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ABSTRACT 

The basic requirement of flood frequency analysis is 

to know the probability with which a flow Q is exceeded 

during a stated design life of a particular project. The 

partial duration series models provide an alternative method 

of estimating floods from the number and magnitude of excee-

dances over a suitable threshold. The other models are 

annual peak series models and time series models. 

Various partial duration series models have been pro-

posed in literature. Most of the models assume Poisson 

distribution for the distribution of number of exceedances 

in a year and exponential distribution for the magnitude of 

exceedances. These models mainly differ from each other in 

the way the number of peaks every year over a threshold are 

treated. In the simplest model for partial duration series 

the variation between years and between seasons, in the 

number of peaks exceeding the threshold is ignored and a 

constant number of exceedances is assumed to occur each 

year. There are models which are capable of accomodating 

varying number of occurrences of events within the year 

and different distribution of peak magnitudes during 

different seasons of the year. 

In the view note a theoretical comparison of annual 

maximum series models and partial duration series models 



have been presented. The literature review reveals that the 

assumptions regarding distribution of flood magnitudes are 

important as they influence the estimates of the floods of 

high return periods very significantly. 
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1.0 INTRODUCTION 

One of the major problems faced in hydrology is the 

estimation of design flood from fairly short data. If the 

length of data is more, say 1000 years or more than the same 

data can be used to realistically estimate the design flood 

but generally the length of data available is very less. 

As such the available sample data is used to fit frequency 

distribution, which in turn is used to extrapolate from recor-

ded events to design events. 

Flood frequency analysis is needed to relate the rarity 

of flood to its magnitude. The three approaches for flood 

frequency analysis are based on the analysis of the (i) time 

series, (ii) the peaks over a threshold or partial duration 

series and (iii) the annual maximum series. In most of the cases 

annual maximum series is used for flood frequency analysis. 

The first uses the whole flow hydrograph, the second only 

those peaks which exceed an arbitrary threshold and the third 

the highest peak in each year of record. 

The Time Series Model 

In this model the flow hydrograph is considered as a 

time series of daily flows. The time series of mean daily 

flows closely represents instantaneous peak flows on large 

catchments but on small flashy catchments ,this would not be 

1 



necessarily so as flood peaks could be smoothed out by daily 

averaging. 

If Q(t) is a flow on day t, a time series model may 

be written as the sum of deterministic and stochastic compo-

nents. 

Flow on day t = deterministic component 

+ stochastic component 

= (Trend component + periodic component) 

+ stochastic component ...(1) 

In such a situation this type of model allows both 

estimation of parameters and model formulation to proceed 

together through the three components, beginning with trend 

and finishing with the stochastic effect. Examples of the 

use of such a model for mean daily flows have been given by 

Quimpo (1967) on United States data and by Hall and O'Connell 

(1972) on Brithish data. A specific example of a time series 

model is the ' shot noise model'. In shot noise model flows 

are treated as a series of impulses and decays. The theory 

of shot noise model was developed by G.Weiss of Imperial 

College, London, working under the direction of Professors 

Cox and O'Donnel (NERC 1975). 

Partial Duration Series Model 

The partial duration series model concerns the distri-

bution of the number and magnitude of peak flows that exceed 

a threshold such as go  ir figure 1 which shows part of a 

continuous record of flow in a river. Such peak flows are 
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said to consitute a partial duration series. The threshold 

level go  may be raised or lowered so as to involve a desira-

ble number of peaks per year (x ). The value of A is gener-

ally in the range from 2 to 5. 

In order to make the analysis tractable, it is assumed 

that the individual peaks g17c41 g3, ,etc., represent 

independent hydrometeorological events and these are not 

serially correlated. The peaks such as (4 and (VII  which do 

not have definite ascensions and recessions and which seem 

to be associated with g2  and g4  respectively are not considered. 

The distribution of interevent time C., i = 1,2,3.... 

between successive exceedances is also important. The joint 

distributionofthealues specify a stochastic process 

which is found by the times of peak flows exceeding go. Most 

of the models proposed in literature assume Poisson distri-

bution for number of exceedances and exponential distribution 

for magnitude of exceedances. 

FIGURE 1 - PARTIAL DURATION SERIES MODEL 
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Annual Maximum Model 

This is a special case of a time series model in which 

the unit of time is one year and the flow representing that 

time is the highest flow during the year. In practice this 

time series is statistical rather than stochastic since there 

is no dependence between successive peakswhich may be conside-

red as identically and incependentallv distributed. Annual 

maximum approach has gained popularity because of the theory 

of extremesby Gumbel (1941-1945). 

In annual maximum models the distribution of annual 

maximum peaks is required. As an example Gumbel found empiri-

cal support for the hypothesis that annual maximum peaks are 

distributed according to the extreme value type 1 distribution 

(known as the Gumbel attribution). Log Pearson type III dis-

tribution has been recommended by WRC (1967) and accepted by 

United States Federal Agencies. In India flood frequency ana-

lysis is generally carried out using annual maximum peak 

series. For small return periods ( less than 5 to 10 years) 

the partial duration series models would give better estimate 

as the information contained in the sample is more. To study 

suitability and capability of partial duration series models, 

relevant literature has been reviewed. 
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Relation Between Time Series Model, Partial 
Duration Series Model and Annual Maximum Model 

The time series model, partial duration series model 

and annual maximum model can be related on the basis of value 

of Q for given T in the parent process and the value of the 

expressionn for 0(T) evaluated in each of the three models 

which approximate it. The models can be related other way 

also i.e. by relating T given by various models for a 

particular Q. Each of these values TTs  , TpDs  , TAN  

can be deduced from knowledge of the parent stochastic 

process. In T each year is condensed into a single time 
AM 

unit. In peaks over a threshold model time is measured on a 

continuous scale and a value of T can be interpreted in the 

same way as in the parent process. In the time series model 

time is also measured in discrete steps but because these are 

small ,their use has no practical effect on the interpretation 

of return period. 

For practical purposes it can be assumed that TpDs  

and TTS 
are equal to T. Langbein (1949) showed that when 

T is small T differs appreciably from mPDS and hence from '  

T but differs by only one half year at large values of T. The 

difference has been illustrated in Figure 2. It is clear from 

the figure that in practical situations there is no need to 

distinguish between the values of Q(T),Q(T)Ts  , Q(T)pps  and 

Q(T) when T is large. 
AM 
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Langbein's theory which relates TAm  and TpDs  is 

presented in brief in the forth coming section. 
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FIGURE 2 - RELATION BETWEEN RETURN PERIOD OF A GIVEN 
MAGNITUDE IN ANNUAL MAXIMUM AND PDS MODELS. 
(after Langbein 1949) 

Langbein Theory 

The recurrence intervals calculated from two approach-

es ( annual maxima series and partial duration series) are not 

directly mutually comparable. The practitioners often face the 

difficulty that a design criterion given in terms of a recurr-

ence interval of one kind cannot be interpreted as a hydrolog-

ical value corresponding to that of other kind. For instance, 

a 5 year flood of a partial duration series and 5-year flood 

of annual maximum series don't coincide in magnitude. Langbein 

(1949) gave a solution to this problem. He derived a relation 
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between the two recurrence intervals TAM  (Ta  ) and TPDS(Tp) 

corresponding to the same event, say a flood greater than 

qm  as follows: 

Ta = 1/(1-exp (-1/T )) 
...(2) 

The following is the derivation given by Langbein. 

The probability that an arbitrary sample in a partial 

duration series of M exceedances ( over qm  in N years series) 

is greater than or equal to qm( the mth largest in M exceedan-

ces) is m/M or e/n, where n is the average number of excee-

dances over qm  in a year i.e. 

n = ...(3) 

and e is a fraction of m to N i.e. 

1 = or ...(4) Tp 

i.e. the inverse of the recurrence interval T . It follows 

that the probability of n events in a year being consecutively 

less than qm  is 

P= 1 -  - ) C n 

if all M events are perfectly independent. 

If C/N <‹ 1.r  then the probability p of above equation 

approaches; 

Cl - c/n)11 e
- e 

Accordingly, since the probability that at least one 

event greater than or equal to qm  occurs in a year is : 

_E 
1-e 
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The expected recurrence interval or a year having at 

least one such event is 

1 T = - = 1 
a Pa (1- e`c) 

1 Or Ta = 1/(1 - exp ( - 

which corresponds to Langbein's formula. 

Chow (1950) discussed Langbein's formula and pointed 

out that the difference between Ta and T. evaluated by the 

relative difference (Ta- Tp)/Ta is less than 5% for 

T 113 years and greater than 10% for T 5 years. Chow 

further writes that " in ordinary engineering practice a five 

percent difference is tolerable and that, the two methods give 

essentially, identical results for intervals greater than 

about ten years". 

Relative Merits of Different Models 

The classical dilemma in flood frequency analysis is 

whether to use annual maximum model or partial duration 

series model. Relative demerits and merits of annual maximum 

model and PDS model are discussed in the forth coming section. 

Demerits of annual maximum model 

The most frequent objection for the use of annual 

maximum model is that it uses only one flood for each year. 

In certain cases the second largest flood in a year which the 

annual flood series neglects may out rank many annual floods 

of other years. The maximum annual discharges in dry years of 
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some rivers in arid or semi arid regions may be so small 

that calling them floods may be misleading. 

Another short coming of annual flood series approach 

is that only a small number of floods is considered. The 

estimate of skewness coefficient of historical flood series 

will not be reliable in case of annual flood series with small 

sample size. 

Advantages of partial duration series model 

(1) The partial duration series model contains more floods 

than annual maximum model, so the estimate of parameters of 

annual flood distribution from the partial flood series would 

be subjected to lesser uncertainty. 

The theoretical expressions for annual flood distri-

bution obtained through characteristics of partial floods 

have physical relevance and often are exact distributions 

rather than asymptotic ( Viraphol et al 1978). 

When the truncation level which defines a partial 

flood peak series is taken adequately high, the assumption 

of stochastic independence among individual exceedances 

become reasonable. 

The assumption that the number of exceedances in a 

fixed time interval is a random variable allows this approach 

to be applied to an arbitrary time interval which is not 

true for the classical extreme value theory. 
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2.0 REVIEW OF LITERATURE 

The earliest approaches to the estimation of future 

floods on a drainage basin were based upon simple empirical 

formulae involving the correlation of pask peak discharges 

with various parameters. The most popular of these parameters 

were the area, width and length of the basin. 

Statistical methods were introduced in hydrology about 

sixty years ago. The main objective of these methods is 

to fit theoretical distributions to flood data. The mean, the 

standard deviation and the coefficient of skewness of the 

flood magnitudes are used to fit the parameters of the distri- 

bution function. The work on partial duration series model 

started with the theory of Langbein (1949). 

Empirical formulae and statistical methods have been 

reviewed briefly in sections 2.1 and 2.2. The extensive review 

and suitability and applicability of partial duration series 

model is given in section 2.3 and 2.4. 

2.1 Empirical Formulae 

Formulae for the maximum expected flood involving 

drainage area only are of the general type 

Q = C An ...(8) 

where, C is a coefficient uepending upon the characteristics 

of the drainage basin, A the drainage area in square miles, 
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n a constant varying from 0.5 to 1.0 and Q is the flood 

flow rate in cusecs ( Benson, 1962). 

Some empirical formulae also use length of the 

drainage basin, the storm rainfall in inches and coefficients 

related to regional and drainage basin characteristics 

alongwith drainage area. 

The rational method used in the design of storm water 

drains for small area is 

Q= CiA (9) 

in which C is the runoff coefficient varying from 0.1 to 

0.8, i is the intensity of rainfall in inches per hour, A Is 

the drainage area in acres and Q is the discharge in cusecs. 

Richards (1955) described methods which were developed 

for certain streams or for certain areas. Varshney (1979) 

gives extensive list of empirical formulae developed for 

Indian catchments. Some of the important formulae are Dikens, 

Ryves, Inglis, Fanning, Charmier, Craig, Rhind etc. 

These formulae are applied in cases where rainfall and 

catchment conditions are similar to those from which they 

were derived. The inconsistent results from the application of 

such empirical formulae have made their use very limited. 

2.2 Statistical Methods 

The first published papers which present the statistical 

analysis of flood data with the expressed intention of esti-

mating the frequency of occurrence of floods of various 
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magnitudes were by Robert E.Horton and Weston E. Fuller. 

Horton (1913) discussed briefly the applications of the 

Gaussion law of probability to frequency analysis. 

Fuller (1914) introduced the fundamental idea that 

floods are unlimited statistical variables and that flood 

will always be exceeded in size some day. He gave the first 

comprehensive study of statistical methods applied to floods 

by plotting flood flows on semi-log paper. Fuller's analysis 

resulted in the following empirical formula: 

- Qaverage ( 1 + 0.8 log10T ) 

where, 

Q average is the average of the recorded annual maximum  

24 hour average flow in cfs., T is the number of years in the 

period under consideration and Q is the average maximum flood 

flow for a time period of length T years. This formulae is 

based upon observed data without including any concept from 

the theory of probability. 

In a systematic statistical study of floods Hazen (1914) 

supplemented the work of Fuller by constructing the normal and 

log normal probability papers for plotting floods. This repl-

aced the estimation of parameters by linear fits on semi-log 

or log-log paper. 

The plotting of data on probability paper requires the 

use of plotting positions and most of the methods for their 

determination are empirical. Chow (1964) gives a summary of 

the formulae presented by Hazen, Weibull, Beard etc. 
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Langbein (1949) gave the relationship between flood 

expectancies in the partial duration series and the probability 

of the corresponding flood as an annual flood provided they 

are derived from a time homogeneous process. The recurrence 

intervals in the partial duration series are smaller. than in 

the annual flood series, but the difrerences become negligible 

for floods greater than about a five year recurrence interval. 

Based on the annual maximum flows of 159 long-record 

river-measurements stations in the U.S.A. Beard (1954) 

concluded that with rare exceptions the logs of the annual 

maxima of mean daily flows are normally distributed. 

Moran (1957) chose the log normal and log Pearson type 

III distributions to fit fifty annual values of extreme month-

ly flows and to show that the errors in the estimation of a 

flood corresponding to a given probability arises from two 

sources:(i) The uncertainty as to the mathematical form of the 

distribution OA) The uncertainty arising from the statistical 

errors of estimation of the parameters of the distribution 

which occur because of the finiteness of the length of record. 

Kendall (1959) discussed the relationship between the 

risk of occurrence of an event in a given period of time and 

its return period. 

Riggs (1961) derived a relation between magnitude,des-

ign period in years and probability of not exceeding that 

magnitude in the design period from a cumulative frequency 

curve. 

13 



Nash and Amorocho (1966) showed that the extrapolation 

of magnitude frequency relationship obtained from finite samp-

les is not too hazardous when the form of the frequency dist-

ribution is known for the population of floods. They made 

a plea •for research to establish if possible the true form of 

the frequency distributions of floods. The magnitude corres-

ponding to any given probability or return period can be 

estimated subject to error coming from two different causes: 

(i) failure of the universe of floods on the catchment to con-

form to the assumed probability distribution, (ii) sampling 

error due to non-representativeness of the record from which 

the numerical values of the parameters of the frequency 

distribution are estimated. 

Bulletin No.13 (1966) describes the methods most common-

ly used by Federal Agencies for making frequency studies of 

runoff at individual streamf low station and provides an exte-

nsive list of applications of frequency analysis. 

Benson (1968) as the Chairman of the work group on Flow 

Frequency Methods, Hydrology Committee, WRC, studied the most 

commonly used methods of flood frequency analysis and compared 

the results by applying these methods to a selected group of 

log-record representative sites in different parts of the 

country. He showed that there are large differences in the 

predicted floods when different distributions are assumed par-

ticularly for larger recurrence intervals. 

In 1967 U.S.Water Resources Council (1967) adopted the 
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the log Pearson type III distribution ( of which log-normal is 

a special case) to achieve standardization of flood-frequency 

procedures used by Federal Agencies. 

Although the theory of extreme values has been exten-

ded beyond Gumbel's distribution function, its applications 

to flood frequency analysis have been limited to that distri-

bution, except for the application of Tod ornvic (1970). 

Chander et al. (1978) applied Box-Cox transformation 

to flood frequency analysis and established its suitability. 

Hadgraft (1982) compared 12 candidate flood distributions for 

flood data from over 40 gauging stations located in Quanbland, 

Australia with records in excess of 40 years and proved that 

Box-Cox transformation is better than log normal and log 

Pearson type III. 

Walter C.Boughton introduced log Boughton distribution 

and gave fitting procedures for the distribution (Boughton 

1980,1983). Houghton (1978) introduced Wakeby distribution for 

modelling flood flows. 

Rao D.V. (1980 a and 1980 b) evaluated log Pearson 

type III distribution and gave method of mixed moments for its 

parameters estimation. 

Flood Studies Report, Vol.1, NERC(1975) is a major 

contribution to statistical methods. 

2.3 Partial Duration Series Models 

The limiting distribution of the maximum term in a 

sequence of independent identically distributed random indices 
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variables E1  E2 ,
E
3 

 

ENn 
with random indices 

 

(Nn
) was 

sequences sequences 

first analysed by Berman (1962). Provided that 

(Nn) and (E )m  , are independent and Nn-* 1 n 1 

with probability. 1 as n 

ing distribution of the 

butions obtained in the 

Barndorff Nielsen (1964) 

where P lint (Nn/n) = p 
na. 

variable, i.e. P ( p >0) 

-0= Berman has shown that the limit-

maximum term is a mixture of distri-

case of independent random variables. 

extended Berman's results to the case 

holds, where p is a positive random 

= 1. 

Borgman (1961) gives a simplified technique for compu-

tiqg the probability that a near extreme occurrence of a phy-

sital phenomenon will exceed a selected value. Further 

Borqman (1963) discussed the return period concept with other 

risk criteria such as (i) encountered probability (ii) distri-

bution of waiting time (iii) distribution of total damage(iv) 

probability of zero damage and (v) mean total damage. These 

are derived from three different sets of initial assumptions. 

Shane and Lynn (1964) developed a probability model 

based on the time independent Poisson process and theory of 

sums of a random number of random variables for using in the 

analysis of base-flow flood data. From the model, design 

equations were derived relating several commonly used measures 

of risk to design discharge : recurrence interval distribution, 

encounter probability and expected recurrence interval. 

Furthermore, Shane and Lynn (1969) developed confidence limits 

alongwith a lower bound for the corresponding level of confi-

dence for evaluating the effect of sampling errors on flood 
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risk evaluation from base-flow flood data. 

Kirby (1969) considered flood peaks as the successes 

Or exceedences in a sequence of randomly spaced Bernoulli 

trials representing the rccurrence of hvdograph peaks and 

he adopted an arbitrary criterion for classifying hydrograph 

peaks into floods and non floods. 

Todorovic (1967 a, 1967 b, 1968) applied the theory 

of stochastic processes to a non decreasing sample function 

and showed its application in the application of precipitation 

and sediment transport. He indicated the conditions for which 

the Poisson, the Gamma and other distributions can be used. 

Although the theory of extreme values has been exten- 

ded beyond Gumbel's distribution function, its applications 

to flood frequency analysis have been limited to that distri- 

bution, except for the applications made by Todorovic and 

his co-workers ( Todorovic,1970 ; Todorovic and Zelenhasic, 

1970 ; Todorovic and Rousselle,1971 ; Todorovic and Woolhiser, 

1972), and Gupta,Duckstein and Peebles (1976). Gumbel's 

distribution stems from applying the classical extreme 

value theory to a complete series ( such as daily flows). 

The mathematical assumptions underlying the classical extreme 

value theory are not applicable to most flood problems. However 

the theory developed by Todorovic and his co-workers may be 

more meaningful for flood frequency analysis than the 

classical extreme value theory. 

The first attempt to develop a theory by Todorovic 

(1970), Todorovic and Zelenhasic (1970) was based on 

streamflow partial duration series. The series of flows in 
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a partial duration series within an arbitrary but fixed 

time interval is represented by a random number of random 

variables. The time dependent Poisson process was used to des-

cribe the distribution of the random number of exceedances. It 

is applied to streamf low by further assuming that the individu-

al exceedances form a sequence of identically independent 

random variables which are represented by an exponential dist-

ribution. The theory is sufficiently general as to treat also 

the non-identically distributed exceedances. In addition, this 

theory is applicable over an arbitrary time interval of inter-

est, such as season or year. Todorovic and Zelenhasic (1970) 

apply above model to 72 year record of the Susquehanna river 

at Wilkes-Barre, Pensylvania. They conclude that observed and 

theoretical results seem to agree fairly well. Application 

of the model on the Greenbrier river at Alderson, west Virginia 

has also shown good agreement between theoretical and observed 

results. 

From a physical point of view, this method appears more 

feasible for flood peaks than the classical extreme value theory 

for two reasons. First, when the truncation level which defines 

a partial flood peak series is taken adequately high, the 

assumption of stochastic independence among individual excee-

dances becomes reasonable. Second, the assumption that the 

number of exceedances in a fixed time interval is a random 

variable allows this approach to be applied to an arbitrary 

time interval, which is not true for the classical extreme 

value theory. 
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Todorovic and Roussell (1971) extended the work 

of Todorovic and Zelenhasic (1970) by realizing that for a  n  

time interval equal to a year the assumption for exceedances 

being identically distributed is unrealistic, since different 

storm types can produce different flood characteristics 

from one season to another. Accordingly they derived a 

distribution function or the largest flood peak for the 

case where two or more different exceedance distribution 

functions occur within a time interval. The results are 

applied to the 72- year record of the Greenbrier River at 

Alderson, West Virginia. The theoretical and observed 

results agree reasonably well. 

Todorovic (1971) used the above method together with 

the mathematical assumptions of Todorovic and Zelenhasic 

(1970), to derive another important property of the extreme 

flood, namely,it'stime of occurrence with a selected time 

interval. The expression for the time of occurrence of the 

extreme flood obtained by Todorovic (1971) is exact. 

Todorovic and Woolhiser (1972) applied the above 

theory to two rivers of United States. Good agreement between 

observed and theoretical distributions for two rivers where 

floods are caused by snowmelt and intense rainfall indicates 

that the assumptions involved are not unduly restrictive. 

Gupta, Duckstein and Peebles (1976) extended the work 

of Todorovic and Woolhiser (1972) and developed the expression 

for the joint distribution function of the largest flood peak 

and its time of occurrence. They derived distribution function 

dof the time of occurrence of the largest flood for the 
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Mississippi river, St. Paul, Minnisota and Licking river, 

Catawba, Kentucky. They also modified this expression, valid 

for the case of identically independent exceedances, to the 

case of independent but non-identically distributed 

exceedances and applied to above rivers. Guptaet al conclude 

that: 

A partial duration series is formally represented as 

a random sequence of lid (independently indentically distri-

buted) random variables ( flood exceedances) under certain 

assumptions which appear physically reasonable. This formalism 

leads to an exact expression for the joint distribution 

function of the largest exceedance and its time of occurrence 

within a fixed time interval which may be selected arbitrarily. 

If the individual exceedances are assumed to be 

exponentially distributed and the number of exceedances is 

governed by a Poisson process, then the maximum exceedance 

is distributed like a double exponential distribution function. 

This functional form although similar to Gumbel's classical 

distribution function represents an exact expression where 

as Gumbel's distribution is an asymptotic result. 

The expression for the joint distribution function is 

generalized after assuming that the exceedances are non-

identically distributed from one season to another but are 

identically distributed within a season. The number and the 

length of each season can be selected arbitrarily. The 

expression by Todorovic and Roussell (1971) is shown to be 

the marginal of this joint distribution function. 
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Two rivers in the United States are analysed for 

the time occurrence of the maximum flood to test any 

possible improvement in the fit to the empirical distribution 

if one adopts the nonidentically distributed exceedance 

approach. These results don't show any conclusive improve-

ment in the fit. 

The use of a flood frequency distribution derived 

from the partial duration series seems to have considerable 

operational appeal in comparison with 'curve fitting' 

a frequency function to the yearly peaks because (a) 

by estimating the parameters from the partial duration 

series, rather than from the yearly maximum flows, the 

parameters uncertainty can be reduced and (b) the flood 

frequency expressions admit some theoretical justification 

and are exact rather than asymptotic. 

Todorovic (1978a) presents stochastic models of 

extreme flows and their application to design. He also gives 

various assumptions made in the formulation of models. 

Todorovic (1978 b) discusses the two approaches i.e. 

annual flood series and partial duration series, for frequency 

analysis. Three stochastic models based on partial duration 

series are also presented. Each model depends on certain 

assumptions concerning properties of exceedances of base level 

go. The second and third models represent vis-a-vis the first 

one in the sense that they are based on less restrictive 

assumptions. Each exceedance is characterized by its 

duration and its volume. The distribution function of the 

largest volume in an interval of time (0, t) is also given. 
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This distribution function has been applied to Greenbrier 

river at Alderson,West Virginia. Good agreement between 

theoretical and observed distributions shows that the assump-

tions concerning the exceedances are not unduly restrictive. 

Viraphol and Yevjevich (1978) estimates the probabili-

ty distribution of maximum annual flood peak by using a com-

bination of probability distributions of the number and the 

magnitude of flood peaks that exceed a selected truncation 

level. This method of estimation is tested on the 17 daily 

streamf low series of gauging station in the United States. 

Five discrete and six continuous probability distribution 

functions were used to fit the frequency distributions of the 

number and magnitude of exceedances above the selected trunc-

cation level of partial flood series respectively. From the 

them the best fit functions are selected. The independence 

of partial flood series is checked. 

By using the generated samples of daily flows the 

efficiency of estimated annual flood peaks of given return 

periods has been investigated by using both the annual and 

the partial flood peak series. The findings of Viraphol and 

Yevjevich (1978) are summarized below : 

Either the mixed Poisson or Poisson distribution have 

the best fit to frequency distributions of the number of 

exceedances per year. 

Either the mixed exponential or exponential distri-

bution have the best fit to frequency distributions of the 

magnitude of exceedances. 
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With one to four average number of exceedances per 

year the dependence of successive exceedances is not signifi-

cant. When the truncation level is relatively low, the depen-

dence may not be negligible, increasing with a decrease of the 

truncation level. 

The series of annual flood peaks can be considered as 

approximately independent. 

The generated samples of daily flows have properties 

close to the properties of corresponding historic daily flows. 

(v1) The generated samples reproduce well the extremes, so 

that these samples can be used for the study of properties of 

flood peaks. 

Estimates of annual flood peaks of given return peri-

ods from the partial flood series have smaller sampling varian-

ces than the corresponding estimates from the annual flood 

series, when the average number of exceedances per year in 

partial flood series is at least, 1.65 for the exact theore-

tical approach and at least 1.50 for the approximate theore-

tical approach. 

(viii) In case of the empirical approach, the sampling 

variance of annual flood peaks estimated from the partial 

flood series is smaller than the corresponding sampling 

variance of annual flood series for the range of investigated 

return periods, when the average number of exceedances in 

partial flood series is at least 1.95 for sample sizes 

10-25, and somewhat larger than 1.95 for larger sample sizes.. 



When the model of partialflood series is developed 

with assumptions for its derivation supported by data for low 

truncation levels, the partial flood series is more efficient 

or more useful in estimating annual flood peaks than the ann-

ual flood series, especially in case of small sample sizes. 

By using the observed and generated samples of _daily 

flows, the partial flood series model given below 

F (X) =P (n =0) A- E ( (H (X) )
k.P 01= K)) ...(11) 

k=1 
gives a better fit of frequency distributions of the largest 

exceedance than the commonly assumed partial flood series 

model given by 

F ( x ) = e
- A e -x/B 

This is especially true for low truncation levels and 

for rivers with highly fluctuating daily flows. 

Ashkar and Rousselle (1983 a) gives comments on the 

truncation used in partial flood series models. Water Resources 

Council (1976) defined the partial flood series as a sequence 

of flood events separated by at least as many days as five 

plus the natural logarithm of square miles of drainage area. 

This in addition to the arbitrary imposed requirement that the 

intermediate flows between two consecutive peaks must drop 

below 75% of the lower of two separate maximum daily flows. 

The purpose of these restrictions imposed on the interarrival 

time between two successive flood events is to minimize the 

stochastic dependence between flood exceedances. 

24 



Ashkar et al finally conclude that both the Poisson 

distribution as a model for flood frequency and exponential 

distribution as a model for flood magnitude once found 

applicable with a certain truncation level should remain so 

with any higher level of truncation level shoUld remain so 

with any higher level of truncation also. A great degree of 

freedom is left to the engineer, therefore, to choose the 

truncation level that he finds adequate for the problem at 

hand without having to worry too much about the sensitivity 

of the obtained results: The truncation level should be 

sufficiently high so as to satisfy the Poisson model. 

Guidelines such as those put forward by the Water 

Resources Council in relation to the partial flood series 

models should be followed with caution and the effect of any 

restrictions put on such models on their underlying assumpti-

ons and mathematical characteristics should always be 

examined. 

If the Poisson and exponential distributions are to be 

used, then the choice of the.base level .should be made primar-

ily on mathematical grounds rather than on economic or 

engineering considerations. A truncation level suggested by a 

particular set of circumstances not based on the statistical 

characteristics of the streamflow data may not be high enough 

to give a good Poisson or exponential fit. In this case one 

should either refer to other models or try different base 

levels if this is feasible. 

In the application of partial flood series models of 
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flood analysis it is occasionally observed that successive 

exceedances are correlated. To reduce this correlation 

some investigators tend to impose certain restrictions on 

the interarrival times of flood events in order that these 

events will not occur close together in bunches. For example, 

Water Resources Council (1976) put this kind of restriction 

when it defined partial flood series as flood events separated 

by at least as many days as 5 plus the natural logarithm of 

drainage area taken in square miles with the requirement 

that the intermediate flows should drop beim* 75% of the lower 

of the two separate maximum daily flows. Cunnane (1979) used 

data from 26 gauging stations on 20 catchments in Great Britain 

and applied restrictions in the form of ' arbitrary but 

consistent' rules to deal with the problem of which peaks to 

include Or exclude when peaks occurred close together. Two 

neighbouring peaks were included only if (a) the flow between 

them dropped to less than two thirds of the earlier two and 

(b) the time between the peaks exceeded 3 Tp, where T is the 

average time to peak of the first five 'clean' hydrographs on 

the record. Ashkar and Rousselle (1983 b) 6how analytically 

how such restrictions interfere with the underlying hypothesis 

of the Poisson process commonly usid to model flood counts, and 

caution against imposing restrictions that may render this sim-

ple and appealing model inapplicable. 
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2.4 Suitability and Applicability of Partial 
Duration Series Models 

Cunnane (1973) gives a method for comparing the 

statistical efficiency of the estimate of T year flood by two 

different approaches i.e. annual maximum model and partial 

duration series model. On the basis of commonly used assump-

tions Cunnane shows that for return periods greater than about 

10 years the annual exceedance estimate of Q(T) has larger 

sampling variance than the annual maxima series. Annual excee-

dance series is nothing but partial duration series in which 

threshold has been chosen in such a way that series contains 

only N ( where N is the number of years in a record) floods. 

It consists of the N largest floods in the record. He also 

shows that for same range of return periods the partial dura-

tion series estimate of Q (T) has smaller sampling variance 

than the annual maximum series estimate only if partial duration 

series contains at least 1.65 N items, where N is the number 

of years of record. 

Calenda, Petacia and Togna (1977) give theoretical 

probability distribution of critical hydrologic events by the 

partial duration series method. They conclude that partial 

duration series method should be employed when high frequency 

events are involved. In this case the Poisson model may lead 

to a substantial underestimate of the mean recurrence inter 

vals. They suggest the use of Polya stochastic process 

instead of Poisson model. Polya stochastic process implies that 
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each occurrence piobability depends on previous events. This 

process yields a negative binomial distribution of the number 

of exceedances in a time interval. 

Valadares Tavares and Evaristo Da Silva (1983) evalu-

ates the relative efficiency of annual maxima method and 

partial duration series method considering separately indep-

endent and autocorrelated exceedances and find 

The estimation variance of the flood magnitude 

associated with a given return period can be under estimated 

( or over estimated) by the approximation given by Cunnane 

(1973) if the average number of exceedances X is higher (or 

smaller) than 2. 

Cunnane 0_973) gives the following expression for the 

variance of Q(T) 

VAR ( Q'T),,D= a,2 N
-1 ( 1 + (ln A + ZT)2/X ...(13) 

where, 

VAR (Q'T)pp  : Variance of T year estimate for partial 

duration series 

__:.,.Number of years in the record 

ZT 
: Standard Gumbel variate for return 

period T. 

The partial duration series method has a significantly 

lower estimation variance than the annual maximum method if 

A > 2, assuming that the exceedances can be modelled by 

Poisson process and are an iid sequence of negative exponen-

tial variables. This reduction of estimation variance 
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increases with the return period and with x . 

(iii) The truncation level q
o  should be as low as possible 

providing that the model assumptions are still valid but when 

qo  is decreased the hypothesis which is first violated is 

usually the one regarding the serial independence of the 

exceedances. In this case another model for autocorrelated 

exceedances following a negative exponential law with a cons-

tant serial autocorrelation should be used. The estimation 

variance of flood magnitude increases with p
i
, and partial 

duration series method no longer compares favourably with the 

annual maxima method. This means that the advantage of parti-

al duration method is strongly conditioned by the validity 

of the assumption concerning the serial independence of 

exceedances. 

Takeuchi (1984) evaluates Lanqbein's theory (1949) 

which relates hydrological recurrence intervals calculated 

from an annual maximum series and from a partial duration 

series. He suggests an alternative derivation procedure. 

The resultant formula is identical to Langbein's but the 

conditions to be satisfied for the formula to hold good is 

replaced by a new, more relaxed one. He reconfirms the vali-

dity of Langbein formula (1949) and Chow's discussion (1950). 

Rosbjerg (1985) further extends the work of Tavares 

and Da Silva (1983). He introduces a correction factor in the 

variance formula given by Tavares and Da Silva. This is done 

in order to reduce the deviations between theoretical and 

Monte-Carlo generated samples. In the dependent case a 
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formula for the variance of the T-year estimate has been 

developed and shown to be in fine agreement with Monte-Carlo 

based variande calculations. It has been finally concluded 

that T year estimates from annual maximum series and 

partial duration series become very close to each other for 

large return periods. 
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3.0 REMARKS 

i. In practical situations there is no need to disting- 

uish between Q(T) , Q (T)Ts  , Q(T)PDS and Q(T) when 

T is large.NERC (1975) 

Langbein Formula (1949) which relates recurrence 

intervals calculated from an annual maximum series 

and partial duration series still holds good. 

Tekeuchi (1984) 

The dependence of partial flood series decreases with 

increase in truncation level. 

Either the mixed Poisson or Poisson distribution have 

the best fit to frequency distributions of the number 

of exceedances per year. Viraphol and Yevjevich 

(1978) 

Either the mixed exponential or exponential distribu-

tion have the best fit to frequency distributions of 

the magnitude of exceedances. Viraphol and Yevjevich 

(1978) 

The partial duration series method has a significantly 

lower estimation variance than the annual maxima 

method if A > 2 

If peaks over a threshold are correlated then model 

suggested by Tavares et al. (1983) should be used. 
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viii) Assumption regarding distribution to be adopted for 

flood magnitudes is important. Depending upon the 

distribution selected, estimate of the floods of high 

return periods have a wide range of variation. 

In partial duration series models most of the progress 

has been made in the development of science. The applicabili-

ty and suitability of partial duration series models proposed 

by Todorovic in various papers and also by Tavares et.al. 

(1983) needs to be studied for Indian rivers where flows are 

correlated. The results of partial duration series models 

should also be compared with the results of annual maximum 

models, particularly for short records/limited data. 
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