthly flow generator which is in effect 

a seasonal short memory model. It was applied in designing a water 
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resources system for the Meramac river basin, Missouri, consisting of 

small reservoirs. Further application of such models include Fiering 

(1965), Hufschmidt and Fiering (1966), Schaake and Fiering (1967), Davis 

(1968), Hall et al (1969), Moreau and Pyatt (1970), Hamlin and Kottegoda 

(1971, 73), Gupta and Fordham (1972), Hamlin et al (1973,75), Spoils. 

and Chander (1976) and many others. Most of these .studies have not taken 

the sampling errors in the historical series into account. The 

theoretical implication of ignoring the sampling variability have not 

received the attention it deserves. Recently, these have been included 

through the Bayesian Framework analysis, notable studies being 

(Wallis and O'Connel, 1973, Lenton and Rodriguez Iturbe, 1974, Klemes, 

1979). 

Short memory models have also extensively been used for forecasting 

flows. If the series is non seasonal, the models used for simulation 

can also be used for forecasting. However, in the case of seasonal 

data, the special class of multiplicative time series model are preferred. 

The use of multiplicative models in riverflow forecasting is quite 

extensive and the notable studies being; Macmicheal and Hunter, (1972), 

Mekrecher and Delleur (1974, 1976), Clarke (1973) Delleur and Kavass 

(1978), Chander et al (1980). Recently, the use of Control Engg. 

concepts have been introduced in time series modelling. These are also 

called Bayesian forecasting (Harrison and Stevens, 1971, Maissis 

1977, Chancier et al, 1980). These models have also been used for 

extending the record (Hamlin and Kottegoda, 1971), infilling missing 

data (Kottegoda and Ely, 1977), flood evaluation (Kottegoda, 1972, 

73) etc. 
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4.1.2 Types of short memory models 

The short memory models also called the ARMA (Autoregressive 

Moving Average) class of models is applied to the stochastic component-, 

Z
t given in Eq (3). This means that the :trend and seasonality are 

assumed to be removed and the residual is covariance stationary. In fact 

ARMA class of models is a special version of ARIMA (Autoregressive 

Integrated Moving Average) models which can directly account for the 

non-stationery behaviour of the series. ARIMA models can directly be 

applied to the series which has not been detrended or deseasonalised. 

An excellent review on ARIMA class of models is given by Box and 

Jenkins (1970). 

AR(p) models: The pth order linear autoregressive model suggest 

that the value Z
t at time t is constituted from the weighted sum of 

p values at times (t-1), (t-2) (t-p) and a random number, at  

at ... (17) t 1=1 

Where , , 
E(Zt) = 0, E(at

) = 0, Var(Z
t
) =a 2 and 

Var(at) = a28,  and E(atat_k
) = 0 and E (Ztat_k) = 0. 

MA(q) models: A moving average model of the order q is the one 

in which the current value of a random variable is the weighted sum 

of (q+1) random variables 

Zt 
=a
tj=
-E1 8a, ... (18) 

The stochastic component Z. 
is equivalent in this case to the 

output from a linear filter with a white noise as input. In an infinite 

order moving average process, a necessary constraint for stationarity 

is that the sum of the squared weights should be less than infinity 
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Mandeibrot, 1976). 

Autoregressive moving average, ARMA (24)  model: The AR (p) and 

MA(q) models are special cases of ARMA (p,q) model given of the fOrm 

=j OZ +a-Z(3a 
1=1 i t-i t j=1 j t-j 

The effect of linear aquifers and independent rainfall amounts 

justifies approximate representation of the river flow process through 

ARMA models. They are also analogous to those conceptual models in 

parametric hydrology that are based on linear reservoirs. For example, 

a nth degree linear reservoir system can be represented by ARMA (n, n-1) 

model. The relationship between parametric and stochastic hydrology 

using ARMA models is given by Moss (1972), Dooge (1972), Spolia and 

Chander (1974, 1979). 

Box and Jenkins(1970) has introduced a backshift operator B in 

defining these models. 

BZt = Z 1 = = Zt-p 
... (.20) 

Eq(19) can thus be written as 

cb
(B) z  = 

0
( 
q
113) a  

Tt t 

where 

.(B) 
(1  '..01B -,02B

2 0 BP) 

03) = (1 e B - 62B
2 — 1  6 Bq) 

 

A general class ofARCMA models is given in the next section. 
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4. 2 Fitting of General ARIMA Class of Models 

A multiplicate seasonal ARIMA model for Z
t 

series will be: 

4) (B) 4(B5 ) vel  71: zt( A)  =e(B)e (Bs ) at ... (22) 

where 
s: seasonal length equal to 12 for monthly river flows 

B: Backward shift operator defined by BsZ
t 

 . = Zt  _s 
 

a
t
: Normally independently distributed white noise  

residual with mean equal to zero and variance .02 
a 

4)(B): ( 1 - .1B - 02B
2 

... 4)
,D
BP) non seasonal auto- 

regressive operator , where 0 ,4) —0 are non 
1 2 P 

seasonal parameters 

OB2s ... 0 BsP) seasonal AR operator of 
2 

orderPand4).,i=1,2 P, are the seasonal AR 

parameters. 

9(B): 0 B- 0 B2  .... 
1 2 

e
q 

 13q, . non seasonal moving average 

operator (MA), ei, i=1,2 q are the non seasonal MA 

parameters. 

0 
... 

sQ 
0(35): 1-0 Bs  - 

B2s 0QB 
are the seasonal MA 

1 2 •  

operator of the order Q,  0i, i=1,  Q, are the seasonal 

MA parameters. 

Z(x):Some appropriate transformation of Z
. 

such as Box Cox 

transformation (Box-Cox, 1964, Chander et al, 1960). 

V : (1-B) 

The notation (p,d,q) x (P,D,Q)s is used to represent the 

seasonal ARIMA model of Eq(22). The first set of brackets contains 

the order of the non-seasonal operators and the second pair of 

brackets has the order of the seasonal operators. 
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4.3 Steps used for Model Building 

While applying a B-J model or in general any type of stochastic 

model to a particular problem it is recommended that the three stages 

of model development be adhered to. The first step is to identify the 

form of the model that may fit the given data. Once the model is 

tentatively identified the next step is to estimate the parameters 

of the model by an efficient parameter estimation technique. Once the 

parameters are estimated the model is checked for the possible 

inadequacies. If the diagnostic check reveals serious anomalies, 

appropriate model modification be made by repeating the identification 

and estimation stage. The ARIMA class of models building for a process 

is therefore a three stage iterative process consisting of: 

Identification of the model 

Parameter estimation 

3.. Diagnostic checking 

4.3.1 Identification of the model 

The purpose of the identification stage is to determine the 

order of differencing required to produce stationarity and also the 

order of both seasonal and nonseasonal AR and MA operators of the Zt  

series. 

The steps used for identifying the order of the model are: 

i. Plot the original series: A visual inspection of a plotted 

time series may reveal one or more of the following characteristics 

i) seasonality ii) trends either in the mean level or in the variance 

of the series iii) persistence and iv) long term cycles. 
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Autocorrelation function (ACF): To use the ACF in 

model identification, calculate and then ,plot rk  against lag k upto 

maximum lag of roughly n/4. 

Examine the plot of the ACF to detect the presence of non-

stationarity in the Zt  series. When the data are non-stationary, 

differencing, is required. For seasonally correlated data with seasonal 

length equal to s, the ACF often follows a wave pattern with peaks, 

s, 2s, 3s and other integer multiple of s as shown in Box and Jenkins 

(1970, pp.174-175). If the ACF at lags that are integer multiples of 

the seasonal length s do not die out rapidly, this may indicate that 

seasonal differencing is needed to produce stationarity. Failure of ACF 

to damp out at other lags may imply that non-seasonal differencing 

is also required. 

Once the data has been differenced enough to produce non-

seasonal stationarity kVd  Z
t) and both seasonal and nonseasonal station-

arity (VaVl
s
)  Zt  ) of the seasonal data, check the ACF of the differenced 

series to determine the number of AR and MA parameters required in the 

model. Now the ACF of the differenced series is plotted. 

If Vd VD
s Zis a white noise, the rk is approximately NID 

(0, 1/n); Simply plot the confidence limit on the ACF diagram and check 

if significant number of rk  values falls outside the chosen confidence 

limit. When VdVD Z.  is not a white noise then the following general s  

rules may be invoked to help determine the type of the model required. 

Non Seasonal model: For a sure (o,d, q) process rk  cuts off and is 

not significantly different from zero after lag k. If rk  tails off and 

does not truncate this suggests that AR terns are needed to model 

the time series. 
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Seasonal model: When a process is a pure MA (o, d, q) x (0,D,Q)s 

model, rk  truncates and is not significantly different from zero after 

lag q + SQ. 

PACF - Partial Autocorrelation function: The theoretical PACF can 

be calculated by using the Box -Jenkins approach (1970, Chapter 3). For 

model identification,plot the .PACF coefficient Chick against lag It. The 

following general rule may prove helpful. 

Non seasonal model: When the process is pure AR (P), tick  truncates 

and is not significantly different from zero after lag p. After lag p, 

ick is approximately HID ( o, l/n). 

Seasonal model: When the process is pure AR (p,d,o) x (P,D,O)s 

model ' cuts off and is not significantly different from zero after 

lag p + sP. After lag (p+sP), .kk  is approximately HID (o, l/n). 

If  Chkk damps out at lags that are multiples of s, this suggest 

the incorporation of a seasonal MA component into the model. 

Inverse autocorrelation function (IACF): Claveland (1972) defines 

the IACF of a time series as the ACF associated with the inverse of the 

spectral density function of the series. The IACF of the Vd  VD
s Z series 

is defined by the ACF of (q,d,p) x (Q,D,P)s process. When the process 

is a pure AR process, rk  cuts off and is not significantly different 

from zero after lag p. 

Inverse partial autocorrelation function (IPACF): IPACF is the 

inverse of the PACF and has the characteristics interchanged between 

the AR and MA process. 

The ACF, PACF, IACF and IPACF transfer the given information 

into a format whereby it is possible to detect the number of AR and 

MA terns required in the model. In general, the ACF and IPACF truncates 

the pure MA process, while PACF and IACF cuts off the AR process. 
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For mixed process all four functionsattenuate. 

In order to get the details of the model identification the 

reader is advised to see the works of Hipel and Mcleod (1977), 

Ledolter (1978), Cline (1979),Chander et al (1980), Meckrecher and 

Delleur (1974) and Chatfield and Prothero (1973). 

4.3.2  Estimation of parameters 

If the parameters in the model are linear (AR models), they can 

be estimated by the use of Yule Walker equations or with the help of 

least square minimisation. However, these methods are not applicable 

when the parameters are non-linear. 

In such cases, Box and Jenkins (1970, Chapter 7), suggest the 

use of approximate role of the ARIMA model paranters be obtained by 

employing the unconditional sum of the squares method (Clarke, 1973). In 

this case, the unconditional sum of the squares function is minimised 

to get the least square parameter estimates. Recently Mcleod (1976) has 

described a modified sum of the Squares method which provide the 

closest approximation to the Box-Jenkins exact maximum likelihood 

estimates. 

When the moving average terns are present in the model, 

optimisation techniquesare required to estimate the parameters. Some 

of the optimisation algorithms that have extensively been applied 

include the i) Gauss linearisation ii) the steepest descent and iii) 

the Marquardt algorithm. B-J have recommended the use of Marquardt 

algorthm ( it has fast convergence even when the initial estimates are 

wrong) for the estimation of parameters. Chander et al (1980) have used 

the Marquardt algorithm in the estimation of ARIMA models parameters 

for the monthly flows of the Krishna and the Godavari river. 
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4.3.3 Selection of model 

At the identification stage it is quite likely that not a single 

model is uniquely identified. In fact, two or three models are subjective- 

ly identified based on correlogram analysis and their parameters 

estimated. Now the problem of selecting the final model arises. Many 

times, model which gives the minimum variance in residualsis selected. 

This model selection rule can often lead to incorrect results. The 

main difficulty in the minimum variance rule is that it does not 

include the principle of parsimony of parameters. 

One of earliest model selection rule including parsimony is 

based on the classical F-test in hypothesis testing (Astrom, 1967, Kashyap 

and Rao, 1976). Although this test weighs the order of the model in 

the decision, the test threshold is set by subjectively selecting 

an acceptable risk rate. 

An approach not requiring arbitrarily specified parameters 

like significance levels has been proposed by Aikeke (1974). Based 

on information theoretic arguments, this information criterion is 

defined as twice the difference between the number of unknown model 

parameters and the maximum log likelihood. For ARIMA model the Aikeke 

Information Criterion (AIC) reduces to: 

AIC-2 ln(max. likelihood) + 2k ... (23) 

Where k is the number of AR and MA parameters used in the model. 

The model which gives the minimum AIC is finally chosen as the model. 

AIC criterion has been applied in hydrological time series by Mcleod 

and Hipel (1978), Cline (1979), Ozaki (1980). However, Mcleod studies 

showed that by using the AIC criterion, the model order increases as 
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compared to minimum error variance model. 

Another model selection criterion is the posterior probability 

(PP) criterion, developed independently by Schwarz (1977) and Kashyap 

(1977). The PP criterion also expresses parsimony but penalizes more 

heavily the extra parameters than the AIC criterion. It has been shown 

by Kashyap (1980) that PP criterion gives a more consistent decision 

rule for selecting a model than the AIC decision. Extensive literature 

exist in control Engg. journals about the time series model selection. 

4.3.5 Diagnostic checking 

Most diagnostic checks deals with the residuals assumptions 

in order to determine whether at 
are independent, homo scedastic and 

normally distributed. Residual estimates at 
are needed for the tests 

used in checking the three afore-mentioned residual assumption. 

It may be mentioned that data transformation cannot correct dependence 

of the residuals because lack of independence indicated that the present 

model is inadequate. Rather the identification and estimation stages 

must be repeated in order to determine a suitable model. 

Another class of diagnostic checking is done by over-fitting. 

Overfitting involves fitting a more elaborate model than the one 

estimated, to check if inclusion one or more parameters greatly improve 

the fit. For example, the PACF and the IACF may show decreasing but 

significant values at lag 1, lag 2 and at lag 9. If an ARMA (2,0) 

model is originally estimated, then a model to check by overfitting would 

be 

( 1-S1E - 02B2  -09B9)Zt =0 ... (24) 

A mle of 09, three or four times its standard estimate would 
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.definitely indicate that a more elaborate model should be selected. 

The likelihood ratio test (Mcleod, 1974) can also be used. 

In order to determine whether the residuals are white noise 

an appropriate procedure would be to examine the residual auto- 

correlation coefficient. Another but less sensitive check is to calculate 

and to perform a significance test for the Portemantau Statistic. 
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5.0 COMMONLY USED SHORT MEMORY MODELS TO HYDROLOGIC TIME SERIES 

5.1 Markov Autoregressive Model (AR 1) 

Markov autoregressive model is perhaps the most commonly used 

model in stationary hydrologic time series. This model has frequently 

been applied to stationary annual series and to the standardised 

monthly series. In fact, most of the models fitted to hydrologic 

series, have not been derived, through the three stage iterative process 

of identification, estimation and diagnostic checking but have been 

derived heuristically, keeping in view the parsimony of parameters. 

The first order Markov model was made popular by Fiering 

(1963). This model assumes that the entire influence of the past 

on the current value is reflected in the previous state value. The 

model has the form: 

zt - 2 $  + 
a
t 

a 1 a 
... (25) 

It means that the departure of flow from the mean this year is 

ascombination of a proportion given by of the departure of the 

previous flows from its mean and a random component at. The at  has 

zero mean and constant variance a
2 and they do not depend on Zt-1 a 

The distribution of at 
is same as that of the historical series Z. 

The two parameters, $ and a2
a 
depend upon the statistical properties 

of the zt 
series. If this model is required to model the mean, the 

standard deviation and the first order serial correlation P
1 

then it can be easily shown that $1  should be equal to P1  and 

Hence the AR(1) model of Eq. (25) can be written as 
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z_2 -.2 zt_l  
.., - P1 az 

 + VT:7f-  at (26)  
aZ 

2 where E (at) = 0 and E ( at ) = 1 

The distribution of at  affects the distribution of Z. If Z
t 

follows a normal distribution , at  is then N ( 0,1) random deviates. 

First order Markov model in Eq.(26) has an inherent correlogram structure 

such that I OkI = IP lik  

If Z. is non normally distributed then a
t 

has to be non Gaussian. 

It is very important to model the non-Gaussian behaviour of the series 

because the Noah effect is directly dependent on the coefficient of 

skewness of the historical series. Fiering (1967) noted that this could 

be obtained by choosing a suitable skewness C
sa 

of the a
t 

series. For 

an annual series by cubing Eq.(26) and taking expectation the skewness 

C
sa 

of (a
t) is seen to be related to the skewness C of the (Z) series sz 

by a relationship 

1-P3  
c - 1  
sa } C 

(1-4)3/2 sz 

1 - o3  
Since { 1 1 

2 3/2
/ is always greater than or eoual to pne, it 

(1 - pi  ) 
means that in order to maintain the coefficient of skewness, C in the 

sz 

model, the coefficient of skewness C
sa 

of the random series is to be 

more than C . 
sz 

Knowing the value of Ca  , the next problem arises about the 

choice of the distribution of (a
t
) having this C. The precise choice 

of a family of distribution for (at) is more difficult and is often 

... (27) 
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made by trial and error. In hydrologic time series analysis, the 

log normal and the gamma distribution have been frequently used. 

The gamma variable being generated by a x
2 variable and by Wilson 

Hilferty (1931) transformation. If a
t 

is normally distributed with 

zero mean and unit variance, then a modified variate a is defined by 

C
sa 

a
t 

C
2 

3 
2 sa 2 

at't 
C ( 1 6 36 ) c ...(28) 
sa sa 

 

and the first order Markov model becomes: 

z
t 
- 

_p 
z
t 
- 2 , 

a 1 a 
+ 11-p1  at  ...(29) 

Eq.(29) now will model approximately the Zt  series which has mean 2 , a , 

C and pl. However, McMahon and Miller (1971) showed this approximation sz 

was poor for skewness in excess of two which is often the case. Kirby 

(1972) suggested a modified transformation for Pearson type III 

distribution. Bernier (1970) and Weiss(1977) have obtained the exact 

distribution of (a
t
) which ensures (Z

t
) has gamma distributiOn, sOlUtion 

in other cases are awaited.: It may be highlighted here that the choice 

of distribution of a
t 

directly affects the distribution of Z
t 

series.: 

In fact, the distributions of (a
t
) or (Z

t
) uniquely specify each other. 

5.2 Log Normal Model 

In order to avoid distribution identification of the series from 

the samples, many a times, transformation of the data is done so thit the 

transformed series is approximately normal. The stochastic model is then 

fitted on the transformed normal data. This aspect of transformation of 

data prior to modelling has been an important point of discussion (Beard, 

1965, Pentland and Cuthbert, 1973). An important class of such trans-

formation is the Box Cox transformation given as : 
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X Zt - 1 A 0 
Z' - t X 

= 0 = 1nZ
t 

...(30) 

There exist a unique value of X ; which transforms the original series Zt 
to 

Z' which is approximately normal. The procedure for estimating X is given 

by Chander et al (1978). Generally hydrologists have been using the 

lognormal transformation which is a particular case of power transformation. 

The use of log normal transformation in hydrologic time series has been 

discussed in detail by Burges (1972) and Codner and McMahon (1973). The 

effect of such transformation in modelling is not well understood and so 

there had been considerable theoretical interest in the interrelationship 

between the parameters values and the behaviour of the model. 

From the hydrologic modelling point of view it is important to 

note that if a transformation is applied to the data, it also changes the 

correlation structure. It is, therefore, important to determine the 

interrelationship between the correlation structure of the natural series 

to that of the transformed series. This relationship for a three parametric 

log normal distribution was first given by Yevjevich (1966) and the work 

has been further extended by Mejia and Rodriguez Ituxbe (1974). 

Let (Zt
) be the sequence of original flows which follows a three 

parametric log normal distribution i.e. ( yt
) has a lognormal distribution 

with mean equal and standard deviation a. Now the mean, variance and 

skewness of (Zt
) can easily be related in terms of a,y and a such as 

y
t 

= log ( Zt 
- a) 

then 
= a + exp (a

2 /2 + ) ...(32) 
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{ exp ( a2  ) - 1 13/2  

exp ( 4 p
ly

) - 1 
Plz = exp (u

2 
) -1 

...(35) 

- 
a2 = exp { 2(a

2  + y )} - exp (a + 2Tr ) ...(33) 

 

exp (3a
2  
y  ) - 3 exp ( a

2
y 
 ) + 2 

 

...(34) 

    

If the model is to maintain E, az
, C

sz 
 and plz

, Matalas (1966) 

- 
suggested solution of four equations for calculating y, ay' 

ply 
and a. 

Now a Markov model is fitted on the y- domain. 

Mejia and Rodriguez (1974) showed that even by using these four 

equations only plz 
 in the correlogram can be maintained. However, 

the complete correlogram structure, of the Z- series derived from 

the transformed Y series will be different from the one derived using 

directly the Z series. In the historical series the correlogram is 

decaying exponentially pzk = ( 
) whereas, the correlogram pyk 

of the 
Plz 

tranformed series will have a gradual decay of the form. 

1 2 
Pyk = exp ( ay -1) 

a 

...(36) 

It may be noted that Eq.36 has a asymptotic correlogram 

structure of the type of ARMA (1,1) process. In other words, an ARMA 

(1,1) process can be used to model (y) series and will result in a (Z) 

series which is log normal and have a Markovian structure. 

5.3 Seasonal Markov Autoregressive Models 

The Markov models discussed above assume that all time periods 

are characterised by identically distributed flows; the flows in each 
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z. - 2. 
13 J 

z. . - 3-1 a ..,/( 1- P ) ...(57) 
+ ij - P.  a. a j-1 

2 
period have mean 2 , variance az 

and the lag one serial correlation -1z.  

For studies that use only annual flows this assumption seems reasonable 

and is generally correct unless long term trends are present. However 

for studies that require flows for seasons, months or other sub- 

division of the year, more elaborate models are necessary. Certainly the 

mean flow for a month or other period during a wet season is different 

for the same duration in a dry season. Markov model can be modified to 

include the multiseason effect and a multiseason Markov model is used. 

where i gives the number within the sequence of the year in which a 

given flow occurs and j indicates the season. In the case of monthly 

flows there will be 12 2 and a respectively. In hydrology this 

type of first order single station model was originally used by Roesner 

and Yevjevich (1966). It is applied to monthly data by using the historical 

information to estimate 21, 22  ,  and a1, 
a2, a12 and 212 

ahaosingadistributionofaij.Application and discussion have been 

widespread and include 'Fiering (1964, 65, 67), Matlas (1967, b), Kardos 

(1975). 

It is observed that even after standardising the series, the 

coefficient of skewness C of each month is different. Similarly the 
sz 

degree of correlation Pj  is not constant but goes on varying with season 

to season. A more general monthly model will therefore include all the 48 

parameters ( 12 mean, standard deviation, skewness and lag one correlation 

coefficient). This is done by allowing Pj  and aij  distribution to depend on 

the position (month ) of the season. 
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The generalised monthly flow model is written as: 

z. z. - 
1,3 3 p j-1  

   

+ V1 -ej a'.. ...(38) 
lj 

where 3 
2 I 1.  (csa)j ij 

(c
sa

)2 2 
a'. = 

(Csa)j 6 36 (csa)j  

and 
(C ). - 2? (C ) 

(C)j 
sz j-1 sz 1-1 (4 ( 

1 p
2 )3/2 

... 
sa 

o) 
j  

where (2 ) is the coefficient of skewness in the observed series 
sz j 

for the 
.th jmonthanda.is NID (0,1) and a'.. is the modified random 

ij ij 

number with skewness correction. 

Hall et al (1969) used this model in connection with critical 

periods of reservoirs. It was however, observed that estimation 

of monthly correlation and skewness from short records are unreliable 

(Hamlin and Kottegoda, 1971). Jones and Brelsford (1967) discusses 

autoregressive model with harmonically periodic parameters and 

employed then in a meteorological problem. However, incorporating 

month to month correlation and skewness of different months makes the 

model unwieldy and incorporates likely sampling errors in estimating 

these values from historical data. 

Markov Models for Ephemeral Streams - One of the major problems 

in applying models to the ephemeral streams in arid lands is the 

modelling of zero flows. This is of particular importance in Indian 

context where some rivers experience zero flows during certain 
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periods of the year. Fiering (1962) suggested a simple procedure of 

modelling zero flows. Taking a log normal AR(1) model for standardized 

monthly flow as:- 

Y r 5' t,j j t,j-1 0-1 0 
P 1- + P. / ` 

0'. J a j 10 ...(41) - 
J j-1 

= log ( z ) 
yt,j t,j 

To model appropriate number of zero flows, the following procedure 

was adopted. For each month j the value of the normal deviate was 

obtainedsuchthattheareaunderthenormalcurvefrom-cotok.was 

equal to the proportion of pl  of zero flows in that month. Flows are 

modelled in the usual manner except that if the standard deviates in the 

log domain (y, )/a
ti 

were less than ki  the flows were set to 
t j 

zero. However, by using this procedure, it was found that the means and 

the standard deviations are underestimated. When three parameters 

log normal distribution was fitted to the data and the same procedure 

followed, then it results in an overestimation of mean and producing 

large number of zero flows. Jackson (1975) suggested the use of Birth-

death Markov chain models . Srikanthan and McNbhan (1980) suggested 

the method of fragments for modelling monthly flows for ephemeral 

streams. However, much work still remains to be done in this direction. 

5.4 Higher Order Autoregressive Models 

It is quite likely that the Markov models do not always model 

the streamflow series satisfactory. Higher order autoregressive models 

will be required in such cases where the correlogram structure in the 

observed series does not decay in the exponential form. This may become 
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necessary to accommodate runoff conditions in which the groundwater 

aquifer stores water from season to season and then contributes a 

fraction to each season from the total runoff. The behaviour of ground 

water storage may thus necessitate the use of higher order models. In the 

case of AR(1) model, it is assumed that 
Plki 

= pl However, in the 

observed series the correlogram structure may be entirely different 

from p
1 
k1 . The inclusion of the observed correlogram structure at 

greater than one lag may require the use of higher order models. Higher 

order (AR) models have been applied when the Markov model was found 

inadequate and when there was no evidence of low frequency effects 

in the series. The AR(p) model can be written as:- 

zt - zt-1 - 2 Z
t-p 

- 7 

a '1 az 
  (Pp a 

 + il-R2 a 
z 

t 

...(42). 

2 
R : Degree of determination given as 

0 
Br.  = ( 01p1  +4)21:1 2  

 

pPp ) 

 

A properly evaluated AR(p) model will maintain mean, standard 

deviation and p1 
to p correlatin coefficients. The skewness can 

easily be incorporated in a similar way as done in AR(1) model. The 

ident„ification, estimation of parameters and the diagnostic checking 

procedure remaining the same as given in section (4.3). Fiering (1967) 

used a 20 lag model in order to satisfy the Hurst phenomenon. Generally, 

higher order models have been used for daily and pentad flows (5 daily) 

series. For example, Quimpo (1967, 68) fitted a second order model on 

standardized daily flows to 17 American rivers; the standardization was 



achieved by fitting harmonic function to 365 daily means and standard 

deviations. This model was validated on the basis of correlogram and 

spectrum analysis on both the historical and residual series and on 

the ratio of the variances of the standardised and residual series, but 

no study was done on the skewness coefficients and 'about the distributions 

of the series. The pentad flow data of five English rivers was analysed 

by Kottegoda (1972) and the model fitted was fourth order autoregressive 

model. It was however observed that large coefficient of skewness exist 

in the pentad flow series which required the use of Pearson III or 

VI distribution. Spolia and Chander (1977) used Cannonical expansion 

on the monthly flows of the Sutlej and the Beas river. The advantage 

of Cannonical model is that it tries to maintain the whole correlation 

matrix between months. However their model used the log transformation 

which could not maintain the coefficient of skewness of each month. 

Phien (1979) suggested a procedure which can maintain the coefficient 

of skewness of each month. This required the use of gamma variable 

and a simple modification of scheme provided by Whitakar (1973). Tao 

and Delleur (1976) used a time varying non seasonal ARMA model for 

modelling monthly flows, where the skewness was accounted by using 
• 

thelOgaritimictralasfortaationarldtheparameter4).snde.of 

pi an anAMAmodelweredependentonthe.values. Tao d Delleur (1976)  

also suggested a modified Portmanteau Q statistic for checking the 

seasonal correlation coefficient for residual whiteness . 

Al.]. these higher order models were used on the standardised 

monthly or pentad series. However, multiplicative models can be applied 

directly to the series without being standardised. Chander et al (1980) 

modelled the monthly flow series of the Krishna river and the Godavari 

river by multiplicative ARIMA models. The models identified were 
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(1,0,0) x (0 l 1)12  model for the Kriehna river and (2,0,0) x (0,1,1)12  

model for the Godavari river. The generalised Box-Cox transformation 

was applied and the parameters of the model and the Box-Cox transformat-

ion A were determined by modified Marquardt algorithm. Similar, 

multiplicate models were also used by Clarke (1973), Mekrecher,etal(1976)& 

Delleur and Kavaas (1978). This model is parsimonious and does not 

disaggregate the series into seasonal and nonseasonal components. Other 

studies involving higher order models are by Beard (1Q67 b), Adamowaski 

(1971). However, further studies on the relationship between the 

distribution of the standardised (Zt) series with the distribution 

of the (at) series needs to be done. 

5.5 Daily flow Studies - Recent Studies 

The mbdelling of realistic daily flow sequences is slightly 

complex because of three reaons, viz., (i) Daily flows are highly non 

Gaussian, large variability and having high P1  correlation between 

flows, (ii) there are spurts of rising limbs followed by a longer 

period of falling flows (iii) there are many days when the flow is 

exactly zero. This asymmetrical behaviour of hydrographs leads to 

the statistical property of time irreversibility. The autoregressive 

models described earlier are based on the principle of time 

reversibility and therefore can't produce sharp rising limbs and 

slow recession. A general belief is that monthly flow models which 

frequently employ a logarithmic transformation, so that a linear 

Gaussian process can be applied to model the transformed process, can 

be readily applied to model daily flows is generally incorrect. 

Recession effects which are frequently evident in daily flows but 
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which tend to be averaged out in monthly and annual flows cannot be 

reproduced by any linear model based on a Gaussian distribution 

(Weiss, 1973). 

The early daily flow modelling of Beard (1976 b) and Quimpo (1967, 

68) did not reproduce this rising - falling behaviour. Beard first 

generates the monthly flows and then disaggregates them during a flood 

season using a second order Markov Chain and the frequency characterist-

ics of daily flows within a calender month. Daily flows are then adjusted 

to agree with simulated monthly flows. Payne et al (1969) extended this 

work for a multisite modelling. A more general disaggregating model 

is described by Valencia and Schaake (1973) and by Mejia and Rouselle 

(1976). All these approaches tries to rearrange the flow series generated 

by other means empirically so that the number of recession during a 

particular month .are reproduced. However, this approach :Ls quite adhoc 

and does not produce ascension-recession behaviour satisfactorily. A 

daily flow model based on non-linear type autoregressive model is also 

given by Yakowitz (1973). This model is operationally successful in 

modelling zero flows and steep rising and falling behaviour. However, 

this model lacks mathematical tractability. In this connection, 

Weiss (1977) suggested a new model known as 'Shot Noise Model' which 

has a built in capacity to model the ascension receSsion behaviour. 

This model has great potentialities and is briefly explained. 

5.5.1 Daily flow shot noise model 

When modelling a stochastic process in hydrology a linear assumption 

is generally made 

Z(t) =  f h ( u) dY(t-u) 
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Z(t) = N(t)  y exp I -b(t-T 
In in _co 

...(44) 

Where dY(t) is a process of independent and hence uncorrelated 

increments which describe all the randomness in Z(t), and h(t) is the 

system transfer function. Obviously, Z(t) is the flow at time t which 

comes from the rainfall Y(t). The choice of the transfer function h(t) 

determines the autocorrelation function of z(-t). The particular h(t) = e-bt 

gives a AR(1) process and corresponds to a single linear reservoir. 

Weiss (1973,77) showed that the recession shape would be produced 

in the daily flows if dY(t) (rainfall) is taken to be zero almost  

every where except for a delta function at random times. This is possible 

if Y is the value of the shot (rainfall) which is a random variable with 

an exponential distribution of mean 0 , independent from shot to shot. 

Since the rainfall occurs only for few days in a year, its occurrence is 

taken to be Poisson distribution at a rate of V.  Each rainfall event 

contributes to run off Z(t) as ye-bx there x gives the arrival time of 

the rainfall shot prior to t and b is the decay rate. 

If N(t) is the number of rainy days (shots) and Tm  denotes 

the arrival time of the shots, the river flow Z(t) is 

where Y is an exponential distribution having mean 9 , of p.d.f. 

1 
— exp (- y/ e ) for y > O. 

The process has three parameters, the rainfall event rate N.,  , 

the magnitude of rainfall e and the decay rate of run off Z(t) if 

there is no rainfall is b. 

It can be shown that Z(t) has a gamma distribution with parameters 
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(14),v tb) and thus Z(t) is non-negative and positively skewed. The 

statistical parameters of Z(t) are 

E(Z(t)) =ve/b  

Var (Z(t)) =v8 2/b  

-bk 
P(Z(t) Z(t+k)) = e —(47) 

Equation 44 can be written as 

Z(t+k) = e
bk N(t) y exp (-b(t-T m)) 

M=-°3 M  

N(t+k) 
+ E Y exp ( -b (t+k -Tm)) 

m=N(t) m  

The two terms in equation (48) are independent. The first 

represents the effect of rainfall events previous to t and is equal 

to e
-bkZ(t) and the second includes rainfall during time t and (t+k) and 

is the innovation term. Denoting the innovation by a(t+k) 

= e 'L  -bk_,. 
Z(t+k) ct)+a(t+k) 

The shot noise model is thus the first order AR process in 

continuous time. It differs from AR process that a(t+k) is non-

negative (instead of being Gaussian) with a skewed distribution and 

with a positive probability of being exactly zero. Weiss (1977) also 

suggested a double shot noise.model, one to represent direct runoff 

for rainfall and to account for groundwater storage. If used in seasonal 

flow modelling, Obviously, the value of v , 0 , b may vary from month 

to month. This may need estimation of 36 parameters from the observed 

data. Further development in relating the model and its physical 
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characteristics are awaited as also the seasonal version with 

an economical set of parameters. 
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6.0 MULTISITE SHORT MEMORY MODELS 

All the models considered so far deal with modelling of flows 

at a single site. Multisite models are required if there are many 

tributaries in the catchment or when the catchment to be modelled is 

very large having many river gauging sites. In such cases it is not 

sufficient simply to model flows at every site independently because the 

flows at various sites can be strongly interrelated. For example, 

if the flow is high at one time in a particular stream then it will 

tend to be high sometime later in a lower reach of the stream. Independent 

modelling of river flows for multiple sites can not preserve spatial and 

temporal correlations between flows, consequently, multivariate modelling 

which accountstfor serial and cross correlations are needed (Matalas, 

1971, Fiering 1964). 

6.1 Multisite Lag One Autoregressive Model 

Assume there are m sites for which stochastic river flow model 

is to be formulated. The characteristics to be modelled are the mean, 

the standard deviation at each site as well as lag one serial correlation 

and lag zero cross correlation between each site. 

Let Zbe the flow during the ith  period at the Ath  station and 

Er ar (ca)l and.P.be the mean, standard deviation, skewness and the 

lag one serial correlation for the flows at j
th station. Also let o rOjk 

be the zero cross correlation between j and k
th 

station. Then the flows 

at different stations ( 1,2  m) at time (t+1) will be related to 

the flows at time t by a matrix equation 
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z2 

a1  

a
2 

A 
...(50) 

• 

ain  
t+1 t+1 

Z2 

t 

Where A and B are (m x m) matrices of parameters and a is t+1  (mxi ) 

vector of independent stochastic components which are also independent 

ofZt.fleeries is standarised the matrices A and B can be written 3. 

in terms of lag one and lag zero cross correlation coefficients. This 

can be shown as follows: 

Let pc] = E itZ]
t LJ .11t 

EZ1,  1 
= E Z2 

Z2  

Z 
In 

P0,12 P0,1m 

P0,21 1 20,2m 

1 

where o,ii  is the lag zero cross correlation coefficient for station i 

and j. 

Similarly let 
[n] = E  Pit+1 

t] 
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Z
1. Z2  ZITI)] 

t+1 

P11 .1)12 pin 

21 p22 P2m 

...(52) 
• 

Pml Pt= 

wherepu is the lag one serial correlation between station i and j. 

The matrixpq given in equation (51) represents the lag zero 

represents the lag one 

cross correlations of the stations with diagonals having lag one serial 

correlations. 

. Equation (50) can be written as: 

[Z]t+1. = [A] [z]t  + [B] [a] t+1 ...(53) 

or 

E[[Z]t+1 [1= [A]Lzit [Z]tT  + [B] La] [z]  

ENLJJ =[A]N] 

[A]  ±MliEMC1 1  • (54) 

For which Eni] can be estimated by substituting the estimated 
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Z2 

cross correlation between m-sites and 



correlation coefficients in the matrices [M11 audtM
ol . It can also 

be shown that 

... DiNT = - [A]NiT (55)  

Unlike [A] which has a unique solution, [B] does not have a 

unique set of solution. An infinite number of [13] exist that satisfy 

equation (55) such that BBT  is positive definite matrix (Slack, 1973; 

Young, 1968). Matalas (1967) following Fiering (1964) suggested the use 

of method of equivalence and the principal component analysis. The 

unique solution of [B] is possible only if the structure of the 

matrix [B] is triangular. Restricting the [B] form as triangular will 

restrict the correlation constraints in the process which has not been 

explored. Slack (1973) has further shown that sometimes it may be 

impossible to substitute the historically computed serial correlation 

and cross correlation values in the 
E
M and [M] matrices, as 

1 

by doing so it may violate the positive definiteness properties of [B] 

[alt implying that the determinate of [B][B]T  < 0 (Matalas and Wallis, 

1971 b). Maximum likelihood estimators of parameters in a two site model 

from unequal length of historical records have been attempted by Frost et al 

(1 73).Fiering ('68) & Crosby et al ('70)suggested modified mean of calculating 

M & M1  .This may still lead to unacceptable parameter sets. The preservation o  

of skewness and the use of multi lag models have been done.  by Matalas 

and Wallis (1974) and Ledolter (1978). 

As an application of multisite model, let us take the example of 

two station flows. Taking the triangular form of the matrix B , the 

model given in equation (50) can be written for the standardized Z series 

as: 
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Z1 0 P11 Z
1  

Z
2_ t+1 0 P

12 _ 

0 

- P
0,12 

75 

   

  

a
2 

_ t+1 

 

a2 

 

     

     

     

,..(56) 

where, 

a2 = 1-P2 , = 1 - P P • Y
2 
= 1 _ 2 11 12 11 12 

Rodriguez -Iturbe (1969) has fitted the two site model given 

in equation (56) to two river flow SequenCes. Many a times two ' 

station models have been used where one station is th'e key station and 

the second station is the satellite station. This key and satellite 

station model was first suggested by Fiering (1964) which were applied 

to the Great lake by Megerian and Pentland (1968). in such a case it is 

assumed that the flows at the key station follows •a Markov process 

whereas the flows at the satellite station is a combination of certain 

proportion of flows at the previous time at satellite station, the flow 

at the previous time at the key station and an independent stochastic 

component. Lawrence (1976) improved upon the Fiering model in determining 

the matrices [A] and [p] such that the lag 0 and lag 1 cross 

correlation coefficients are maintained in the model. 
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6.2 Higher Order Short Memory Multisite Models 

Higher order multisite models will be required if serial and 

cross correlation coefficients at lags more than one between sites is 

to be maintained: Thus higher lag models may be required in the case of 

weekly and pentad flows where the correlation structure will not be 

markovian. A higher lag multisite model will have the form: 

1 zi zi  
Z
2 Z

2 Z
2 

Al 
+ 

 
A 

Zm t+1 rn 

a
1 
a
2 
• 

-(57) 
am 

Obviously the matrices [
A1] 

will depend upon the 

serial correlation and cross correlations at various lags. The 

'daily flow model Of Pentland and Cuthbert (1973) is a modification 

of Beard (1965) multisite Monthly flow model and can be considered 

to be a special case of equation (57). However because of large number 

of coefficients to be estimated, the results will be very much data 

dependent, unstable and furthermore they will be of questionable 
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reliability. 

6.3 Decoupled Multisite Models 

The classical multisite modelling aS described in the previous 

section is quite cumbersome because of simultaneous estimation of para-

meters in the [Al  and [El matrix. In order to simplify the estimation 

procedure, decoupled multisite models have been evolved by Ramaseshan 

(1975). In this methodology, the modelling is done at two stages. 

First, a suitably identified ARMA (p,q) model is fitted to the 

standardised and the transformed ( for accounting skewness) series at 

each site. The fitting is done by treating the process as univariate 

series. After the univariate model at each site is fitted, the serially 

independent random component at each site is separated and tested for 

their randomness. This is done to ensure that's, properly identified and 

validated ARMA model has been fitted to the data. Now the residual series 

atj 
will be serially independent but will have cross correlation 

with the residual series atk 
at other stations. Now, again an AMA 

(p,q) model is fitted to the cross correlated residual series such 

that after the model fitting, the residuals are white noise. By 

coupling the two models, a coupled multivariate model is obtained. 

For example, if it is asSumed that the standardised series 

at various sites follows an AR(p) process, then a multivariate model 

can be decoupled as follows: 

First a univariate series model is identified: 

Ht+1 
+[A][Z]t_i + [p]t+1  
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• 
Where [An] 

are the diagonal matrices of autoregressive 

components. After the univariate model is fitted, the random quantities 

[n] t+1 
which will be cross correlated are modelled to satisfy the 

cross correlation matrix between residuals: 

[n] t+1 [C] Enit [D] [a]t+1 

The model is adequate if [alt 
 iS purely random and free from serial and 

cross correlation. Ramaseshan (1975) has used the debouPled multivariate 

model for maintaining the serial and cross correlation matrix in daily 

flows at three,tributaries .sites with good result. Decoupledmultivariate 

modelling may prove extremely efficient in multisite analysis. However, 

further work is required in the unbiased estimation of [C] and [D] 

matrices. 
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7.0 LONG MEMORY MODELS 

The importance and genesis of long memory models have been 

discussed in section (3.3). In this section, for and against argu-

ments for the use of long memory models are not discussed, the survey 

by Klemes (1974) is quite exhaustive. What is attempted in this 

section is how the long memory effect is incorporated in a stationary 

process. The most developed type of such models are the fractional 

noise models of Mancielbrot and Wallis (1968, 1969). Also there are 

Broken line models of Mejia et al (1972, 1974). Recently Weiss (1977),, 

provided a fast fractional version of shot noise models. These models 

are briefly explained in the following sections. 

7.1 Fractional Gaussian Models 

All the short memory models follow a Brownian behaviour. 

A random motion B(t) is said to be Brownian if: 

(i) B( t + u) - B(t) is N(0,u) ...(58) 

B(t+ur) - B(t) 
B(t+u) - B(t) and 

0.5 
have the same distribuuion. 

A.Brownian motion satisfies the asymptotic n°  .5 law as given by Hurst 

(1957). 

Since in a long memory model, the value of Hurst h is to be greater 

than 0.5, it is assumed that the fractional Brownian motion is composed 

of moving average of previous increments weighted by (t-u)h-0.5  where 

h is between 0.5 and 1.0. Also the FBM is self similar but it follows 
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r
h 
law where h > 0.5 i.e. 

-0.5 B
h
(t) = I (t-u)h dB(u) ... 0.5 <h <1.0 _ 

B(t+ur)-B(t) 
B(t+u)-B(t) and 

h have the same 
r  

distribution.( MN model has been criticised on this self similarity 

property by Scheideggerr 1970). Obviously the condition suggests a 

long memory model (suitably weighted) if h > 0.5. If h = 0.5 fractio- 

nal Brownian motion follows a Brownian motion. 

A discrete fractional Brownian motion (dt FBM) is a discrete 

derivative of FBM and is given as 

b(h) = Bh(t) - Bh(t-1) ...(6o) 

Now a river flow b
t(h) is said to follow discrete fractional 

Brownian motion having a correlation structure defined by Cor 

p(bt  (h) bt(h+k)). 

By applying the principle of self similarity, it can be shown 

that the correlation structure of dt FBM is given as (Lawrence and 

Kottegoda, 1977). 

.C(bt
(h) b

t
(h+k)) = (k+1)' _ 2k2h (k_1)2111  

- 2 ` ...(61) 

when k is very large; Equation (61) is simplified as: 

Cibt(h) bt(h+k)1 = {h(2h-1)} k2h-2 for k >>0 ...(62) 

As can be observed from equation (61) and (62) the serial 

correlations of dt FBM are positive for all lags when 1/2 < h < 1.0, 
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they will sum upto infinity as indicative of the long memory. If h=0.5 

the process is random. It can be observed from equation (61) and 

equation (62) that the correlogram does not decay exponentially but 

vary gradually. 

7.2 Modelling of FGN Process 

Historically, researchers did not develop an exact modelling 

of FGN process, because the computation of a single FGN variate 

involves an infinite number of operations. The methods used for obtaining 

approximate realisation of FGN include the Type I and Type II approxima- 

tion of Mandelbrot and Wallis .(1969 C) which are finite moving averages 

in which the number of Gaussian variables that are averaged is 

proportional to the size n of the desired sample. The type I process 

which follows the theoretical form of the FGN process is expensive in 

computer time and is cumbersome to compute . The type II approximation 

is deficient in high frequencies and its low frequencies approximation 

is satisfactory only when h is close to one. Matalas and Wallis (1971) 

proposed a filtered FGN model which improves the high frequency behaviour 

of the type II approximation hut it still takes a largevambunt of computer 

time. The fast fractional Gaussian (FFGN) generator proposed by 

Mandelbrot (1971) is by the most efficient approximation and is 

briefly described here. 

7.2.1 Fast fractional Gaussian noise Model 

The FFGN variates (Zr(t,h)) are obtained by sunning about a long 

memory Markov process Z1  (t,h) and a short memory one Zh(t,h) as follows: 



Z
f
(t
'
h) Z1(t,h) + Zh(t,h) ...(63) 

The low frequency term is defined as 

z (t,h) = 
m
E1  W

m 
 z(t,Pm) ...(64) 

in which Z(t,P
m
) is a first order Markov process with zero mean and 

unit variance having lag one autocorrelation coefficient p m, 

P
m 
= exp ( - B-m) . For example, when m = 1, Z(t,Pm

) is an AR(1) process 

with P1 
m 

(3 10)  = 1 and when = 10, Z(t, is an AR(1) process with 

P1 exp ( - 
B-10).  

W
m 
is the weightage factor which is given as: 

W: = Ch (2h-1 )(Bl-h Bh-1) / r(3-2h)} 3
-2(1 -h)m ...(65) 

The parameter B can take a value between 2 to 4 and L ranges from 

15 to 20. Together B and L determines the quality of the approximation 

(Mandlebrot, 1971). 

The high frequency term is the first order Markov process of 

mean equal to zero, but a variance a
2 or ( 1 - ) having a 

m=1 
lag one correlation .coefficient of 

1 
P _ m=1 where  
3h L 

w2 ) m=1 m ...(66) 

in which p1 
is the lag one autocorrelation coefficient required 

in the stationary process. 
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7.3 FFGN Model Accounting 

Modelling of skewness in the FFGN process can be done in two 

ways: 

Modify only high frequency term : Normally distributed random 

numbers are used for the low frequency term while skewed random numbers 

are used for the high frequency term. The skewness of the random number 

is related to the observed skewness in the series by the Wilson -Hilferty 

transformation: 

3 1 - p  

Csa - 2 
 (C) ...(67) 

3 3/2 sz 
 

ah (1 

Modify both high and low frequency term: In this case skewed 

random number is used for both high and low frequency factors and their 

skewness is given by 
-1 

Csa = C sz 

F  L 
m=1 m 

1 - p3 + cr2 (1 -p
2) 3/2 

...(68) 

where P
m 

= exp ( - B-m  ) 

iii) Another alternative to generate skewed flows is to use the 

lognormal transformation. Burges and Lattenmaier (1977) investigated the 

distortion resulting in the autocorrelation function of a FFGN process 

and provided a set of tables for choosing an appropriate value of the 

Hurst coefficient h in the log domain so that the skewness in the model 
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IS properly implemented. 

7.4 Exact Modelling of FGN Process 

Hipel and Mcleod (1978) has suggested an improved methodology for 

the exact modelling of a FGN process. A FGN model can be specified 

by three parameters, viz, 2, a and Hurst h. The theoretical 

autocorrelation coefficient is given by 

1 r 
Pk = — 1 ( k+1)2h - 2k2h + (k -1)2h 1  2 

The procedure for exact FGN modelling is as follows: 

Suppose a series Zl, Z2  Z
n with parameters 2 , a and 

Hurst h is to be modelled  

Model a Gaussian random sequence 

( al, a2  a
n) having NIB (0,1) 

Calculate the (n x n) correlation matrix 

E
cri ch)

.
1 = 

p. computed from equation (69) and P
o 
= 1.0 

Use the Choleksy decomposition (Hearly 1969) of [C
n(h)]such that 

Rich)] = [m] Emr 

where [m] = 

 

n x n lower triangular matrix. 

    

The exact simulation of FGN is then simply 

z - 
 - E m

ti 
a
i a 1=1 
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Now the Z
t 

modelled in equation (72) will be a FGN series as N( 2, az  ). 

Obviously if a series of n values is to be modelled, it requires a 

n computer storage capacity of (n+1) corresponding to I
n
Ch. In 2 

case skewed FGN process is to be modelled then the random variate a
t 

has to be skewed which can be achieved using Wilson Hilferty transforma- 

tion. 

7.5 Estimation of FGN Parameters 

The modelling of FGN process depends upon three parameters, i.e 

mean, standard deviation, and the Hurst h. The value of the Hurst h, 

then determines the correlation structure of the prOcess. The exact 

determination of Hurst h from the historical series is therefore 

very important. There exist a lot of ad hocism in the estimation if h 

and a better method of realistic estimation of h is required (Lawrence 

and Kottegoda, 1977). The commonly used method for determining h is 

by the parameter k given in equation (16).Matalas and Huzzen (1967) 

presented a table for mean values of k for various values of n and 

P for a Markovian process. 

Another estimation of h is h* suggested by Mandeihrot and 

Wallis (1969 c). In this method, a time series of n observations 

is divided into a subset of time series, referred to as subseries 

of length nl, where S <n, <11. For each subseries of length nl, the 

standard deviation S
nl

, and the rescaled adjusted range R
nl

, are 

determined. The slope of RS
n 
 versus lag nl  is denoted as h* and is 

the estimate of h. 
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However, both h* and k estimators have rather poor properties, 

particularly in the case of annual time series of river flows which have 

small size (O'Connell, 1977). 

Mcleod and Hipel (1978) estimated the maximum likelihood estimate 

of h based on the study of Dansumir and Hanan (1976) as follows: 

Given a historical time series Z Z  Z, the maximum 
l' 2 n  

log likelihood estimate of Hurst h is given by: 

log 1 ax 
2 

(h) = - 1  log le
n
(h)! - n  log S(7'n

'h) ...(73) m 2 - 

where E = mean of the series 

1 C(h)1= Determinant of the correlation matrix given by F) l i-J d 
as derived 

from equation (69)., 

h) = (z - )11  len(h) [ -1  ilz - 7 )1 

zT = (Z Z2 
Z
n
) a lx n vector. 

The maximum likelihood estimate are calculated and the value of 

h which maximise the equation (73) is estimated by inverse quadratic 

interpolation technique (Kowalik and Osborne, 1968), Kumar (1980) has 

analysed the annual flows of the river Krishna and the Godavari river 

data to compare the performance of various estimates of h. It was observed 

that the NME is the most consistent estimator of h. It was also 

observed, that both k and h* overestimate h if it is less than 0.7 and 

under estimate when h> 0.7. It is therefore recommended that Hurst h 

be calculated from the historical flows using the maximum likelihood 

approach. 

7.6 Broken Line Models 
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1 
Pk = ( 2  - tt )3  

a < k/2 

Mejia et al (1972) presented an alternative long memory model, 

the broken line process. A simple broken line process is derived from 

the linear interpolation between the uniformly spaced independent 

variates with zero means. When two or more such processes each with 

a pre-assigned variance and starting points are added, a broken 

line process is obtained. 

A simple broken line process is given by 

nm+1 - nm  
8.(t) = { nm 

+ (t-ma) I} ...(74) 
a 

where, 

nm = independently indentically distributed random number of 

zero mean and variance o
2
. 

a = time distance among nm  

I = 1)where. ma <t <(m+1) a 

0)otherwise 

The variance of the fractions of the process is (2/3 

autocorrelation functions as 

a
2 )  

and the 

p (75) k  = 1 - (k/a)2  (2 - ) 0 < k < a  

For modelling, a BL process is formed by adding a finite number 

of broken line B (t) 

a
t = E Bi(t) 

...(76) 
1=1 
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Mejia (1972) have related the parameters n, avai  , 1=1,2  

with the mean, standard deviation and the correlogram structure of the 

process. The biggest disadvantage of the use of broken line model is 

very large number of parameters needed to model it. FGN models have 

therefore been preferred compared to BL models for long memory modelling. 

7.7 Other Models 

The classical ARMA models are based on the correlogram structure 

observed in the historical data, it does not account for Hurst h. 

Conversely, long memory models are based only on the Hurst h and not on 

the observed correlogram. Many researchers have therefore tried to 

formulate mixed models which account for both the parameters. Some 

important models in this class are (i) ARMA models with preassigned 

parameter values (O'Connell , 1971, 74) (ii) ARMA - Markov model 

(Lattenmaier and Burgess, 1977) (ni) White-Markov model Sen,1977). 

7.8 ARMA Model (O'Connell, 197)4) 

O'Connell (1971, 7)4) showed that the process generated by an 

ARMA (1,1) model where 4, is nearly one is similar to those by the 

FGN process. 

zt — 2 Zt —1  — 7 
— 01 a

t 
- el at-1 a aZ 

a
t 
is a normal independent process having a mean equal to 0 and variance 

( 1 / ( 1 - 20,01). It can be noticed from equation (77) that 
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if
1, approaches unity, then the decay of the correlogram is very 

gradual, thereby increasing the memory of the process. 

P _  
1 2 

1+el 
-2 0 0 

1 1 

...(78) 

 

The estimation of parameters of ARMA (1,1) model which satisfies the. 

Hurst h as well the P
1  can be easily estimated as follows: 

Estimate 2 , az  ,p1  and Hurst h from a sequence of n observations 

From the tables prepared by O'Connell (1974) identify the 

values of 0 and 0 , such that E (h)
n  = h, and E(p1)=p1. 

Knowing 0 and e , use equation (77) to model the flows. 

The advantage of such a model is that they are very simple to 

use and the parameters 0 and e , can be estimated such that both 

Hurst h as well as the p are satisfied. The disadvantages are that the 1 

model still follows n05  law at large n and therefore does not model 

the Hurst phenomenon. Rodriguez -Iturbe (1974) showed this approximation 

may distort high frequencies properties meaning thereby that this 

model may not be able to produce realistic crossing properties. 

7.9 ARMA Markov Models 

Lattenmaier and Burges (1977) proposed a mixed model called ARMA-

Markov model which uses the Hurst coefficient h as an explicit parameter. 

The model consists of five parameters (i) The Markov and ARMA variance 

fractions, C1  and C2 respectively (ii) The Markov and ARMA lag one 

autocorrelation coefficients P andP respectively, and (iii ) the 
an 
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autoregressive parameter 0 of an ARMA process. The moving average 

parameter e of the ARMA process is uniquely defined by 0 and P • 8M 

The modelling equation of zero mean and unit variance ARMA - 

Markov process is 

zt 
 = 

pm 
+ 

 t-la,( 
(am) tm) + 0 Z

(am)  
1 t-1 - el at-1 

a(am)  -(79) 

in which a(m) and a
(
am
) 

2 
Variance C1(1 - pm)  

are the independent process having zero mean and 

and C2{(1-4 ) / (1+4_ - 2 0101  )}respectively. 

The autocorrelation function of the process is fitted to the 

theoretical autocorrelation function of the FON process at three specified 

lags k1, k2  and k3. The lag one autocorrelation coefficient may be 

arbitrarily specified. The parameters of the models are obtained by 

solving the following system of equations: 

C1 
+ C2 

= 1.0 

Cl pm + C2
Pam = P1 

+ p = p c
1
pm,ki 2 am,k, C k1 

C p p

k 1 m,k2 
+ 

_?
2pam,k2 = 2 
C
2 pam k 

,3 
= p C1 

pm,k
3 
+ 

k
3 

...(80) 

in which C1, C2, pm
, p am

, $1, are constrained to be between 0 and 1,p1  = 

the desired lag one (acf) and pam 
 is the autocorrelation of the FN 

process 

Pk = -..:{(k+1)2h  - 2k2h  + (k...1)2h ) 
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Lattenmaier and Burgess (1977) suggest to take the values k1, 

k2 and k3 
to be approximately n/8, n/2 and n in which n is the length 

of the time series to be modelled. 

Equation (80) may be solved by using Newton's method td give 

model parameters for given ai  and h. The second parameter 6 of the - 

ARM process is obtained from 

( 1-01e, ) (01  —el  ) 
...(82) 

am 2 1+0 - 2$181 

If a(m)  and a(am)  are from a normal process then the Z series 

will be normal. To model the necessary skewness Css 
 , a(m)  and a(am)  

should have the following skewness Csa 
 in the Wilson Hilferty transfor- 

mation 

SZ 
Csa 

c1 ( 
2 

1 -Pm ) 
3/2 

1 3 -$1  
2 2 A2, 

3/2 
[ + 301e1  — 201eIc2(1—wil 

1 

I 

1+
91 

-20
1
61 

...(83) 

7.10 White Markov Process 

Sen (1977) proposed a linear stationary process called whiter 

Markov process (wM ) to model the Hurst phenomenOn. The model is made 

up of a first order Markov process and a white noise process which is 

independent of the Markov process. The standard (wM ) having zero mean 

and a unit variance can be written as 
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Z = a1/2 Z(m) + (1- a) a ‘1/2  
—84) t t t 

in which Z(m) 
is a Markov process with zero mean and unit variance, a

t 
t 

is a white noise process with zero mean and unit variance and a is a con- 

stant satisfying 0< a < 1.0. 

The lag k autocorrelation of the process is given as 

lki 
p
k = apm k> 1 

 

in which pm  is the autocorrelation of the Markov process. 

Sen (1977) carried out a series of Monte Carlo experiments and 

presented a set of tables ( similar to those of O'Connell, 1974) 

to obtain a and p
m  for a given pair or h and pl. A major 

drawback in this procedure is its inability to preserve the population h 

as an expliqit model parameter. 

To model skewed flows, the random number a
t should have the 

following skewness: 

C
sa 

    

3/2 
fa ( i- 2m 

) 3/2 
...(86) 

1 -p3 
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8.0 MULTISITE LONG MEMORY MODELS 

The development of long memory models in the multisite domain 

is at an early stage, the only known work is that of Matalas and 

Wallis (1971 a) for the fractional noise process, Mejia et al (1974) 

for the broken line process, O'Connell (1974) for the ARMA models and 

Weiss (1977) for the shot noise models. However, all these models have 

simply been made operational by the respective researchers for their. 

preferred class of models. Not much work has been done on the 

comparative use of Brownian and fractional Brownian motion model 

in multisite modelling. Similarly, the properties and behaviour 

of different models in maintaining long run serial and cross correlation 

matrices using multisite long memory models are yet to be examined. 

In fact, the whole area of multisite long memory modelling remain 

virtually unexplored. 
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9.0 FINAL COMMENTS 

A short review on hydrologic time series with particular emphasis 

on river flow time series modelling has been presented. Time series 

modelling for real time forecasting and the conjoint rainfall runoff 

time series modelling has not been attempted. A separate review paper 

may be required to cover these aspects. 

Areas on which further work is required is briefly detailed 

as follows: 

With respect to short memory models, further work is required 

to estimate the effect of skewness present in the river flow series 

on its different properties. It is well known that skewness has a very 

significant effect on the crossing properties like run and range 

analysis. For example, Kumar (1980) showed that positive skewness 

increases (decreases) the expected surplus (deficit)run sum whereas, 

it has negligible effect on the estimation of run length etc. 

Further work is required to mathematically formulate the effect of 

skewness on crossing properties. 

Not much effort has been put by hydrologists in identifying 

a most suitable model. Probably, more attention is required. In 

this connection, it may be mentioned that extensive work has been 

done by the Control Engineers. The Control Engineering Journals have 

numerous papers in the selection of parsimonious model. The Aikike 

information criterion and the posterior probability criterion 

suggested by them looks quite promising. It is suggested that more of 

such criterions be used in hydrologic time series analysis. 
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Daily flow modelling as suggested by Weiss (1977) opens 

an interesting vista for realistic simulation of ascension- recession 

behaviour of daily hydrographs. This method needs further development 

especially in reducing the number of parameters to be calculated 

from the historical records. To the author's knowledge, no particular 

study using shot noise model has been made for Indian catchMent. 

The experience of using such a model for Indian rivers would be highly 

informative. 

Though extensive work has been done on monthly flow modelling, 

the use of such models for modelling monthly/pentad flows for Indian 

rivers may require some modification. This is because many Indian 

rivers have nearly zero flows during certain parts of the year. 

This will require incorporating definite probability for zero flows in the 

model. In this connection, further works needs to be done on the lines 

of models developed for ephemeral streams by Yakowitz (1973), Srikanthan 

Mcmahon (1980). 

Differential persistence is another area where not much work 

has been reported. Pattern recognition technique ( Pannu and Unny, 

1980) may lead to better insight on the run of high and low flows. 

Further work on the modelling of differential persistence will be highly 

welcome. 

vi a) Multisite modelling tend to be tedious as the number of 

sites increases and the parameter estimation problem increases when 

higher lag serial and corss-correlation matrices are to be maintained. 

Decoupled multisite models as suggested by Ramaseshan (1975) make 
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multisite modelling less tedious. However, further work is needed 

on the sampling properties of the correlational matrices whose 

historical preservation is required. It is also to be seen how the 

decoupled multisite model reproduces in each series low and high 

frequency values which are in correct chronological relation. 

Vi b) Recently, Johnson and Bras (1980) have developed a stochastic 

model for short term ( of the order of one hour or less) rainfall 

prediction. The model includes velocity and direction of storm movement 

as explicit parameters. The use of this methodology on Indian 

catchments will be highly informative. 

vii) Long memory models in hydrology are controversial. The 

major argument against the short memory models is that it does not 

model the Hurst h with the result it can not model the distributions 

of deficit and duration of extreme high and low flows observed in 

long historical record. On the other hand, the argument against 

long memory model is that it is only a mathematical exerbise without 

any physical meaning. It is generally felt that the use of short 

memory models leads to severe under estimation of storage capacities. 

However, Klemes (1981) has shown that the differences in reservoir 

performance reliability obtained on the basis of long and short 

memory models is small compared to (i) the accuracy of measurement 

of the socio-economic impact of reliability changes and(ii) the 

accuracy of estimating the reliability itself on the basis of 

available stream flow records. Similarly, it is felt that long 

memory models are the only known models that can retain the resealed 

adjusted range (r.a.r.) Again a study by Hipel (1977) 
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demonstrated from the analysis of 23 time series that a properly 

validated ARMA model do preserve the r.a.r. These studies pose a 

question - are long memory models superfluous? This question can be 

answered only if an in ..depth study of long and short memory 

models is done and the various crossing properties derived by these 

models compared. This will be a significant contribution to hydrologic 

literature. 
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