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ABSTRACT

The range analysis is a part-of the general probability
theory of storage. In fhié report the works dealing with the
range analysis for storage related problems have been reviewed.
In the beginning, the empirical method and the experimental
method are described. This is followed by analytical results
for expression of range for a number of processes which are
freguently encountered in hydrology.

Extensive experiments on natural time series were conduc-
ted by H.E.Hurst. One puzzling result which he obtained was
that these series do not behave, in some respects, the way a
random series should. This fact was termed 'Hurst Phenomenon'.
Several arguments have been advanced by different investigators
to explain the Hurst phenomenbn; these are briefly discussed.
The recognition of Hurst phenomenon has Been_a turning point
in hydrological modelling of time series and this has been
briefly discussed. A detailed review of various ekperiments
conducted to determine the effect of inflow genefating
mechanism on reservoir capacity has been made. At this stage
it is not possible to conclusively say about.the utility of
long or short memory flow models in reservoir analysis because

of unavailability of results of exhaustive studies.
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1.0 INTRODUCTION

Storage reservoirs are one of the most important
component of a water resources system. Naturally, the analysis
of problems related with storages has drawn considerable
attention of hydrologists. The various aspects of this pro-
blem which has been studied in considerable detail include
the storage required for specified yield, effect of the sta-
tistical properties of inflows, such as serial correlation,
persistance and range, on the storage requirements and optimal
management of single or multiple reservoirs. The solution
techniques used for these problems include graphical methods,
pure mathematical analysis, simulation, and mathematical

programming techniques.

1.1 Classical Methods of AnalySis of Storage

The work of Moran (1959) in which he applied the
probability theory to probiems of finite storage is considered
to be the pioneering effort in mathematical analysis of problems
of storage. The study assumed, that the inflows to the
reservoir are independent and identically distributed random
variables. The water enters the reservoir during wet seasons
and is stored and released during the dry seasons. The reser-
voir has a finite storage capacity and in case the initial
storage and inflow in a perlod exceeds thlS capacity, extra
water over this capacity is spilled. The release from the
reservoir is controlled by the standard linear operating policy.
Under these assumptions, Moran was able to derive the

1



stationary transition probability matrix of storage.
Langbein(1958) presented the solution of determining the
frequency distributions of storage, reservoir outflows and
frequency of the reservoir spilling or remaining empty. These
solutions were obtained using the queuing theory. Two solutions
were given - first was applicable to linear service functions
and normal inflows and the second was applicable to nonlinear
service functions and non-normal inflows which was based upon

probability routing;

The model of Moran was extendéd by Lloyd (1963) by
considering the serial correlations. It was assumed that the
inflows follow a homogeneous Markov chain. The limiting
distribution of storage was derived using the bivariate Markov
process, representing the joint distribution of storage and
inflows.

In the fifties, Hurst conducted a c<~ries of experiments
on a number of time series and gave interesting but puzzling
results. Range was the most important parameter studied in
these studies. The unusual behaviour of the parameter range
which was pointed out by Hurst was later on called 'Hurst
phenomenon'. Ever since its recognition, this phenomenon is
considered to be turning point in storage analysis and time
series modelling.

1.2 Scope of the Present Report

In the presént report, the published research work
dealing'with the parameter range is reviewed. The reviewed
work include eatimation of range, explanations of the Hurst

phenomenon, subsequent related development in time series

modelling and sensitivity of reservoir storage to the inflow generatzng
mechanism, 2



2.0 DEFINITION OF RANGE AND RELATED TERMS

Let X5 i=1,2,....... N represent a time series of
flows at a particular site on a stream. This time series
can bé a daily, weekly or.monthly serieé. Now assumiﬁg that
these flows are being fed into a very big reservoir and an
amount of water equal to the mean of the series(X) is being
takeﬂ out.

Lei S; = &x; =Xy - X ._...(1)

where

x £x4 /N
represents increase or decrease (depending upon the relative
magnitude of x,; & ¥)in the reservoir content at the end of
first time period.

Similarly,

S2 = AXqy * AX, . e (2)

represents this change at the end of the second time period

1

= - ' = L
and Si - ﬂxl + ﬂxZ + .a--"'&xi = j=1 ﬁxj ...(3)

represents such change at the end of the ith

time period.

The maximum of n values of Si’ denoted by S; is called
maximum surplus, or surplus or maximum partial sum of
deviates. The minimum value of n values of S, reﬁresented

by S; is-called minimum deficit or deficit or minimum partial
sum of deviations. The sum of hagnitude of surplus and

deficit, i.e,

R =S, + g~ | e (B



is called the range. The terms surplus,'deficit and range

are graphically represented in figure 1.

The parameter range is always greater than zero. The.
range represents the storage capacity required in a reservoir
to maintain an outflow equal to x if the x; were inflows to
this reservoir. However, this is an ideal requirement which
cannot be attéined in practice because it invol#es no spiliing
or other losses.

The statistic range depends upon the properties of the
series as well as upon its size. As the size of the series
increases, the range will either increase or will remain the

same.

2.1 Adjusted Surplus,Deficit and Range

In the above discussion, it was mentioned that the
outflow from the reservoir was equal to the mean of all
inflows. A different value of the parameters under discussion
is obtained if the outflow is not X but equal to in, which
is the mean of the subseries of size n. In such cases, the
adjective adjusted'ié used with the parameters and they are
ca;led adjusted surplus, adjusted deficit and adjusted range.

These are graphically depicted in figure 2.

2.2 Estimation of Surplus,Deficit and Range
Currently, three approaches are used for determining

the parameters surplus,deficit and range. These are:

a) Empirical approach,
b) Experimental approach,
c) Analytical approach,



FIGURE 1 - DEFINITION OF SURPLUS,DEFICIT AND RANGE
' FOR A SAMPLE OR A SUBSERIES OF SIZE n
(AFTER YEVJEVICH,1972)



FIGURE 2 - DEFINITION OF ADJUSTED SURPLUS ,ADJUSTED
DEFICIT AND ADJUSTED RANGE FOR A SAMPLE OF
SUBSERIES OF SIZE n (after Yevijevich,1972)



‘Here, first two methods are being discussed in detail.
The analytical method is only of theoretical interest and can

be referred to in'standérd texts such as Yevijevich(1965).

2.2.1 Emp1r1ca1 Approach

This approach, also known as mass.curve method was first
: deve10ped by Rlppl in 1883. .. In general, ‘the parameters, sur-
plus, deficit and range can be applied to any phySitai'phgnomena
'which tan be accumﬁlatéd in-spaCe'sﬁCh as fluid flow,dissolved
pollutants in water,dissolved oxygen cbhtent in‘wéter, soil
moisture, sediment discharge:andtheat etc. Hurst(1964) deter-
.mined theselstatistiCS for a large number_pf time series such
‘as diSCharges.of'a number of rivers intlﬁdiﬁg-Nile,Thames,
: Danébe,Godaréri,Mississippi;Niger,Rhine,Colorado and Missburi,
for river levels including Rdda Cauge on Nile, and level of
Rhlne, for ralnfall observations at Greenwich, COpenhagen,
Frankfurt Rome Bangalore Calcutta Cherapunjl New York etc.
The observation studled by Hurst also include temperatures,
atﬁdspheric pressures, annual gfowth of tree rings, thickness
of mud layers 'in lakes, sunspot. numbers and also the phenomena
~ involving human factor such as length of relgn of kings of England,
‘ancient Egypt, POpe, prices of wheat, cost of living and number
of pennles minted. The results obtalned by him are of very
1nterest1ng nature and shall be dlscussed later.

'For_the purpose of stor&ge_ana1y51s,_1et a diécrete‘
series of length N of-a variable x be arailab1E. Thisvdiscrete
ser1es is subd1V1ded 1nto non overlapplng samples of size n.

Thus the number of new subserles will be
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where r is the remainder. Defining modular coefficient K; as.
KyeExxe N ()

the sum of deV1at10ns of K from their average value 1s
determined. The dev1at10ns are given by

A%y = Ki_-_K_ S e
and the sum of deviation by
S; = § -aK, . - . C...(8)
=1 ) | o

Here ?'is the'mean value of.Ki}'

'Now,ffqr eaeh~series of'size n;-the value of surplus
_Sd+, deficit S- 'ahd renge'R ‘is determlned Thusfthere will
be m values of each of these parameters which can ‘be’ used to

. determine their probablllty den51ty funct1on and other -

- parameters of d1str1butxon.

| As ﬁ becomes larger, m becemes smaller and the
re11ab111ty of the method decreases, as p01nted out by
' Yev;ev1ch(1965) Further , the rellab111ty 1ncreases w1th
increase in N. In many emp1rica1 methods as in Rlppls'

method, m =1 and hence the rellablllty of the results is

very less. -

2.2.2 Experimental Approach :
The methods in whlch problems are solved by conductlng
'experlments on the generated data are known as experlmental

methods These methods are also popularly known as Monte



- Carlo methods'cr simulation métheds and are particularly useful
in cases where it is difficult to solve the probiems by
mathematlcal analysis or ‘the closed form solutlon is not
possible.

One.big advantege in use cf experimental methods is_r
‘the that there is'no theoretical limit on the size of the
sample to_bégenersted. This_size.is limited enly-by two
ﬁractital considerations,'the computing.facilities or finances
avallable and the degree of accuracy de51red

Nowadays, very efficient routlnes are avallable for
 generation of pseudo random numbers. The numbers can be
further transformed to yleld the series with the des1red
properties. Once . the serles of de51red 1ength is ava11ab1e,
‘a further analysls can be_done in the manner similar to the
empirical -method. d H

- It has been pcinted'out by_Yevjevich(1972)'that rhe
generation of large sampie'of-hydrologic data from a small
sample does not give additional information over what 1S
alreedy available in the small sample. Data.generation serves‘
two ﬁain'purﬁoses i a) it enables full'ektraction of information
already COntained in the small sample concerning the statistics
surplus, deficit and range, and b) the problems which do not
have a closed'formISOIUtiod or those whichcannotbe solved by
emplrlcal or analytlcal approaches can be solved by this
approach. In figure 3, the distribution functlons of range
are.piotted aiongwith the results obtained by empirical
method. It is readily seen that the disrributioﬁs obtained

- by experimental approach are more smooth that those obtained



Rs
901
ST 3 o .n=3
70 I -R‘.'

S0F

cAoF ~— 3490

. e gy

-~ 30}

20

0 "0s 10 1S 20 28 30 0 02 04 06 08 1o

'FIGURE 3(a)-FREQUENCY DENSITY FIGURE 3(b)- FREQUENCY DISTRI.
OF RANGE Ry OF ANNUAL RIVER . BUTION OF RANGE R, OF ANNUAL
FLOWS = - A . RIVER FLOWS 3

1) deterninedjby empirical méthod,i.“
-2) obtained by the data generation method

. (After Yevjevich,1965)

10

14



by the empirical method. This is considered to be an asset of
this method.
A general estimation pfocedhre-for Hurst exponent

was provided by Mandlebrot and Wallis (1969) through the use
of pox diagrams. These diagrams reflect a scatter of points
corregpdndihg to the rescaled.ranges of full length of a given
sample as well as of a set of subsamples extracted from the
full sample on the ba51s of prespecified set of samples sizes.
Later on, Wallls and Matalas (1972) employed the least squares
procedure ‘for est1mat1ng the slope of pox dzagrams which -
leads to an estimation of H.
2.3 Range of some procedsés_of intefest

| In this section, the mathematical expressions for
the range statistic for some typical processes, which are
commonly éncountered in hydrology are given. The derifation
of thése expressions is not given as they are widely évailable
in texts e.g. Yevjevich(1972),Saias(lQ?Z).'The following
discussion is mainly based on Yevjevich (1972). These results
are very useful inlunderstanding'the‘smali sample bdhaviour
of the range statistics. |

| A process which is frequently considered in hydrology
is the process described by independent. normal varlables.'-
The standard nermal varlable is obtalned after substracting
mean from the varlable and d1v1d1ng by the standard deV1at10n
Once surplus, def1c1t and range are available for standard
1ndependent normal variables, the same for 1ndependent normal
' variables can be obtained after multiplying by the standard

deviation. The expected asymptotic range of an independent’
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normal variable is given by

E(Ry) - 2{Z /2 el (9)
The asymptotlc adjusted range is glven by
E (a n) ch;gi S ..+ (10)

The expre551on for the mean range of any 11near1y dependent

_normal variable is T | _ -
' y , o : . - 1/2
_/ 7 n 172 {5 . 2 i _

E(Rn) =V z-=1 1” ‘ [ 1 + T k=1 (1 k) p;)

"...(11)

where. pkls the autocorrelatlon coeff1c1ent of the k order.

th

" In case of a m"" order 1inear autOregressive'process, the

'autocorrelation-cbefficient;can‘Bé'éxpressed as
k = rz=1 @r 'k - T | : ... (12)
and the mean range as o - -
' _ i-1 : - _1/2
E(R, ) -/_ o '_ . i"1/2 [1+_§_- ' [1 -X) z o P’k-a-
1= . .

fk=1 r=1
. (13)
~ Another type of models, which are'aiso quite common in
hydrology .are the moving average modeIs For these models,

Yev;ev1ch(1972) gave the expre551on of range as: :

' ) 1/2

| E(R ) = iz "1/2' 1+2 1 .f 1 (i- k)[m k+1i]
fm+1) 1 1 b T m+l k=1 |

b .(14)

where m is_the ofder of the.proceSs
Markov models are a class of models which are exten51ve1y
used in hydrolegy " For the processes Wthh exh1b1t Markov

behav10ur, the expected value of the range 1s

12



by the empirical method. This is considered to be an asset of
this method. |

A geherel_estimation procedﬁre for Hurst exponent
was provided by Mandlebrot and Wallis (1969) through the use
of pox diagrams. These diagrams reflect a scatter of points
correSponding to the rescaled ranges of full 1ength of a gi#en
sample as well as of a set of subsamples extracted from the
full sample on the ba51s of prespecified set of samples sizes.
-Later on, Wallls and Matalas (1972) employed the least squares
procedure “for est1mat1ng the 510pe of pox dlagrams which -
leads to an est1mat1on of H.
2.3 Range of some prooeeses of intefest

| In_this section; the mathematioal expreesiohs for

the range statistic for some typical procesees, whicﬁ are
commonly encountered in hydrology are given. The derlvatlon
of these expressions is not given as they are w1de1y avallable
in texts e.g. YeVJeV1ch(1972),Salas(1972)..The_follow1ng
discussion is mainly based on Yevjevioh (1972). These results
are very useful in understanding the- small sample behav1our-
of the range statistics. |

A process. which is frequently con51dered in hydrology
is the process described by 1ndependent normal variables.
The_standard normal varlable_ls obtalned-after substracting
mean from the variable-and-dividing‘by the Stande:d,deviation.
Once surplos, deficitjand_rénge are available for staedard
indepéndent normal variables, the same for ihdepen&ent-normal
 variables can be obtained after multiplying by the standard

deviation. The expected asymptotic range of an independent

11



normal variable is given by

_ 2n Y1/2 ' o
ER,) = {0 - (9)
The asymptotic adjusted range is glven by
sato - AE

The expre351on for the mean range of any linearly dependent

‘normal variable is . ' : _
' . _ S o : . 1/2
ERy) =/—Zo P 12 IR LGk,
" N %=1 K.
: . _ . . ' . .(11)'
wheret pkis the autocorrelat1on coefficieﬁt of the-kth order.
In case of a mth-order linear.autbregressive'process, the
autocorrelation coefficient can'Be'expressed as
- . m_ .I . ' '. . ) . . - .
= ] - : .
k = r=1 rd_ k _r R ...(12)
and ‘the mean range eSj o o
-1 m 2

E(R ) =1 ¢ i (: e r o -{i-k) g o -
ne.n - i=1 1 k=1 r=1 d 'Fk Z
: ' .(13)

Another type of models, which are also quite_common_in'

hydrology .are the moving average-models. For these models,
Yev;ev1ch(1972) gave the expre551on of range as: _
n i-1 /2
Py, 1 Hlas k) (- k+1)]

E(R ) = TﬁTI) 1 -1 } i [ 2w k=1 _
: o _ . (1)
where m is.the.ofder of the.proceSS.
Markov models are a elass of models which are extensively

used in hydrology For the processes wh1ch exh1b1t Markov

behav10ur the expected value of the range 15
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5.0 Hurst Phenomenon

Exten31Ve 1nvest1gat10n on the propert1es of range
were COnducted_by Hurst and these have been'g1ven in detail
,by‘Hurst et. ai'(1965) It was concluded that the rescaled
range R/ o, where ¢ is the standard dev1at1on, increases wlth
the length of the series. It can be .proved by mathemat1ca1
analysis that if a series follows a normal distribution and
its members .are independent of each other then, for this series

for large values of N

=1.25 YN - o .- (16)

However, Hurst found that for the natural phenomenona
the relationship between R/a and ‘the length of the series of
given by | '

R=c o C..an
where.Heis a variable. Thislequation was derived
based on analysis of 75 phenomena and 690 portions of these.
It was found that the varlable H is normally dlstrlbuted with
mean 0.73 and standard dev1at1on 0.09.

Out of the above-two.equat1ons.fol rescaled range,
the first (equation-lﬁ)'expfesses that it increases with 0.5
power of H and the second (equation-17) shows that it increases
with 0.73 power of H This discrepancy in the value of
exponent H is termed as 'Hurst phenomenon'.

Since the time of this unusual of natural variables

14



'was ‘observed by Hurst, tremendous amount of work has been done
by dlfferent 1nvest1gators to study the causes of thlS behavi-
our and a number of models have.been_developed to reproduce’
this phenomenon in the time series models. Before going for
a'discussiohlof_causes of Hufst'phenomenon, the depemdance.
structure.of'hydrologic time'series ie.being discuésedf

. A number ef studieS'have.been conducted on independent'
time-series but they are of no interest here. The attention

is focussed here on the dependance in time series.

I3.1 Dependence in Hydrologic Time Series

A dependant time series is a series in which any parti-
cular element is iﬁfluemced by its predeceseers. In other
'words, the past hlstory of the serles shapes the present. The
dependance of a series can be .analysed either by correlogram'
- analysis or the range ana1y51s.

Let_us.assume that‘fhe hydfologic time series being studied
is stationary. . A stetionary series.ie-generafed.by a stationary.
protess whose probability iaws do not change with time. Gene-
rally the geOphy51ca1 b1010g1ca1 and other natural processes
are assumed to be nonstatlonary but W1th1n a relat1ve1y short-
time spans, they can be assumed statlonary.

The‘hydrologig.time series-dispiay‘two types of depend;
ence:'long'term and short term. If the'eutocofrelation coeff-
cient of a hydrelogic time sefies ie'cemputed,lit is observed'
thdt it dies out as the lag increases. This implies that a

pdrt1cular value of the varxable 15 1nf1uenced ohly py the
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recent pasthvaloes of_the series, the distant values do not
'affect.the present. This type of dependence is ‘termed as short
term dependance and the process is sa1d to be a short memory
process. In these processes the 1nc1dents tend to fade from
the system memory as_the time passes Although this also looks
1ntot1ve1y correct, th1s observatlon fails to exnlain Hurst
phenomenonr | |

" The Hurst phenomenon_ can be satisfactorily
explained by.long term.dependence » which implies that the
~process has infinite menory. The long term dependence is
associated with failure of the,correlogram to die at higher
laés.,'However, it is difficult to explain this phy51cally,
for example, it is hard to figure out as to how the ‘discharge
of a particolar day is affected by the d1scharge of say 100
past days and by what mechan1cs, the 1mpact of a hydrologlcal
event is carrled over for years together. These counter
arguments have given rise to controversy about the appropr1ate
explanation. The short term dependence, though phy51ca11y
believable, cannot explain the Hurst phenomenon. ‘On the other
hand, the long term dependence can explaln th1s feature but

it can not be phys1ca11y expla1ned

Two types of models have been developed in hydrology
corresponding. to these two types of dependences the long
memory models and the short memory models. The causes of Hurst
-phenomenOn will be d1scussed in the next sectlon and this will

'be followed by dlscu551on on ‘these model types.

3.2 The Causes of Hurst Phenomenon

. Wallis and Matalas(1970) have given four causes which

le



explain why the time series exhibit Hurst phenomenon. These

causes are discussed below:

It has been suggeﬁted by various inveStigators that the
non normality of the probability distributions of the time
séries may be the cau;e of the Hurst.phenomenon. However,
the simulation studies éarried on using the sampies:of
moderate lengths show that R;,_the rescaled adjusted range,
is-quife independent of the distribution of random variable.
Hence this céuse may really not be able to explain'fhe Hurst

phenomenon.

It was pointed out by Hurst that the high_values of the
eiponént H can be'attribﬁted to the non-stationarity of the
obsefyed series. A étationary process is a process whose
probability laws do not change with time. ‘Accbrding to Klemes .
(1974),_the_ge0physiéai;biologica1, econbmic and other
natural procésses are nonstationary but within a relatively
" short time'span;‘they can belapprqxiﬁa;ed by stationary

. models. Thus a 1on§er series will have more chances of being

™~
-nbnstationary, By the assumption of stationarity of process,
it is implied that the -driving parameteré_bf the process have
been fixed in the begihning and they remain unchanged later
on. On the other hand, for a nonstationary process, the
parameters do change with the time.and respond to the dynamics
of the system and environment.

| It has been argued by Kleme§ (1974) that stationarity in
the mean is the most important prerequisite for sound interpre-

‘tation of a correlogram because the mean represents the absolute

reference from which the deviations are measured. Thus

17



ﬁtationarity is also a pfe-requisite for the sound interpre-
tation of Hurst phenomenon 51nce the rescaled range is also
a functlon_of deviations from the mean. Klemes(19?4)
conducted a number of simulations using.white noise and
the mean level was changed in different manners. It wae
shown  that H increases with this type of nonstationarity.
The nenstationarity assumption may not be very helpful in
practice since it is very difficult to fit nonstationary
model to a giﬁen hydrologic;series. _&\
Another'ekplanation which was put forward to explain k
Hurst phenomenon was that the length of available fecords is
not long enough for H te attain a value of 0.5. It has béen‘;
argued that if'a_sufficiently.long series of observation is
available, H would tend to attain a ﬁalue 0.5. At this
stage, this argnment can’ neither be accepted nor r<jected
A plausible explanation of the value of Hehigner than
0.5 15 the per31stence, the higher values being the effect
of dependence in observed natural serles.' The dependence can

be taken.into account in Markovian mzdels but these models

~ cannot reproduce H> 0.5,

Hence, if the dependence is to be considered as the
11kely cause of Hurst phenomenon than a different type of
models, called long memory models are required. The short
term persistence.is caused by the storage effect.

Kumar_(1982) pointed that in the geophysicai processes,
the memory manifests itself mostly through the conservation
of mass and momentum and .it has the Markovian property that

the past influences the future, only through its influence

18



on the pfesent. Thus, ence.the present state has been airived
at, it is no longer significant from the point of view of
future development as to how it was arrived.

Based upon the abege dieeussion, from the voint ef view
of interest, all the available time series models can be
classified inte_two-groups-sﬁort memory‘modeis and 1ong

memory models. -

3.3 Short Memory 'Models

The main use of short memory models in hydrology has
been to generate synthetlc data sequences For many hydrologic
studies, partlcularly those concerned with the design and
- management-of water resources system, sufficiently long data
series are requlred for the purpese of determlnlng the
operatlng rules and testing the system under various p0551b1e_
conditions to evaluate its performances It may be mentioned.
that a longer s5eries does not contain any further information
than the or1g1na1 series which was used to generate it but it
helps in greater extraction of the information already contain-
ed in the original series. The essential requirements of .a
- generated series ‘is that it maintains the statistitai prOperties'
.of'the'originel series.

One type of the short memory models which have Beene
-extensively used in hydroiogx are autoregressive models. In
these models the current value of the process is expreSSed
as a finite linear aggregate of previous values of the process
and noise term. Let 2s by a typical process under consideration

and u be the mean of the process. The model works with the
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deviétions-of the process from the mean

Zdt = Zt - ‘ ' e (18)
Mathematically, the process is represented as
dt-z + L R B . ¢p Zdt-p + at 000(19)

A 7

+

dt = %1 Zge-1 * 2
This process is an autoregressive process of order p,
also represented as AR( p) process. It has (p+2) parametersﬁ

and o which is the variance of the

Hos b1 $92» "f'¢p .

random variate a,. |
| Another type of models frequently used are_fhe moving
average models. Here the deviation of the process from méan
is expresééd as a finite.weighted‘sum of random elements
(white nQise) plus a random element:

Zdt f at - elat-l_- ez at~2..... aq at-q _ r'-(zol

where 6 are weights; This equation represents a moving
average process of the order or a MA (q) process. . It has (q+2)

parameters:

eq,'andoé which is the variance of a,.

ﬁ,el,'ez .
| Before applying'autoregressive and hoving average
models to any_problem, it'is necessary to find the order of
the modél, i.e., values of parameters p and q respectively.
During the deyelbpment of a StbChastic model, one should go
for an adequate but parsimonious model, since a model with
unnecessary parameters can lead to pdorreﬁﬂjs. Further, many

times, either autoregressive or moving average models may

not be able to faithfully represent the process. In the
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composite model as described by Box and Jenkins (1976), the
deviation of a process from its mean is expressed as a finite
weighted sum of p previous deviations plus a finite weighted
sum of q random variates and a random element. Hence an

ARMA (p,q) model having p autoregressive terms and q moving

average terms would look like:

%ae™ P1 %ar-1 * P2 Zge oz toereeeeeefp Zgey

+a_ -0

. 1 0 a e 21)

2 SELEEELEEEERRL PP
Thus an ARMA (1,1) model would be

Zat = P1 2qv-1 3¢ 7 01 24

This model has been extensively used in hydrology, both

for data generation and for forecasting.

The presence of seasonal cycles and trends in hydrologic
data causes certain prﬁblems in analysis. These can be over-
come by differencing the series, i.e., by substracting a
-particular value from its previous value or its value j units
apart. The models in which this exercise is done before
fitting an ARMA model are called Autoregressive Integrated
Moving Average models or ARIMA(p,d,q) models. Here d denotes

the order of the differencing.

3.4 Long Memory Models

The purpose of long memory models is to model long tefm
dependence which is caused by thé presence of a low frequency
component. In practice, this is typified by long periods of
either very high flows or very low flows. Few time series

models which have been developed to model this effect are
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described here in brief.

3.4.1 Fractional Gaussian Noise Model

The fractional Gaussian ﬁoise ( £ Gn) model was
developed by Mandelbrot and Van Ness (1968). An important
componént of fGn models is the Brownian motion process,
which is a stochastic process. If B(t) is é Brownian motion
process then its increments B (t+a)-B (t) are'Gaussian with
mean equal to zero and varianée equal to u and these are
independent for non overlapping time intervals. A fractional
Brownian motion can be defined as the moving average of the

incremental continuous time process dB(t) = B(t+dt)-B(t) in
H-0.5

which past increments of B(t),dB(s), are weighted by(t-s)
Here H is the Hurst's exponent which varies between

0.5 and 1.
Since modelling of these processes in continuous
time is extremely complex, they are zlwavs dealt with in

discrete time. A discrete fractional Gaussian noise (dfGn) is
h

a Gaussian random process with a k™ order autocorrelation

coefficient given by

oy = Lot/ - %/k/ZH + /k-1/%H 23

In practice approximations of dfGn are used because
to construct a sample fuﬁction of dfGn, and infinite number
of components have to be summed up. However, the number of
terms must be large enough to preserve the required value of

Hurst exponent.

3.42 Fast Fractional Gaussian Noise Model

The fast fractional Gaussian noise (dfGn) models have
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been introduced to overcome the computational difficulties of
fGn. The models are discrete approximations to theoretical
-fractional Gaussian noise. A ffGn model.is made up of three
components:

i) an independent autoregressive process. This
gives the high freauency effects:
| ii) low freauency term which reproduces the low
freauency properties of the covariance.function. and

iii) a random element.

De Coursey et al.(1982) have described these models
in sufficient details and have concluded that the ffGn is the
best of the discrete fGn models.

In an effort to compare the long memory and short
memory models, Lettenmaier and Burges(1977) compared reservoir
storage requirements using ffGn and ARMA(1.,1) models. The
value of Hurst coefficient was assumed to be 0.7. In case of
life of reservoir as 40 years, both models gafe more or less
same resﬁlts. But for reservoir life of 100 years, the results
showed significant difference. However, when they combined
the low frequency ARMA(1,1) model with high frequency lag-1

Morkov process, the results were again same,

3.5 Markov Models

| A Markov process has the property that the current
value of the process depends only on the event-o’ immediate
past. Thus the effect of past history on the future is mani-
fested only through the present value. Mathematically, if x(t)

follows a Markov process then

Fx(trk)/x(t),x(t-1),. .00 = F [X(e+k)/x(t]] k>0 ...(24)
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Since the current value completely defines the state
of a Markov process, this value is also referred ;5 the 'state’
of the process.

A Markov process which can only take the discrete
values is called Markov Chain. The hydrologic processes such
as stream flows, reservoir storages have to be almost always
discretized for ease of computations. The properties of Markov
chains are described here with the help of an example.

Let_Qy be the annual streamflow of a particular river
in year y. It is assumed that the distribution of these
random variables is.stationary. If this random variable takes

on values q; With probability p; then

Il .
;E; p; =1 ... (25)
1-—-

vhere n is the number of discretized states. The
dependence of Qy+1 on Qy( assuming Markov Property) can be
specified by transition probabilitjes which specify the
transition of the variable from a given state in a time period

to another state in the next time period. Mathematically,
Pij = Pr [Qy+1 = J/Qy = 1] ... (26)
where Pij is the transition probability from state i to
state j. This is the conditiona] probability that the next
state is j given the present state i. Naturally they should

satisfy

g =1 for all i values e (27)
j=1 Pij |

Generally these probabilities are presented in the

form of a matrix called transition probability matrix. This
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matrix completely describes a Markov chain. Let p{ be the
probability that the system is in state i in a year y then the

robability of pyfl » i.e., system is in state j in year(y+1)
P j

is
y+1 = Y y y i
P Py P1; ¢t P5 sz .- Py Pnj i
= A . o ...(28
If p represents the transition probability matrix
then
+1 '
pY =p.Y p ... (29)
J ] :
Similarly, by induction
f
+2 +1
p’ =p" " p
= (®'p) p
2
= p’p
Hence py""k = py'pk v (30)

It can be shown that as the time progresses the pro-
babilities reach limiting values. These limiting probabilities
are called steady state transition probabilities.

-The recent developments in the above model types have
been discussed in detail by Hipel et,al.(1977).

In a number of attempts to explain the Hurst phenomenon,
it has been assumed that the natural time series can be repre-
sented by a Markov process. But the operational utility of
Markov processes in water resources studies is dependent upon
the availability of estimates of low order moments, including
several lag and cross correlation coefficients which describe
the inflows. It has been shown by various investigators that
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unless the sequences are sufficiently long by hydrologic stan-
dards, the reliability of estimates of these coefficient will
be unacceptable.

As an‘alternatives to Markov processes, the fractional
Brownian processes were introduced by Mandelbrot and Wallis
(1969). Regardless of their order, for the Markov processes,
the value 6f Hurst coefficient asymptotically coverages to 1/2
as N increases whereas for fractional Brownian processes,
0<H=20.5 or 0.5%H%1.0. Further a particular value of H

remains constant for all values of N.

The value of H varies from stream to stream and
consequently, while assessing the reliability of an estimate of
H one must take into account the sampling errors, spatial
variability, and properties and assumptionsof the method
employed.

Wallis and Matalas (1970) made an effort to regionalise
H by relating H to a set of basin characteristics. However,
their results displayed a large variability and there was no
perceptible regional pattern. The authors adopted two
techniqués to estimate H. The first method was that suggested
by Hurst in which the coefficient is estimated by

hy = log (R/S) / log (N/2) ... (31)

The second method was suggested by Mandelbrot and
Wallis (1969) in which the time series of N observations is
subdivided into smaller sets of length n and for each of theses
subseries, R(n) and S(n) are determined. The value of h,denoted
by hM( just for the purpose of distinguishing) is a given by fhe
slope of line log [R(n) /S(nJJ versus log n.
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Based upon a number of simulation experiments, Wallis
and Matalas (1970) concludéd that the distribution properties
of hy and hy are function of the sequence length N and the
probability distribution underlying the sequence values. The
distributions of hy and_hM were positively skewed and they
observed that the skewness decreases with the increase in N.
Further both hH and hm were found to be biased estimators of
H and the bias for hH was larger thaﬁ the bias for hM‘ However,
the variance of hH is less than the variance of 'hM' ‘The
variance for hM was found to be a function of n, which is the
lower limit of the values of n over which h was determined.
Interestingly, the bias of hM decreases with increase_in n,
but the variance increases. For lag one autocorrelation
0 >0;.the biases in hy and hy, increase as p increases while
for p< 0, the biases decrease as the absolute value of p
increases.

The authors, after analysing records of 25 streams
in Potomac basin in USA, concluded the following:

a) It would be very difficult to use transience,

i.e, N not being sufficiently farge for H to attain its
limiting value, as the explanation of Hurst phenomenon.

b) Care must be exercised if H is estimated from
annual values only.

c¢) It might be difficult to'find_monthly Markov models
that accurately mime the stramflow regime observed in Potomac

basin.

3.0 Senstivity of Reservoir Capacity to the Inflow
Generating Mechanism

The minimum reservoir capacity required for meeting
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the given demands depends upon the generating mechanism of
inflows apart from the nature of demands themselves. Wallis
and Matalas {(1972) conducted simulation experiments to
determine the sensitivity of the reservoir capacity to various
parameters of an inflow sequence including the Hurs£ exponent
H. The authors used two approaches for generation of inflows
the Markov process and the fractional Gaussian noise process.
The most important pafameter of Markovian process is puwhich is
is lag u serial correlation coefficient. The fractional
Gauésian noise model was proposed by Mandelbrot and Wallis
(1968); in the above study, a type 2 model was used. For this
process, the governing parameters are the Hurst exponent
H, and the memory of the process M. It may be mentioned that
for Markovian models, H is always 0.5.
The authors generated a number of sequences using

these two models and the required reservoir capacity for
various levels of development was determined using Sequent Peak
Algorithm. Obviously the required storage is a function of

the level of development o. It was found out that over
certain ranges of values of ¢ , puand h, the required reservoir
capacity is insensitive to the inflow generating process. For

a »0.80, the capacity depends upon puand the Markovian models
may be confidently used although the filtered Gaussian noise
type 2 process gives better representation of the real world.
For o >0.80, the capacity mainly depends upon H.

The theoretical value of long memory models lie in

their ability to generate time series which resemble long

historic records better than those generated by short memory
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models. Klemes et al. {1981) conducted simulation experiments
to determine differences in reservoir performance reliability
when the inflows are generated using long memory models and
short memory models. The reliability of the reservoir was

characterized in following three different ways:

a) Occurrence - based reliability Ra which is the number
of nonfailure years expressed as a percentage of

total number of years in a given period.

b) Time-based reliability Ry which is the total duration
time of all nonfailure intervals expressed as a
percentage of total length of given period.

c) Quantity- based reliability R which is the actual
amount of water supplied expressed as a percentage

of the total demand during the given period.

Usually at least some years contain shorter or
longer periods of nonfailure and during most failure periods,
the outflow is not reduced to zero. This leads to the condition

that R, ¢ R, < R ... (32)

v
Based on simulation experinénts, the following obser-

vations were made by Klemes et al.(1981). |

1) The short-memory model leads to over estimation of
reservoir performance reliability as compared to
the long memory model.

2} The overestimation is; in general, highest for annual
reliability, lower for time based reliability and
lowest for quantity based reliability.

3) The over estimation of all the three reliability
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characteristics is very small for reservoirs with
storage coefficients upto about one for any draft
ratio; for reservoirs with storage coefficient greater
than one, if is very small for draft ratios upto

about D = 0.6 to 0.8 and over D = 1.1, depending on
inflow parameters like coefficient of variation and

lag-one serial correlation coefficient.

4) The over-estimation is maximal for draft ratios close
to one and increases with reservoir coefficients upto
about 2 or 3. PFor higher values of this coefficient

no further increase was detected.

5) The over-estimation slightly increases with the
variability of inflows and decreases with the increase

of the lag 1 correlation coefficient..

Thus it was concluded that the use of short or long
memory model makes no difference in reservoir performance
reliability if the draft ratio is either very low or very
high. The length of memory in .the annual iaflow series is
irrelevant if the regulation itself has no over year memory,
for example, if the draft is low, the reservoir fills up
every year and if it is high, the reservoir empties every
year; in both cases, only seasonal regulation is involved.

It was further pointed out that the decision makers
with high-risk aversion will prefer the long-memory models;those
with low-risk aversion, the short-memory models. The replacement
of a short-memory streamflow model with a long-memory model

amounts to the incorporation of a small safety factor into the
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-

 tt¥n1r,perforaance reliabilxty ' Howéver; in most practical

-aits, this factor will be much smaller than the accuracy

‘with which the performance rel1ab111ty can be assessed
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4.0 CONCLUSIONS

The works related with analysis of hydrologic time
series pertaining to range have been reviewed. The differeht
techniques used to estimate range of a series have been
discussed. The experiments of H.E. Hurst and the Hurst
phenomenon have been discussed. Various investigators

have proposed different explanations_fof Hurst phenomenon.
Among many arguments, nonstationarity and persistence appear
to have maximum weight behind them.

The Hurst phenomenon has greatly affected the develop-
ments in time series modélling. These have also been discu-
ssed in brief. Finally, the effect of inflow generating
mechanism on the storage is considered. Based on the reviewed
work, it could be concluded that the use of short memory or
long memory models makes no difference in reservoir performance
reliability if the draft is either too high or too low. In
most of the cases, the difference in safety factor will be
much smaller than the accurécy with which the performance
reliability could be assessed. However, it may be pointed out
;hat the studied reports have not covered such aspects as
effect of operating policies, shorter time périod of analysis
etc. Unless detailed studies arelcqnducted considering these
aspects also, it will not be possible to reach to a definite

conclusion.
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